qemu/target/s390x/tcg/misc_helper.c
Thomas Huth 44ee69ea16 s390x: Fix spelling errors
Fix typos (discovered with the 'codespell' utility).
Note: Though "migrateable" still seems to be a valid spelling, we change
it to "migratable" since this is the way more common spelling here.

Message-Id: <20221111182828.282251-1-thuth@redhat.com>
Reviewed-by: Stefan Weil <sw@weilnetz.de>
Reviewed-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
2022-11-16 10:15:26 +01:00

806 lines
23 KiB
C

/*
* S/390 misc helper routines
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2009 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "exec/memory.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "qemu/timer.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "qapi/error.h"
#include "tcg_s390x.h"
#include "s390-tod.h"
#if !defined(CONFIG_USER_ONLY)
#include "sysemu/cpus.h"
#include "sysemu/sysemu.h"
#include "hw/s390x/ebcdic.h"
#include "hw/s390x/s390-virtio-hcall.h"
#include "hw/s390x/sclp.h"
#include "hw/s390x/s390_flic.h"
#include "hw/s390x/ioinst.h"
#include "hw/s390x/s390-pci-inst.h"
#include "hw/boards.h"
#include "hw/s390x/tod.h"
#endif
/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif
/* Raise an exception statically from a TB. */
void HELPER(exception)(CPUS390XState *env, uint32_t excp)
{
CPUState *cs = env_cpu(env);
HELPER_LOG("%s: exception %d\n", __func__, excp);
cs->exception_index = excp;
cpu_loop_exit(cs);
}
/* Store CPU Timer (also used for EXTRACT CPU TIME) */
uint64_t HELPER(stpt)(CPUS390XState *env)
{
#if defined(CONFIG_USER_ONLY)
/*
* Fake a descending CPU timer. We could get negative values here,
* but we don't care as it is up to the OS when to process that
* interrupt and reset to > 0.
*/
return UINT64_MAX - (uint64_t)cpu_get_host_ticks();
#else
return time2tod(env->cputm - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
#endif
}
/* Store Clock */
uint64_t HELPER(stck)(CPUS390XState *env)
{
#ifdef CONFIG_USER_ONLY
struct timespec ts;
uint64_t ns;
clock_gettime(CLOCK_REALTIME, &ts);
ns = ts.tv_sec * NANOSECONDS_PER_SECOND + ts.tv_nsec;
return TOD_UNIX_EPOCH + time2tod(ns);
#else
S390TODState *td = s390_get_todstate();
S390TODClass *tdc = S390_TOD_GET_CLASS(td);
S390TOD tod;
tdc->get(td, &tod, &error_abort);
return tod.low;
#endif
}
#ifndef CONFIG_USER_ONLY
/* SCLP service call */
uint32_t HELPER(servc)(CPUS390XState *env, uint64_t r1, uint64_t r2)
{
qemu_mutex_lock_iothread();
int r = sclp_service_call(env, r1, r2);
qemu_mutex_unlock_iothread();
if (r < 0) {
tcg_s390_program_interrupt(env, -r, GETPC());
}
return r;
}
void HELPER(diag)(CPUS390XState *env, uint32_t r1, uint32_t r3, uint32_t num)
{
uint64_t r;
switch (num) {
case 0x500:
/* KVM hypercall */
qemu_mutex_lock_iothread();
r = s390_virtio_hypercall(env);
qemu_mutex_unlock_iothread();
break;
case 0x44:
/* yield */
r = 0;
break;
case 0x308:
/* ipl */
qemu_mutex_lock_iothread();
handle_diag_308(env, r1, r3, GETPC());
qemu_mutex_unlock_iothread();
r = 0;
break;
case 0x288:
/* time bomb (watchdog) */
r = handle_diag_288(env, r1, r3);
break;
default:
r = -1;
break;
}
if (r) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC());
}
}
/* Set Prefix */
void HELPER(spx)(CPUS390XState *env, uint64_t a1)
{
const uint32_t prefix = a1 & 0x7fffe000;
const uint32_t old_prefix = env->psa;
CPUState *cs = env_cpu(env);
if (prefix == old_prefix) {
return;
}
/*
* Since prefix got aligned to 8k and memory increments are a multiple of
* 8k checking the first page is sufficient
*/
if (!mmu_absolute_addr_valid(prefix, true)) {
