7f7b4e7abe
Move commands query-cpu-definitions, query-cpu-model-baseline, query-cpu-model-comparison, and query-cpu-model-expansion with their types from target.json to machine-target.json. Also move types CpuModelInfo, CpuModelExpansionType, and CpuModelCompareResult from misc.json there. Add machine-target.json to MAINTAINERS section "Machine core". Cc: Eduardo Habkost <ehabkost@redhat.com> Cc: Marcel Apfelbaum <marcel.apfelbaum@gmail.com> Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <20190619201050.19040-13-armbru@redhat.com> Reviewed-by: Daniel P. Berrangé <berrange@redhat.com> [Commit message typo fixed]
1495 lines
48 KiB
C
1495 lines
48 KiB
C
/*
|
|
* MIPS emulation helpers for qemu.
|
|
*
|
|
* Copyright (c) 2004-2005 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "cpu.h"
|
|
#include "internal.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/log.h"
|
|
#include "hw/mips/cpudevs.h"
|
|
#include "qapi/qapi-commands-machine-target.h"
|
|
|
|
enum {
|
|
TLBRET_XI = -6,
|
|
TLBRET_RI = -5,
|
|
TLBRET_DIRTY = -4,
|
|
TLBRET_INVALID = -3,
|
|
TLBRET_NOMATCH = -2,
|
|
TLBRET_BADADDR = -1,
|
|
TLBRET_MATCH = 0
|
|
};
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
/* no MMU emulation */
|
|
int no_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
|
|
target_ulong address, int rw, int access_type)
|
|
{
|
|
*physical = address;
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
return TLBRET_MATCH;
|
|
}
|
|
|
|
/* fixed mapping MMU emulation */
|
|
int fixed_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
|
|
target_ulong address, int rw, int access_type)
|
|
{
|
|
if (address <= (int32_t)0x7FFFFFFFUL) {
|
|
if (!(env->CP0_Status & (1 << CP0St_ERL)))
|
|
*physical = address + 0x40000000UL;
|
|
else
|
|
*physical = address;
|
|
} else if (address <= (int32_t)0xBFFFFFFFUL)
|
|
*physical = address & 0x1FFFFFFF;
|
|
else
|
|
*physical = address;
|
|
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
return TLBRET_MATCH;
|
|
}
|
|
|
|
/* MIPS32/MIPS64 R4000-style MMU emulation */
|
|
int r4k_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
|
|
target_ulong address, int rw, int access_type)
|
|
{
|
|
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
|
|
int i;
|
|
|
|
for (i = 0; i < env->tlb->tlb_in_use; i++) {
|
|
r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
|
|
/* 1k pages are not supported. */
|
|
target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
|
|
target_ulong tag = address & ~mask;
|
|
target_ulong VPN = tlb->VPN & ~mask;
|
|
#if defined(TARGET_MIPS64)
|
|
tag &= env->SEGMask;
|
|
#endif
|
|
|
|
/* Check ASID, virtual page number & size */
|
|
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
|
|
/* TLB match */
|
|
int n = !!(address & mask & ~(mask >> 1));
|
|
/* Check access rights */
|
|
if (!(n ? tlb->V1 : tlb->V0)) {
|
|
return TLBRET_INVALID;
|
|
}
|
|
if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
|
|
return TLBRET_XI;
|
|
}
|
|
if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
|
|
return TLBRET_RI;
|
|
}
|
|
if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
|
|
*physical = tlb->PFN[n] | (address & (mask >> 1));
|
|
*prot = PAGE_READ;
|
|
if (n ? tlb->D1 : tlb->D0)
|
|
*prot |= PAGE_WRITE;
|
|
if (!(n ? tlb->XI1 : tlb->XI0)) {
|
|
*prot |= PAGE_EXEC;
|
|
}
|
|
return TLBRET_MATCH;
|
|
}
|
|
return TLBRET_DIRTY;
|
|
}
|
|
}
|
|
return TLBRET_NOMATCH;
|
|
}
|
|
|
|
static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
|
|
{
|
|
/*
|
|
* Interpret access control mode and mmu_idx.
|
|
* AdE? TLB?
|
|
* AM K S U E K S U E
|
|
* UK 0 0 1 1 0 0 - - 0
|
|
* MK 1 0 1 1 0 1 - - !eu
|
|
* MSK 2 0 0 1 0 1 1 - !eu
|
|
* MUSK 3 0 0 0 0 1 1 1 !eu
|
|
* MUSUK 4 0 0 0 0 0 1 1 0
|
|
* USK 5 0 0 1 0 0 0 - 0
|
|
* - 6 - - - - - - - -
|
|
* UUSK 7 0 0 0 0 0 0 0 0
|
|
*/
|
|
int32_t adetlb_mask;
|
|
|
|
switch (mmu_idx) {
|
|
case 3 /* ERL */:
|
|
/* If EU is set, always unmapped */
|
|
if (eu) {
|
|
return 0;
|
|
}
|
|
/* fall through */
|
|
case MIPS_HFLAG_KM:
|
|
/* Never AdE, TLB mapped if AM={1,2,3} */
|
|
adetlb_mask = 0x70000000;
|
|
goto check_tlb;
|
|
|
|
case MIPS_HFLAG_SM:
|
|
/* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
|
|
adetlb_mask = 0xc0380000;
|
|
goto check_ade;
|
|
|
|
case MIPS_HFLAG_UM:
|
|
/* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
|
|
adetlb_mask = 0xe4180000;
|
|
/* fall through */
|
|
check_ade:
|
|
/* does this AM cause AdE in current execution mode */
|
|
if ((adetlb_mask << am) < 0) {
|
|
return TLBRET_BADADDR;
|
|
}
|
|
adetlb_mask <<= 8;
|
|
/* fall through */
|
|
check_tlb:
|
|
/* is this AM mapped in current execution mode */
|
|
return ((adetlb_mask << am) < 0);
|
|
default:
|
|
assert(0);
|
|
return TLBRET_BADADDR;
|
|
};
|
|
}
|
|
|
|
static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
|
|
int *prot, target_ulong real_address,
|
|
int rw, int access_type, int mmu_idx,
|
|
unsigned int am, bool eu,
|
|
target_ulong segmask,
|
|
hwaddr physical_base)
|
|
{
|
|
int mapped = is_seg_am_mapped(am, eu, mmu_idx);
|
|
|
|
if (mapped < 0) {
|
|
/* is_seg_am_mapped can report TLBRET_BADADDR */
|
|
return mapped;
|
|
} else if (mapped) {
|
|
/* The segment is TLB mapped */
|
|
return env->tlb->map_address(env, physical, prot, real_address, rw,
|
|
access_type);
|
|
} else {
|
|
/* The segment is unmapped */
|
|
*physical = physical_base | (real_address & segmask);