tcg_s390_program_interrupt(env, PGM_ADDRESSING, GETPC());
}
env->psa = prefix;
HELPER_LOG("prefix: %#x\n", prefix);
tlb_flush_page(cs, 0);
tlb_flush_page(cs, TARGET_PAGE_SIZE);
if (prefix != 0) {
tlb_flush_page(cs, prefix);
tlb_flush_page(cs, prefix + TARGET_PAGE_SIZE);
}
if (old_prefix != 0) {
tlb_flush_page(cs, old_prefix);
tlb_flush_page(cs, old_prefix + TARGET_PAGE_SIZE);
}
}
static void update_ckc_timer(CPUS390XState *env)
{
S390TODState *td = s390_get_todstate();
uint64_t time;
/* stop the timer and remove pending CKC IRQs */
timer_del(env->tod_timer);
g_assert(qemu_mutex_iothread_locked());
env->pending_int &= ~INTERRUPT_EXT_CLOCK_COMPARATOR;
/* the tod has to exceed the ckc, this can never happen if ckc is all 1's */
if (env->ckc == -1ULL) {
return;
}
/* difference between origins */
time = env->ckc - td->base.low;
/* nanoseconds */
time = tod2time(time);
timer_mod(env->tod_timer, time);
}
/* Set Clock Comparator */
void HELPER(sckc)(CPUS390XState *env, uint64_t ckc)
{
env->ckc = ckc;
qemu_mutex_lock_iothread();
update_ckc_timer(env);
qemu_mutex_unlock_iothread();
}
void tcg_s390_tod_updated(CPUState *cs, run_on_cpu_data opaque)
{
S390CPU *cpu = S390_CPU(cs);
update_ckc_timer(&cpu->env);
}
/* Set Clock */
uint32_t HELPER(sck)(CPUS390XState *env, uint64_t tod_low)
{
S390TODState *td = s390_get_todstate();
S390TODClass *tdc = S390_TOD_GET_CLASS(td);
S390TOD tod = {
.high = 0,
.low = tod_low,
};
qemu_mutex_lock_iothread();
tdc->set(td, &tod, &error_abort);
qemu_mutex_unlock_iothread();
return 0;
}
/* Set Tod Programmable Field */
void HELPER(sckpf)(CPUS390XState *env, uint64_t r0)
{
uint32_t val = r0;
if (val & 0xffff0000) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC());
}
env->todpr = val;
}
/* Store Clock Comparator */
uint64_t HELPER(stckc)(CPUS390XState *env)
{
return env->ckc;
}
/* Set CPU Timer */
void HELPER(spt)(CPUS390XState *env, uint64_t time)
{
if (time == -1ULL) {
return;
}
/* nanoseconds */
time = tod2time(time);
env->cputm = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + time;
timer_mod(env->cpu_timer, env->cputm);
}
/* Store System Information */
uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0, uint64_t r0, uint64_t r1)
{
const uintptr_t ra = GETPC();
const uint32_t sel1 = r0 & STSI_R0_SEL1_MASK;
const uint32_t sel2 = r1 & STSI_R1_SEL2_MASK;
const MachineState *ms = MACHINE(qdev_get_machine());
uint16_t total_cpus = 0, conf_cpus = 0, reserved_cpus = 0;
S390CPU *cpu = env_archcpu(env);
SysIB sysib = { };
int i, cc = 0;
if ((r0 & STSI_R0_FC_MASK) > STSI_R0_FC_LEVEL_3) {
/* invalid function code: no other checks are performed */
return 3;
}
if ((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK)) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
if ((r0 & STSI_R0_FC_MASK) == STSI_R0_FC_CURRENT) {
/* query the current level: no further checks are performed */
env->regs[0] = STSI_R0_FC_LEVEL_3;
return 0;
}
if (a0 & ~TARGET_PAGE_MASK) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
/* count the cpus and split them into configured and reserved ones */
for (i = 0; i < ms->possible_cpus->len; i++) {
total_cpus++;
if (ms->possible_cpus->cpus[i].cpu) {
conf_cpus++;
} else {
reserved_cpus++;
}
}
/*
* In theory, we could report Level 1 / Level 2 as current. However,
* the Linux kernel will detect this as running under LPAR and assume
* that we have a sclp linemode console (which is always present on
* LPAR, but not the default for QEMU), therefore not displaying boot
* messages and making booting a Linux kernel under TCG harder.
*
* For now we fake the same SMP configuration on all levels.
*
* TODO: We could later make the level configurable via the machine
* and change defaults (linemode console) based on machine type
* and accelerator.
*/
switch (r0 & STSI_R0_FC_MASK) {
case STSI_R0_FC_LEVEL_1:
if ((sel1 == 1) && (sel2 == 1)) {
/* Basic Machine Configuration */
char type[5] = {};
ebcdic_put(sysib.sysib_111.manuf, "QEMU ", 16);
/* same as machine type number in STORE CPU ID, but in EBCDIC */
snprintf(type, ARRAY_SIZE(type), "%X", cpu->model->def->type);
ebcdic_put(sysib.sysib_111.type, type, 4);
/* model number (not stored in STORE CPU ID for z/Architecture) */
ebcdic_put(sysib.sysib_111.model, "QEMU ", 16);
ebcdic_put(sysib.sysib_111.sequence, "QEMU ", 16);
ebcdic_put(sysib.sysib_111.plant, "QEMU", 4);
} else if ((sel1 == 2) && (sel2 == 1)) {
/* Basic Machine CPU */
ebcdic_put(sysib.sysib_121.sequence, "QEMUQEMUQEMUQEMU", 16);
ebcdic_put(sysib.sysib_121.plant, "QEMU", 4);
sysib.sysib_121.cpu_addr = cpu_to_be16(env->core_id);
} else if ((sel1 == 2) && (sel2 == 2)) {
/* Basic Machine CPUs */
sysib.sysib_122.capability = cpu_to_be32(0x443afc29);
sysib.sysib_122.total_cpus = cpu_to_be16(total_cpus);
sysib.sysib_122.conf_cpus = cpu_to_be16(conf_cpus);
sysib.sysib_122.reserved_cpus = cpu_to_be16(reserved_cpus);
} else {
cc = 3;
}
break;
case STSI_R0_FC_LEVEL_2:
if ((sel1 == 2) && (sel2 == 1)) {
/* LPAR CPU */
ebcdic_put(sysib.sysib_221.sequence, "QEMUQEMUQEMUQEMU", 16);
ebcdic_put(sysib.sysib_221.plant, "QEMU", 4);
sysib.sysib_221.cpu_addr = cpu_to_be16(env->core_id);
} else if ((sel1 == 2) && (sel2 == 2)) {
/* LPAR CPUs */
sysib.sysib_222.lcpuc = 0x80; /* dedicated */
sysib.sysib_222.total_cpus = cpu_to_be16(total_cpus);
sysib.sysib_222.conf_cpus = cpu_to_be16(conf_cpus);
sysib.sysib_222.reserved_cpus = cpu_to_be16(reserved_cpus);
ebcdic_put(sysib.sysib_222.name, "QEMU ", 8);
sysib.sysib_222.caf = cpu_to_be32(1000);
sysib.sysib_222.dedicated_cpus = cpu_to_be16(conf_cpus);
} else {
cc = 3;
}
break;
case STSI_R0_FC_LEVEL_3:
if ((sel1 == 2) && (sel2 == 2)) {
/* VM CPUs */
sysib.sysib_322.count = 1;
sysib.sysib_322.vm[0].total_cpus = cpu_to_be16(total_cpus);
sysib.sysib_322.vm[0].conf_cpus = cpu_to_be16(conf_cpus);
sysib.sysib_322.vm[0].reserved_cpus = cpu_to_be16(reserved_cpus);
sysib.sysib_322.vm[0].caf = cpu_to_be32(1000);
/* Linux kernel uses this to distinguish us from z/VM */
ebcdic_put(sysib.sysib_322.vm[0].cpi, "KVM/Linux ", 16);
sysib.sysib_322.vm[0].ext_name_encoding = 2; /* UTF-8 */
/* If our VM has a name, use the real name */
if (qemu_name) {
memset(sysib.sysib_322.vm[0].name, 0x40,
sizeof(sysib.sysib_322.vm[0].name));
ebcdic_put(sysib.sysib_322.vm[0].name, qemu_name,
MIN(sizeof(sysib.sysib_322.vm[0].name),
strlen(qemu_name)));
strpadcpy((char *)sysib.sysib_322.ext_names[0],
sizeof(sysib.sysib_322.ext_names[0]),
qemu_name, '\0');
} else {
ebcdic_put(sysib.sysib_322.vm[0].name, "TCGguest", 8);
strcpy((char *)sysib.sysib_322.ext_names[0], "TCGguest");
}
/* add the uuid */
memcpy(sysib.sysib_322.vm[0].uuid, &qemu_uuid,
sizeof(sysib.sysib_322.vm[0].uuid));
} else {
cc = 3;
}
break;
}
if (cc == 0) {
if (s390_cpu_virt_mem_write(cpu, a0, 0, &sysib, sizeof(sysib))) {
s390_cpu_virt_mem_handle_exc(cpu, ra);
}
}
return cc;
}
uint32_t HELPER(sigp)(CPUS390XState *env, uint64_t order_code, uint32_t r1,
uint32_t r3)
{
int cc;
/* TODO: needed to inject interrupts - push further down */
qemu_mutex_lock_iothread();
cc = handle_sigp(env, order_code & SIGP_ORDER_MASK, r1, r3);
qemu_mutex_unlock_iothread();
return cc;
}
#endif
#ifndef CONFIG_USER_ONLY