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
return TLBRET_MATCH;
|
|
}
|
|
}
|
|
|
|
static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
|
|
int *prot, target_ulong real_address,
|
|
int rw, int access_type, int mmu_idx,
|
|
uint16_t segctl, target_ulong segmask)
|
|
{
|
|
unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
|
|
bool eu = (segctl >> CP0SC_EU) & 1;
|
|
hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;
|
|
|
|
return get_seg_physical_address(env, physical, prot, real_address, rw,
|
|
access_type, mmu_idx, am, eu, segmask,
|
|
pa & ~(hwaddr)segmask);
|
|
}
|
|
|
|
static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
|
|
int *prot, target_ulong real_address,
|
|
int rw, int access_type, int mmu_idx)
|
|
{
|
|
/* User mode can only access useg/xuseg */
|
|
#if defined(TARGET_MIPS64)
|
|
int user_mode = mmu_idx == MIPS_HFLAG_UM;
|
|
int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
|
|
int kernel_mode = !user_mode && !supervisor_mode;
|
|
int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
|
|
int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
|
|
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
|
|
#endif
|
|
int ret = TLBRET_MATCH;
|
|
/* effective address (modified for KVM T&E kernel segments) */
|
|
target_ulong address = real_address;
|
|
|
|
#define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
|
|
#define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
|
|
#define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
|
|
#define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
|
|
#define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
|
|
|
|
#define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
|
|
#define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
|
|
|
|
if (mips_um_ksegs_enabled()) {
|
|
/* KVM T&E adds guest kernel segments in useg */
|
|
if (real_address >= KVM_KSEG0_BASE) {
|
|
if (real_address < KVM_KSEG2_BASE) {
|
|
/* kseg0 */
|
|
address += KSEG0_BASE - KVM_KSEG0_BASE;
|
|
} else if (real_address <= USEG_LIMIT) {
|
|
/* kseg2/3 */
|
|
address += KSEG2_BASE - KVM_KSEG2_BASE;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (address <= USEG_LIMIT) {
|
|
/* useg */
|
|
uint16_t segctl;
|
|
|
|
if (address >= 0x40000000UL) {
|
|
segctl = env->CP0_SegCtl2;
|
|
} else {
|
|
segctl = env->CP0_SegCtl2 >> 16;
|
|
}
|
|
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
|
|
access_type, mmu_idx, segctl,
|
|
0x3FFFFFFF);
|
|
#if defined(TARGET_MIPS64)
|
|
} else if (address < 0x4000000000000000ULL) {
|
|
/* xuseg */
|
|
if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
|
|
ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
|
|
} else {
|
|
ret = TLBRET_BADADDR;
|
|
}
|
|
} else if (address < 0x8000000000000000ULL) {
|
|
/* xsseg */
|
|
if ((supervisor_mode || kernel_mode) &&
|
|
SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
|
|
ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
|
|
} else {
|
|
ret = TLBRET_BADADDR;
|
|
}
|
|
} else if (address < 0xC000000000000000ULL) {
|
|
/* xkphys */
|
|
if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
|
|
/* KX/SX/UX bit to check for each xkphys EVA access mode */
|
|
static const uint8_t am_ksux[8] = {
|
|
[CP0SC_AM_UK] = (1u << CP0St_KX),
|
|
[CP0SC_AM_MK] = (1u << CP0St_KX),
|
|
[CP0SC_AM_MSK] = (1u << CP0St_SX),
|
|
[CP0SC_AM_MUSK] = (1u << CP0St_UX),
|
|
[CP0SC_AM_MUSUK] = (1u << CP0St_UX),
|
|
[CP0SC_AM_USK] = (1u << CP0St_SX),
|
|
[6] = (1u << CP0St_KX),
|
|
[CP0SC_AM_UUSK] = (1u << CP0St_UX),
|
|
};
|
|
unsigned int am = CP0SC_AM_UK;
|
|
unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;
|
|
|
|
if (xr & (1 << ((address >> 59) & 0x7))) {
|
|
am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
|
|
}
|
|
/* Does CP0_Status.KX/SX/UX permit the access mode (am) */
|
|
if (env->CP0_Status & am_ksux[am]) {
|
|
ret = get_seg_physical_address(env, physical, prot,
|
|
real_address, rw, access_type,
|
|
mmu_idx, am, false, env->PAMask,
|
|
0);
|
|
} else {
|
|
ret = TLBRET_BADADDR;
|
|
}
|
|
} else {
|
|
ret = TLBRET_BADADDR;
|
|
}
|
|
} else if (address < 0xFFFFFFFF80000000ULL) {
|
|
/* xkseg */
|
|
if (kernel_mode && KX &&
|
|
address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
|
|
ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
|
|
} else {
|
|
ret = TLBRET_BADADDR;
|
|
}
|
|
#endif
|
|
} else if (address < KSEG1_BASE) {
|
|
/* kseg0 */
|
|
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
|
|
access_type, mmu_idx,
|
|
env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
|
|
} else if (address < KSEG2_BASE) {
|
|
/* kseg1 */
|
|
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
|
|
access_type, mmu_idx,
|
|
env->CP0_SegCtl1, 0x1FFFFFFF);
|
|
} else if (address < KSEG3_BASE) {
|
|
/* sseg (kseg2) */
|
|
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
|
|
access_type, mmu_idx,
|
|
env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
|
|
} else {
|
|
/* kseg3 */
|
|
/* XXX: debug segment is not emulated */
|
|
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
|
|
access_type, mmu_idx,
|
|
env->CP0_SegCtl0, 0x1FFFFFFF);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void cpu_mips_tlb_flush(CPUMIPSState *env)
|
|
{
|
|
/* Flush qemu's TLB and discard all shadowed entries. */
|
|
tlb_flush(env_cpu(env));
|
|
env->tlb->tlb_in_use = env->tlb->nb_tlb;
|
|
}
|
|
|
|
/* Called for updates to CP0_Status. */
|
|
void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
|
|
{
|
|
int32_t tcstatus, *tcst;
|
|
uint32_t v = cpu->CP0_Status;
|
|
uint32_t cu, mx, asid, ksu;
|
|
uint32_t mask = ((1 << CP0TCSt_TCU3)
|
|
| (1 << CP0TCSt_TCU2)
|
|
| (1 << CP0TCSt_TCU1)
|
|
| (1 << CP0TCSt_TCU0)
|
|
| (1 << CP0TCSt_TMX)
|
|
| (3 << CP0TCSt_TKSU)
|
|
| (0xff << CP0TCSt_TASID));
|
|
|
|
cu = (v >> CP0St_CU0) & 0xf;
|
|
mx = (v >> CP0St_MX) & 0x1;
|
|
ksu = (v >> CP0St_KSU) & 0x3;
|
|
asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
|
|
|
|
tcstatus = cu << CP0TCSt_TCU0;
|
|
tcstatus |= mx << CP0TCSt_TMX;
|
|
tcstatus |= ksu << CP0TCSt_TKSU;
|
|
tcstatus |= asid;
|
|
|
|
if (tc == cpu->current_tc) {
|
|
tcst = &cpu->active_tc.CP0_TCStatus;
|
|
} else {
|
|
tcst = &cpu->tcs[tc].CP0_TCStatus;
|
|
}
|
|
|
|
*tcst &= ~mask;
|
|
*tcst |= tcstatus;
|
|
compute_hflags(cpu);
|
|
}
|
|
|
|
void cpu_mips_store_status(CPUMIPSState *env, target_ulong val)
|
|
{
|
|
uint32_t mask = env->CP0_Status_rw_bitmask;
|
|
target_ulong old = env->CP0_Status;
|
|
|
|
if (env->insn_flags & ISA_MIPS32R6) {
|
|
bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3;
|
|
#if defined(TARGET_MIPS64)
|
|
uint32_t ksux = (1 << CP0St_KX) & val;
|
|
ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */
|
|
ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */
|
|
val = (val & ~(7 << CP0St_UX)) | ksux;
|
|
#endif
|
|
if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) {
|
|
mask &= ~(3 << CP0St_KSU);
|
|
}
|
|
mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val);
|
|
}
|
|
|
|
env->CP0_Status = (old & ~mask) | (val & mask);
|
|
#if defined(TARGET_MIPS64)
|
|
if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) {
|
|
/* Access to at least one of the 64-bit segments has been disabled */
|
|
tlb_flush(env_cpu(env));
|
|
}
|
|
#endif
|
|
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
|
|
sync_c0_status(env, env, env->current_tc);
|
|
} else {
|
|
compute_hflags(env);
|
|
}
|
|
}
|
|
|
|
void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val)
|
|
{
|
|
uint32_t mask = 0x00C00300;
|
|
uint32_t old = env->CP0_Cause;
|
|
int i;
|
|
|
|
if (env->insn_flags & ISA_MIPS32R2) {
|
|
mask |= 1 << CP0Ca_DC;
|
|
}
|
|
if (env->insn_flags & ISA_MIPS32R6) {
|
|
mask &= ~((1 << CP0Ca_WP) & val);
|
|
}
|
|
|
|
env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask);
|
|
|
|
if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
|
|
if (env->CP0_Cause & (1 << CP0Ca_DC)) {
|
|
cpu_mips_stop_count(env);
|
|
} else {
|
|
cpu_mips_start_count(env);
|
|
}
|
|
}
|
|
|
|
/* Set/reset software interrupts */
|
|
for (i = 0 ; i < 2 ; i++) {
|
|
if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
|
|
cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
|
|
int rw, int tlb_error)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int exception = 0, error_code = 0;
|
|
|
|
if (rw == MMU_INST_FETCH) {
|
|
error_code |= EXCP_INST_NOTAVAIL;
|
|
}
|
|
|
|
switch (tlb_error) {
|
|
default:
|
|
case TLBRET_BADADDR:
|
|
/* Reference to kernel address from user mode or supervisor mode */
|
|
/* Reference to supervisor address from user mode */
|
|
if (rw == MMU_DATA_STORE) {
|
|
exception = EXCP_AdES;
|
|
} else {
|
|
exception = EXCP_AdEL;
|
|
}
|
|
break;
|
|
case TLBRET_NOMATCH:
|
|
/* No TLB match for a mapped address */
|
|
if (rw == MMU_DATA_STORE) {
|
|
exception = EXCP_TLBS;
|
|
} else {
|
|
exception = EXCP_TLBL;
|
|
}
|
|
error_code |= EXCP_TLB_NOMATCH;
|
|
break;
|
|
case TLBRET_INVALID:
|
|
/* TLB match with no valid bit */
|
|
if (rw == MMU_DATA_STORE) {
|
|
exception = EXCP_TLBS;
|
|
} else {
|
|
exception = EXCP_TLBL;
|
|
}
|
|
break;
|
|
case TLBRET_DIRTY:
|
|
/* TLB match but 'D' bit is cleared */
|
|
exception = EXCP_LTLBL;
|
|
break;
|
|
case TLBRET_XI:
|
|
/* Execute-Inhibit Exception */
|
|
if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
|
|
exception = EXCP_TLBXI;
|
|
} else {
|
|
exception = EXCP_TLBL;
|
|
}
|
|
break;
|
|
case TLBRET_RI:
|
|
/* Read-Inhibit Exception */
|
|
if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
|
|
exception = EXCP_TLBRI;
|
|
} else {
|
|
exception = EXCP_TLBL;
|
|
}
|
|
break;
|
|
}
|
|
/* Raise exception */
|
|
if (!(env->hflags & MIPS_HFLAG_DM)) {
|
|
env->CP0_BadVAddr = address;
|
|
}
|
|
env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
|
|
((address >> 9) & 0x007ffff0);
|
|
env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
|
|
(env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
|
|
(address & (TARGET_PAGE_MASK << 1));
|
|
#if defined(TARGET_MIPS64)
|
|
env->CP0_EntryHi &= env->SEGMask;
|
|
env->CP0_XContext =
|
|
/* PTEBase */ (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) |
|
|
/* R */ (extract64(address, 62, 2) << (env->SEGBITS - 9)) |
|
|
/* BadVPN2 */ (extract64(address, 13, env->SEGBITS - 13) << 4);
|
|
#endif
|
|
cs->exception_index = exception;
|
|
env->error_code = error_code;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
|
|
{
|
|
MIPSCPU *cpu = MIPS_CPU(cs);
|
|
CPUMIPSState *env = &cpu->env;
|
|
hwaddr phys_addr;
|
|
int prot;
|
|
|
|
if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT,
|
|
cpu_mmu_index(env, false)) != 0) {
|
|
return -1;
|
|
}
|
|
return phys_addr;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#if !defined(TARGET_MIPS64)
|
|
|
|
/*
|
|
* Perform hardware page table walk
|
|
*
|
|
* Memory accesses are performed using the KERNEL privilege level.