void HELPER(xsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_xsch(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(csch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_csch(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(hsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_hsch(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(msch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_msch(cpu, r1, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(rchp)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_rchp(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(rsch)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_rsch(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(sal)(CPUS390XState *env, uint64_t r1)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_sal(cpu, r1, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(schm)(CPUS390XState *env, uint64_t r1, uint64_t r2, uint64_t inst)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_schm(cpu, r1, r2, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(ssch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_ssch(cpu, r1, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(stcrw)(CPUS390XState *env, uint64_t inst)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_stcrw(cpu, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(stsch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_stsch(cpu, r1, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
uint32_t HELPER(tpi)(CPUS390XState *env, uint64_t addr)
{
const uintptr_t ra = GETPC();
S390CPU *cpu = env_archcpu(env);
QEMUS390FLICState *flic = s390_get_qemu_flic(s390_get_flic());
QEMUS390FlicIO *io = NULL;
LowCore *lowcore;
if (addr & 0x3) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
qemu_mutex_lock_iothread();
io = qemu_s390_flic_dequeue_io(flic, env->cregs[6]);
if (!io) {
qemu_mutex_unlock_iothread();
return 0;
}
if (addr) {
struct {
uint16_t id;
uint16_t nr;
uint32_t parm;
} intc = {
.id = cpu_to_be16(io->id),
.nr = cpu_to_be16(io->nr),
.parm = cpu_to_be32(io->parm),
};
if (s390_cpu_virt_mem_write(cpu, addr, 0, &intc, sizeof(intc))) {
/* writing failed, reinject and properly clean up */
s390_io_interrupt(io->id, io->nr, io->parm, io->word);
qemu_mutex_unlock_iothread();
g_free(io);
s390_cpu_virt_mem_handle_exc(cpu, ra);
return 0;
}
} else {
/* no protection applies */
lowcore = cpu_map_lowcore(env);
lowcore->subchannel_id = cpu_to_be16(io->id);
lowcore->subchannel_nr = cpu_to_be16(io->nr);
lowcore->io_int_parm = cpu_to_be32(io->parm);
lowcore->io_int_word = cpu_to_be32(io->word);
cpu_unmap_lowcore(lowcore);
}
g_free(io);
qemu_mutex_unlock_iothread();
return 1;
}
void HELPER(tsch)(CPUS390XState *env, uint64_t r1, uint64_t inst)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_tsch(cpu, r1, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(chsc)(CPUS390XState *env, uint64_t inst)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
ioinst_handle_chsc(cpu, inst >> 16, GETPC());
qemu_mutex_unlock_iothread();
}
#endif
#ifndef CONFIG_USER_ONLY
void HELPER(per_check_exception)(CPUS390XState *env)
{
if (env->per_perc_atmid) {
tcg_s390_program_interrupt(env, PGM_PER, GETPC());
}
}
/* Check if an address is within the PER starting address and the PER
ending address. The address range might loop. */
static inline bool get_per_in_range(CPUS390XState *env, uint64_t addr)
{
if (env->cregs[10] <= env->cregs[11]) {
return env->cregs[10] <= addr && addr <= env->cregs[11];
} else {
return env->cregs[10] <= addr || addr <= env->cregs[11];
}
}
void HELPER(per_branch)(CPUS390XState *env, uint64_t from, uint64_t to)
{