|
|
* Synchronous exceptions detected on memory accesses cause a silent exit
|
|
* from page table walking, resulting in a TLB or XTLB Refill exception.
|
|
*
|
|
* Implementations are not required to support page table walk memory
|
|
* accesses from mapped memory regions. When an unsupported access is
|
|
* attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
|
|
* exception.
|
|
*
|
|
* Note that if an exception is caused by AddressTranslation or LoadMemory
|
|
* functions, the exception is not taken, a silent exit is taken,
|
|
* resulting in a TLB or XTLB Refill exception.
|
|
*/
|
|
|
|
static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
|
|
uint64_t *pte)
|
|
{
|
|
if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
|
|
return false;
|
|
}
|
|
if (entry_size == 64) {
|
|
*pte = cpu_ldq_code(env, vaddr);
|
|
} else {
|
|
*pte = cpu_ldl_code(env, vaddr);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
|
|
int entry_size, int ptei)
|
|
{
|
|
uint64_t result = entry;
|
|
uint64_t rixi;
|
|
if (ptei > entry_size) {
|
|
ptei -= 32;
|
|
}
|
|
result >>= (ptei - 2);
|
|
rixi = result & 3;
|
|
result >>= 2;
|
|
result |= rixi << CP0EnLo_XI;
|
|
return result;
|
|
}
|
|
|
|
static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
|
|
int directory_index, bool *huge_page, bool *hgpg_directory_hit,
|
|
uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
|
|
{
|
|
int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
|
|
int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
|
|
int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
|
|
int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
|
|
int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
|
|
int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
|
|
int directory_shift = (ptew > 1) ? -1 :
|
|
(hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
|
|
int leaf_shift = (ptew > 1) ? -1 :
|
|
(ptew == 1) ? native_shift + 1 : native_shift;
|
|
uint32_t direntry_size = 1 << (directory_shift + 3);
|
|
uint32_t leafentry_size = 1 << (leaf_shift + 3);
|
|
uint64_t entry;
|
|
uint64_t paddr;
|
|
int prot;
|
|
uint64_t lsb = 0;
|
|
uint64_t w = 0;
|
|
|
|
if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
|
|
ACCESS_INT, cpu_mmu_index(env, false)) !=
|
|
TLBRET_MATCH) {
|
|
/* wrong base address */
|
|
return 0;
|
|
}
|
|
if (!get_pte(env, *vaddr, direntry_size, &entry)) {
|
|
return 0;
|
|
}
|
|
|
|
if ((entry & (1 << psn)) && hugepg) {
|
|
*huge_page = true;
|
|
*hgpg_directory_hit = true;
|
|
entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
|
|
w = directory_index - 1;
|
|
if (directory_index & 0x1) {
|
|
/* Generate adjacent page from same PTE for odd TLB page */
|
|
lsb = (1 << w) >> 6;
|
|
*pw_entrylo0 = entry & ~lsb; /* even page */
|
|
*pw_entrylo1 = entry | lsb; /* odd page */
|
|
} else if (dph) {
|
|
int oddpagebit = 1 << leaf_shift;
|
|
uint64_t vaddr2 = *vaddr ^ oddpagebit;
|
|
if (*vaddr & oddpagebit) {
|
|
*pw_entrylo1 = entry;
|
|
} else {
|
|
*pw_entrylo0 = entry;
|
|
}
|
|
if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
|
|
ACCESS_INT, cpu_mmu_index(env, false)) !=
|
|
TLBRET_MATCH) {
|
|
return 0;
|
|
}
|
|
if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
|
|
return 0;
|
|
}
|
|
entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
|
|
if (*vaddr & oddpagebit) {
|
|
*pw_entrylo0 = entry;
|
|
} else {
|
|
*pw_entrylo1 = entry;
|
|
}
|
|
} else {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
} else {
|
|
*vaddr = entry;
|
|
return 2;
|
|
}
|
|
}
|
|
|
|
static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw,
|
|
int mmu_idx)
|
|
{
|
|
int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
|
|
int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
|
|
int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
|
|
int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
|
|
int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
|
|
|
|
/* Initial values */
|
|
bool huge_page = false;
|
|
bool hgpg_bdhit = false;
|
|
bool hgpg_gdhit = false;
|
|
bool hgpg_udhit = false;
|
|
bool hgpg_mdhit = false;
|
|
|
|
int32_t pw_pagemask = 0;
|
|
target_ulong pw_entryhi = 0;
|
|
uint64_t pw_entrylo0 = 0;
|
|
uint64_t pw_entrylo1 = 0;
|
|
|
|
/* Native pointer size */
|
|
/*For the 32-bit architectures, this bit is fixed to 0.*/
|
|
int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
|
|
|
|
/* Indices from PWField */
|
|
int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
|
|
int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
|
|
int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
|
|
int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
|
|
int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
|
|
|
|
/* Indices computed from faulting address */
|
|
int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
|
|
int uindex = (address >> pf_udw) & ((1 << udw) - 1);
|
|
int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
|
|
int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
|
|
|
|
/* Other HTW configs */
|
|
int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
|
|
|
|
/* HTW Shift values (depend on entry size) */
|
|
int directory_shift = (ptew > 1) ? -1 :
|
|
(hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
|
|
int leaf_shift = (ptew > 1) ? -1 :
|
|
(ptew == 1) ? native_shift + 1 : native_shift;
|
|
|
|
/* Offsets into tables */
|
|
int goffset = gindex << directory_shift;
|
|
int uoffset = uindex << directory_shift;
|
|
int moffset = mindex << directory_shift;
|
|
int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
|
|
int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
|
|
|
|
uint32_t leafentry_size = 1 << (leaf_shift + 3);
|
|
|
|
/* Starting address - Page Table Base */
|
|
uint64_t vaddr = env->CP0_PWBase;
|
|
|
|
uint64_t dir_entry;
|
|
uint64_t paddr;
|
|
int prot;
|
|
int m;
|
|
|
|
if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
|
|
/* walker is unimplemented */
|
|
return false;
|
|
}
|
|
if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
|
|
/* walker is disabled */
|
|
return false;
|
|
}
|
|
if (!(gdw > 0 || udw > 0 || mdw > 0)) {
|
|
/* no structure to walk */
|
|
return false;
|
|
}
|
|
if ((directory_shift == -1) || (leaf_shift == -1)) {
|
|
return false;
|
|
}
|
|
|
|
/* Global Directory */
|
|
if (gdw > 0) {
|
|
vaddr |= goffset;
|
|
switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
|
|
&pw_entrylo0, &pw_entrylo1))
|
|
{
|
|
case 0:
|
|
return false;
|
|
case 1:
|
|
goto refill;
|
|
case 2:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Upper directory */
|
|
if (udw > 0) {
|
|
vaddr |= uoffset;
|
|
switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
|
|
&pw_entrylo0, &pw_entrylo1))
|
|
{
|
|
case 0:
|
|
return false;
|
|
case 1:
|
|
goto refill;
|
|
case 2:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Middle directory */
|
|
if (mdw > 0) {
|
|
vaddr |= moffset;
|
|
switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
|
|
&pw_entrylo0, &pw_entrylo1))
|
|
{
|
|
case 0:
|
|
return false;
|
|
case 1:
|
|
goto refill;
|
|
case 2:
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Leaf Level Page Table - First half of PTE pair */
|
|
vaddr |= ptoffset0;
|
|
if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
|
|
ACCESS_INT, cpu_mmu_index(env, false)) !=
|
|
TLBRET_MATCH) {
|
|
return false;
|
|
}
|
|
if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
|
|
return false;
|
|
}
|
|
dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
|
|
pw_entrylo0 = dir_entry;
|
|
|
|
/* Leaf Level Page Table - Second half of PTE pair */
|
|
vaddr |= ptoffset1;
|
|
if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
|
|
ACCESS_INT, cpu_mmu_index(env, false)) !=
|
|
TLBRET_MATCH) {
|
|
return false;
|
|
}
|
|
if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
|
|
return false;
|
|
}
|
|
dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
|
|
pw_entrylo1 = dir_entry;
|
|
|
|
refill:
|
|
|
|
m = (1 << pf_ptw) - 1;
|
|
|
|
if (huge_page) {
|
|
switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
|
|
hgpg_mdhit)
|
|
{
|
|
case 4:
|
|
m = (1 << pf_gdw) - 1;
|
|
if (pf_gdw & 1) {
|
|
m >>= 1;
|
|
}
|
|
break;
|
|
case 2:
|
|
m = (1 << pf_udw) - 1;
|
|
if (pf_udw & 1) {
|
|
m >>= 1;
|
|
}
|
|
break;
|
|
case 1:
|
|
m = (1 << pf_mdw) - 1;
|
|
if (pf_mdw & 1) {
|
|
m >>= 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
pw_pagemask = m >> 12;
|
|
update_pagemask(env, pw_pagemask << 13, &pw_pagemask);
|
|
pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
|
|
{
|
|
target_ulong tmp_entryhi = env->CP0_EntryHi;
|
|
int32_t tmp_pagemask = env->CP0_PageMask;
|
|
uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
|
|
uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
|
|
|
|
env->CP0_EntryHi = pw_entryhi;
|
|
env->CP0_PageMask = pw_pagemask;
|
|
env->CP0_EntryLo0 = pw_entrylo0;
|
|
env->CP0_EntryLo1 = pw_entrylo1;
|
|
|
|
/*
|
|
* The hardware page walker inserts a page into the TLB in a manner
|
|
* identical to a TLBWR instruction as executed by the software refill
|
|
* handler.
|
|
*/
|
|
r4k_helper_tlbwr(env);
|
|
|
|
env->CP0_EntryHi = tmp_entryhi;
|
|
env->CP0_PageMask = tmp_pagemask;
|
|
env->CP0_EntryLo0 = tmp_entrylo0;
|
|
env->CP0_EntryLo1 = tmp_entrylo1;
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool probe, uintptr_t retaddr)
|
|
{
|
|
MIPSCPU *cpu = MIPS_CPU(cs);
|
|
CPUMIPSState *env = &cpu->env;
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
hwaddr physical;
|
|
int prot;
|
|
int mips_access_type;
|
|
#endif
|
|
int ret = TLBRET_BADADDR;
|
|
|
|
/* data access */
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* XXX: put correct access by using cpu_restore_state() correctly */
|
|
mips_access_type = ACCESS_INT;
|
|
ret = get_physical_address(env, &physical, &prot, address,
|
|
access_type, mips_access_type, mmu_idx);
|
|
switch (ret) {
|
|
case TLBRET_MATCH:
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
|
|
" prot %d\n", __func__, address, physical, prot);
|
|
break;
|
|
default:
|
|
qemu_log_mask(CPU_LOG_MMU,
|
|
"%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
|
|
ret);
|
|
break;
|
|
}
|
|
if (ret == TLBRET_MATCH) {
|
|
tlb_set_page(cs, address & TARGET_PAGE_MASK,
|
|
physical & TARGET_PAGE_MASK, prot,
|
|
mmu_idx, TARGET_PAGE_SIZE);
|
|
return true;
|
|
}
|
|
#if !defined(TARGET_MIPS64)
|
|
if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
|
|
/*
|
|
* Memory reads during hardware page table walking are performed
|
|
* as if they were kernel-mode load instructions.
|
|
*/
|
|
int mode = (env->hflags & MIPS_HFLAG_KSU);
|
|
bool ret_walker;
|
|
env->hflags &= ~MIPS_HFLAG_KSU;
|
|
ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx);
|
|
env->hflags |= mode;
|
|
if (ret_walker) {
|
|
ret = get_physical_address(env, &physical, &prot, address,
|
|
access_type, mips_access_type, mmu_idx);
|
|
if (ret == TLBRET_MATCH) {
|
|
tlb_set_page(cs, address & TARGET_PAGE_MASK,
|
|
physical & TARGET_PAGE_MASK, prot,
|
|
mmu_idx, TARGET_PAGE_SIZE);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (probe) {
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
raise_mmu_exception(env, address, access_type, ret);
|
|
do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, int rw)
|
|
{
|
|
hwaddr physical;
|
|
int prot;
|
|
int access_type;
|
|
int ret = 0;
|
|
|
|
/* data access */
|
|
access_type = ACCESS_INT;
|
|
ret = get_physical_address(env, &physical, &prot, address, rw, access_type,
|
|
cpu_mmu_index(env, false));
|
|
if (ret != TLBRET_MATCH) {
|
|
raise_mmu_exception(env, address, rw, ret);
|
|
return -1LL;
|
|
} else {
|
|
return physical;
|
|
}
|
|
}
|
|
|
|
static const char * const excp_names[EXCP_LAST + 1] = {
|
|
[EXCP_RESET] = "reset",
|
|
[EXCP_SRESET] = "soft reset",
|
|
[EXCP_DSS] = "debug single step",
|
|
[EXCP_DINT] = "debug interrupt",
|
|
[EXCP_NMI] = "non-maskable interrupt",
|
|
[EXCP_MCHECK] = "machine check",
|
|
[EXCP_EXT_INTERRUPT] = "interrupt",
|
|
[EXCP_DFWATCH] = "deferred watchpoint",
|
|
[EXCP_DIB] = "debug instruction breakpoint",
|
|
[EXCP_IWATCH] = "instruction fetch watchpoint",
|
|
[EXCP_AdEL] = "address error load",
|
|
[EXCP_AdES] = "address error store",
|
|
[EXCP_TLBF] = "TLB refill",
|
|
[EXCP_IBE] = "instruction bus error",
|
|
[EXCP_DBp] = "debug breakpoint",
|
|
[EXCP_SYSCALL] = "syscall",
|
|
[EXCP_BREAK] = "break",
|
|
[EXCP_CpU] = "coprocessor unusable",
|
|
[EXCP_RI] = "reserved instruction",
|
|
[EXCP_OVERFLOW] = "arithmetic overflow",
|
|
[EXCP_TRAP] = "trap",
|
|
[EXCP_FPE] = "floating point",
|
|
[EXCP_DDBS] = "debug data break store",
|
|
[EXCP_DWATCH] = "data watchpoint",
|
|
[EXCP_LTLBL] = "TLB modify",
|
|
[EXCP_TLBL] = "TLB load",
|
|
[EXCP_TLBS] = "TLB store",
|
|
[EXCP_DBE] = "data bus error",
|
|
[EXCP_DDBL] = "debug data break load",
|
|
[EXCP_THREAD] = "thread",
|
|
[EXCP_MDMX] = "MDMX",
|
|
[EXCP_C2E] = "precise coprocessor 2",
|
|
[EXCP_CACHE] = "cache error",
|
|
[EXCP_TLBXI] = "TLB execute-inhibit",
|
|
[EXCP_TLBRI] = "TLB read-inhibit",
|
|
[EXCP_MSADIS] = "MSA disabled",
|
|
[EXCP_MSAFPE] = "MSA floating point",
|
|
};
|
|
#endif
|
|
|
|
target_ulong exception_resume_pc (CPUMIPSState *env)
|
|
{
|
|
target_ulong bad_pc;
|
|
target_ulong isa_mode;
|
|
|
|
isa_mode = !!(env->hflags & MIPS_HFLAG_M16);
|
|
bad_pc = env->active_tc.PC | isa_mode;
|
|
if (env->hflags & MIPS_HFLAG_BMASK) {
|
|
/* If the exception was raised from a delay slot, come back to
|
|
the jump. */
|
|
bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
|
|
}
|
|
|
|
return bad_pc;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
static void set_hflags_for_handler (CPUMIPSState *env)
|
|
{
|
|
/* Exception handlers are entered in 32-bit mode. */
|
|
env->hflags &= ~(MIPS_HFLAG_M16);
|
|
/* ...except that microMIPS lets you choose. */
|
|
if (env->insn_flags & ASE_MICROMIPS) {
|
|
env->hflags |= (!!(env->CP0_Config3
|
|
& (1 << CP0C3_ISA_ON_EXC))
|
|
<< MIPS_HFLAG_M16_SHIFT);
|
|
}
|
|
}
|
|
|
|
static inline void set_badinstr_registers(CPUMIPSState *env)
|
|
{
|
|
if (env->insn_flags & ISA_NANOMIPS32) {
|
|
if (env->CP0_Config3 & (1 << CP0C3_BI)) {
|
|
uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
|
|
if ((instr & 0x10000000) == 0) {
|
|
instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
|
|
}
|
|
env->CP0_BadInstr = instr;
|
|
|
|
if ((instr & 0xFC000000) == 0x60000000) {
|
|
instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
|
|
env->CP0_BadInstrX = instr;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (env->hflags & MIPS_HFLAG_M16) {
|
|
/* TODO: add BadInstr support for microMIPS */
|
|
return;
|
|
}
|
|
if (env->CP0_Config3 & (1 << CP0C3_BI)) {
|
|
env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
|
|
}
|
|
if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
|
|
(env->hflags & MIPS_HFLAG_BMASK)) {
|
|
env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void mips_cpu_do_interrupt(CPUState *cs)
|
|
{
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
MIPSCPU *cpu = MIPS_CPU(cs);
|
|
CPUMIPSState *env = &cpu->env;
|
|
bool update_badinstr = 0;
|
|
target_ulong offset;
|
|
int cause = -1;
|
|
const char *name;
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)
|
|
&& cs->exception_index != EXCP_EXT_INTERRUPT) {
|
|
if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) {
|
|
name = "unknown";
|
|
} else {
|
|
name = excp_names[cs->exception_index];
|
|
}
|
|
|
|
qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
|
|
" %s exception\n",
|
|
__func__, env->active_tc.PC, env->CP0_EPC, name);
|
|
}
|
|
if (cs->exception_index == EXCP_EXT_INTERRUPT &&
|
|
(env->hflags & MIPS_HFLAG_DM)) {
|
|
cs->exception_index = EXCP_DINT;
|
|
}
|
|
offset = 0x180;
|
|
switch (cs->exception_index) {
|
|
case EXCP_DSS:
|
|
env->CP0_Debug |= 1 << CP0DB_DSS;
|
|
/* Debug single step cannot be raised inside a delay slot and
|
|
resume will always occur on the next instruction
|
|
(but we assume the pc has always been updated during
|
|
code translation). */
|
|
env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
|
|
goto enter_debug_mode;
|
|
case EXCP_DINT:
|
|
env->CP0_Debug |= 1 << CP0DB_DINT;
|
|
goto set_DEPC;
|
|
case EXCP_DIB:
|
|
env->CP0_Debug |= 1 << CP0DB_DIB;
|
|
goto set_DEPC;
|
|
case EXCP_DBp:
|
|
env->CP0_Debug |= 1 << CP0DB_DBp;
|
|
/* Setup DExcCode - SDBBP instruction */
|
|
env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) | 9 << CP0DB_DEC;
|
|
goto set_DEPC;
|
|
case EXCP_DDBS:
|
|
env->CP0_Debug |= 1 << CP0DB_DDBS;
|
|
goto set_DEPC;
|
|
case EXCP_DDBL:
|
|
env->CP0_Debug |= 1 << CP0DB_DDBL;
|
|
set_DEPC:
|
|
env->CP0_DEPC = exception_resume_pc(env);
|
|
env->hflags &= ~MIPS_HFLAG_BMASK;
|
|
enter_debug_mode:
|
|
if (env->insn_flags & ISA_MIPS3) {
|
|
env->hflags |= MIPS_HFLAG_64;
|
|
if (!(env->insn_flags & ISA_MIPS64R6) ||
|
|
env->CP0_Status & (1 << CP0St_KX)) {
|
|
env->hflags &= ~MIPS_HFLAG_AWRAP;
|
|
}
|
|
}
|
|
env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
|
|
env->hflags &= ~(MIPS_HFLAG_KSU);
|
|
/* EJTAG probe trap enable is not implemented... */
|
|
if (!(env->CP0_Status & (1 << CP0St_EXL)))
|
|
env->CP0_Cause &= ~(1U << CP0Ca_BD);
|
|
env->active_tc.PC = env->exception_base + 0x480;
|
|
set_hflags_for_handler(env);
|
|
break;
|
|
case EXCP_RESET:
|
|
cpu_reset(CPU(cpu));
|
|
break;
|
|
case EXCP_SRESET:
|
|
env->CP0_Status |= (1 << CP0St_SR);
|
|
memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
|
|
goto set_error_EPC;
|
|
case EXCP_NMI:
|
|
env->CP0_Status |= (1 << CP0St_NMI);
|
|
set_error_EPC:
|
|
env->CP0_ErrorEPC = exception_resume_pc(env);
|
|
env->hflags &= ~MIPS_HFLAG_BMASK;
|
|
env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
|
|
if (env->insn_flags & ISA_MIPS3) {
|
|
env->hflags |= MIPS_HFLAG_64;
|
|
if (!(env->insn_flags & ISA_MIPS64R6) ||
|
|
env->CP0_Status & (1 << CP0St_KX)) {
|
|
env->hflags &= ~MIPS_HFLAG_AWRAP;
|
|
}
|
|
}
|
|
env->hflags |= MIPS_HFLAG_CP0;
|
|
env->hflags &= ~(MIPS_HFLAG_KSU);
|
|
if (!(env->CP0_Status & (1 << CP0St_EXL)))
|
|
env->CP0_Cause &= ~(1U << CP0Ca_BD);
|
|
env->active_tc.PC = env->exception_base;
|
|
set_hflags_for_handler(env);
|
|
break;
|
|
case EXCP_EXT_INTERRUPT:
|
|
cause = 0;
|
|
if (env->CP0_Cause & (1 << CP0Ca_IV)) {
|
|
uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
|
|
|
|
if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
|
|
offset = 0x200;
|
|
} else {
|
|
uint32_t vector = 0;
|
|
uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
|
|
|
|
if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
|
|
/* For VEIC mode, the external interrupt controller feeds
|
|
* the vector through the CP0Cause IP lines. */
|
|
vector = pending;
|
|
} else {
|
|
/* Vectored Interrupts
|
|
* Mask with Status.IM7-IM0 to get enabled interrupts. */
|
|
pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
|
|
/* Find the highest-priority interrupt. */
|
|
while (pending >>= 1) {
|
|
vector++;
|
|
}
|
|
}
|
|
offset = 0x200 + (vector * (spacing << 5));
|
|
}
|
|
}
|
|
goto set_EPC;
|
|
case EXCP_LTLBL:
|
|
cause = 1;
|
|
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
|
|
goto set_EPC;
|
|
case EXCP_TLBL:
|
|
cause = 2;
|
|
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
|
|
if ((env->error_code & EXCP_TLB_NOMATCH) &&
|
|
!(env->CP0_Status & (1 << CP0St_EXL))) {
|
|
#if defined(TARGET_MIPS64)
|
|
int R = env->CP0_BadVAddr >> 62;
|
|
int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
|
|
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
|
|
|
|
if ((R != 0 || UX) && (R != 3 || KX) &&
|
|
(!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
|
|
offset = 0x080;
|
|
} else {
|
|
#endif
|
|
offset = 0x000;
|
|
#if defined(TARGET_MIPS64)
|
|
}
|
|
#endif
|
|
}
|
|
goto set_EPC;
|
|
case EXCP_TLBS:
|
|
cause = 3;
|
|
update_badinstr = 1;
|
|
if ((env->error_code & EXCP_TLB_NOMATCH) &&
|
|
!(env->CP0_Status & (1 << CP0St_EXL))) {
|
|
#if defined(TARGET_MIPS64)
|
|
int R = env->CP0_BadVAddr >> 62;
|
|
int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
|
|
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
|
|
|
|
if ((R != 0 || UX) && (R != 3 || KX) &&
|
|
(!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
|
|
offset = 0x080;
|
|
} else {
|
|
#endif
|
|
offset = 0x000;
|
|
#if defined(TARGET_MIPS64)
|
|
}
|
|
#endif
|
|
}
|
|
goto set_EPC;
|
|
case EXCP_AdEL:
|
|
cause = 4;
|
|
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
|
|
goto set_EPC;
|
|
case EXCP_AdES:
|
|
cause = 5;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_IBE:
|
|
cause = 6;
|
|
goto set_EPC;
|
|
case EXCP_DBE:
|
|
cause = 7;
|
|
goto set_EPC;
|
|
case EXCP_SYSCALL:
|
|
cause = 8;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_BREAK:
|
|
cause = 9;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_RI:
|
|
cause = 10;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_CpU:
|
|
cause = 11;
|
|
update_badinstr = 1;
|
|
env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
|
|
(env->error_code << CP0Ca_CE);
|
|
goto set_EPC;
|
|
case EXCP_OVERFLOW:
|
|
cause = 12;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_TRAP:
|
|
cause = 13;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_MSAFPE:
|
|
cause = 14;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_FPE:
|
|
cause = 15;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_C2E:
|
|
cause = 18;
|
|
goto set_EPC;
|
|
case EXCP_TLBRI:
|
|
cause = 19;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_TLBXI:
|
|
cause = 20;
|
|
goto set_EPC;
|
|
case EXCP_MSADIS:
|
|
cause = 21;
|
|
update_badinstr = 1;
|
|
goto set_EPC;
|
|
case EXCP_MDMX:
|
|
cause = 22;
|
|
goto set_EPC;
|
|
case EXCP_DWATCH:
|
|
cause = 23;
|
|
/* XXX: TODO: manage deferred watch exceptions */
|
|
goto set_EPC;
|
|
case EXCP_MCHECK:
|
|
cause = 24;
|
|
goto set_EPC;
|
|
case EXCP_THREAD:
|
|
cause = 25;
|
|
goto set_EPC;
|
|
case EXCP_DSPDIS:
|
|
cause = 26;
|
|
goto set_EPC;
|
|
case EXCP_CACHE:
|
|
cause = 30;
|
|
offset = 0x100;
|
|
set_EPC:
|
|
if (!(env->CP0_Status & (1 << CP0St_EXL))) {
|
|
env->CP0_EPC = exception_resume_pc(env);
|
|
if (update_badinstr) {
|
|
set_badinstr_registers(env);
|
|
}
|
|
if (env->hflags & MIPS_HFLAG_BMASK) {
|
|
env->CP0_Cause |= (1U << CP0Ca_BD);
|
|
} else {
|
|
env->CP0_Cause &= ~(1U << CP0Ca_BD);
|
|
}
|
|
env->CP0_Status |= (1 << CP0St_EXL);
|
|
if (env->insn_flags & ISA_MIPS3) {
|
|
env->hflags |= MIPS_HFLAG_64;
|
|
if (!(env->insn_flags & ISA_MIPS64R6) ||
|
|
env->CP0_Status & (1 << CP0St_KX)) {
|
|
env->hflags &= ~MIPS_HFLAG_AWRAP;
|
|
}
|
|
}
|
|
env->hflags |= MIPS_HFLAG_CP0;
|
|
env->hflags &= ~(MIPS_HFLAG_KSU);
|
|
}
|
|
env->hflags &= ~MIPS_HFLAG_BMASK;
|
|
if (env->CP0_Status & (1 << CP0St_BEV)) {
|
|
env->active_tc.PC = env->exception_base + 0x200;
|
|
} else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
|
|
env->CP0_Config5 & (1 << CP0C5_CV))) {
|
|
/* Force KSeg1 for cache errors */
|
|
env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
|
|
} else {
|
|
env->active_tc.PC = env->CP0_EBase & ~0xfff;
|
|
}
|
|
|
|
env->active_tc.PC += offset;
|
|
set_hflags_for_handler(env);
|
|
env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) | (cause << CP0Ca_EC);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)
|
|
&& cs->exception_index != EXCP_EXT_INTERRUPT) {
|
|
qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
|
|
" S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
|
|
__func__, env->active_tc.PC, env->CP0_EPC, cause,
|
|
env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
|
|
env->CP0_DEPC);
|
|
}
|
|
#endif
|
|
cs->exception_index = EXCP_NONE;
|
|
}
|
|
|
|
bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
|
{
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
MIPSCPU *cpu = MIPS_CPU(cs);
|
|
CPUMIPSState *env = &cpu->env;
|
|
|
|
if (cpu_mips_hw_interrupts_enabled(env) &&
|
|
cpu_mips_hw_interrupts_pending(env)) {
|
|
/* Raise it */
|
|
cs->exception_index = EXCP_EXT_INTERRUPT;
|
|
env->error_code = 0;
|
|
mips_cpu_do_interrupt(cs);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
void r4k_invalidate_tlb (CPUMIPSState *env, int idx, int use_extra)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
r4k_tlb_t *tlb;
|
|
target_ulong addr;
|
|
target_ulong end;
|
|
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
|
|
target_ulong mask;
|
|
|
|
tlb = &env->tlb->mmu.r4k.tlb[idx];
|
|
/* The qemu TLB is flushed when the ASID changes, so no need to
|
|
flush these entries again. */
|
|
if (tlb->G == 0 && tlb->ASID != ASID) {
|
|
return;
|
|
}
|
|
|
|
if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
|
|
/* For tlbwr, we can shadow the discarded entry into
|
|
a new (fake) TLB entry, as long as the guest can not
|
|
tell that it's there. */
|
|
env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
|
|
env->tlb->tlb_in_use++;
|
|
return;
|
|
}
|
|
|
|
/* 1k pages are not supported. */
|
|
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
|
|
if (tlb->V0) {
|
|
addr = tlb->VPN & ~mask;
|
|
#if defined(TARGET_MIPS64)
|
|
if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
|
|
addr |= 0x3FFFFF0000000000ULL;
|
|
}
|
|
#endif
|
|
end = addr | (mask >> 1);
|
|
while (addr < end) {
|
|
tlb_flush_page(cs, addr);
|
|
addr += TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
if (tlb->V1) {
|
|
addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
|
|
#if defined(TARGET_MIPS64)
|
|
if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
|
|
addr |= 0x3FFFFF0000000000ULL;
|
|
}
|
|
#endif
|
|
end = addr | mask;
|
|
while (addr - 1 < end) {
|
|
tlb_flush_page(cs, addr);
|
|
addr += TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
|
|
uint32_t exception,
|
|
int error_code,
|
|
uintptr_t pc)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n",
|
|
__func__, exception, error_code);
|
|
cs->exception_index = exception;
|
|
env->error_code = error_code;
|
|
|
|
cpu_loop_exit_restore(cs, pc);
|
|
}
|
|
|
|
static void mips_cpu_add_definition(gpointer data, gpointer user_data)
|
|
{
|
|
ObjectClass *oc = data;
|
|
CpuDefinitionInfoList **cpu_list = user_data;
|
|
CpuDefinitionInfoList *entry;
|
|
CpuDefinitionInfo *info;
|
|
const char *typename;
|
|
|
|
typename = object_class_get_name(oc);
|
|
info = g_malloc0(sizeof(*info));
|
|
info->name = g_strndup(typename,
|
|
strlen(typename) - strlen("-" TYPE_MIPS_CPU));
|
|
info->q_typename = g_strdup(typename);
|
|
|
|
entry = g_malloc0(sizeof(*entry));
|
|
entry->value = info;
|
|
entry->next = *cpu_list;
|
|
*cpu_list = entry;
|
|
}
|
|
|
|
CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
|
|
{
|
|
CpuDefinitionInfoList *cpu_list = NULL;
|
|
GSList *list;
|
|
|
|
list = object_class_get_list(TYPE_MIPS_CPU, false);
|
|
g_slist_foreach(list, mips_cpu_add_definition, &cpu_list);
|
|
g_slist_free(list);
|
|
|
|
return cpu_list;
|
|
}
|