if ((env->cregs[9] & PER_CR9_EVENT_BRANCH)) {
if (!(env->cregs[9] & PER_CR9_CONTROL_BRANCH_ADDRESS)
|| get_per_in_range(env, to)) {
env->per_address = from;
env->per_perc_atmid = PER_CODE_EVENT_BRANCH | get_per_atmid(env);
}
}
}
void HELPER(per_ifetch)(CPUS390XState *env, uint64_t addr)
{
if ((env->cregs[9] & PER_CR9_EVENT_IFETCH) && get_per_in_range(env, addr)) {
env->per_address = addr;
env->per_perc_atmid = PER_CODE_EVENT_IFETCH | get_per_atmid(env);
/* If the instruction has to be nullified, trigger the
exception immediately. */
if (env->cregs[9] & PER_CR9_EVENT_NULLIFICATION) {
CPUState *cs = env_cpu(env);
env->per_perc_atmid |= PER_CODE_EVENT_NULLIFICATION;
env->int_pgm_code = PGM_PER;
env->int_pgm_ilen = get_ilen(cpu_ldub_code(env, addr));
cs->exception_index = EXCP_PGM;
cpu_loop_exit(cs);
}
}
}
void HELPER(per_store_real)(CPUS390XState *env)
{
if ((env->cregs[9] & PER_CR9_EVENT_STORE) &&
(env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
/* PSW is saved just before calling the helper. */
env->per_address = env->psw.addr;
env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
}
}
#endif
static uint8_t stfl_bytes[2048];
static unsigned int used_stfl_bytes;
static void prepare_stfl(void)
{
static bool initialized;
int i;
/* racy, but we don't care, the same values are always written */
if (initialized) {
return;
}
s390_get_feat_block(S390_FEAT_TYPE_STFL, stfl_bytes);
for (i = 0; i < sizeof(stfl_bytes); i++) {
if (stfl_bytes[i]) {
used_stfl_bytes = i + 1;
}
}
initialized = true;
}
#ifndef CONFIG_USER_ONLY
void HELPER(stfl)(CPUS390XState *env)
{
LowCore *lowcore;
lowcore = cpu_map_lowcore(env);
prepare_stfl();
memcpy(&lowcore->stfl_fac_list, stfl_bytes, sizeof(lowcore->stfl_fac_list));
cpu_unmap_lowcore(lowcore);
}
#endif
uint32_t HELPER(stfle)(CPUS390XState *env, uint64_t addr)
{
const uintptr_t ra = GETPC();
const int count_bytes = ((env->regs[0] & 0xff) + 1) * 8;
int max_bytes;
int i;
if (addr & 0x7) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
prepare_stfl();
max_bytes = ROUND_UP(used_stfl_bytes, 8);
/*
* The PoP says that doublewords beyond the highest-numbered facility
* bit may or may not be stored. However, existing hardware appears to
* not store the words, and existing software depend on that.
*/
for (i = 0; i < MIN(count_bytes, max_bytes); ++i) {
cpu_stb_data_ra(env, addr + i, stfl_bytes[i], ra);
}
env->regs[0] = deposit64(env->regs[0], 0, 8, (max_bytes / 8) - 1);
return count_bytes >= max_bytes ? 0 : 3;
}
#ifndef CONFIG_USER_ONLY
/*
* Note: we ignore any return code of the functions called for the pci
* instructions, as the only time they return !0 is when the stub is
* called, and in that case we didn't even offer the zpci facility.
* The only exception is SIC, where program checks need to be handled
* by the caller.
*/
void HELPER(clp)(CPUS390XState *env, uint32_t r2)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
clp_service_call(cpu, r2, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(pcilg)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
pcilg_service_call(cpu, r1, r2, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(pcistg)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
pcistg_service_call(cpu, r1, r2, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(stpcifc)(CPUS390XState *env, uint32_t r1, uint64_t fiba,
uint32_t ar)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
stpcifc_service_call(cpu, r1, fiba, ar, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(sic)(CPUS390XState *env, uint64_t r1, uint64_t r3)
{
int r;
qemu_mutex_lock_iothread();
r = css_do_sic(env, (r3 >> 27) & 0x7, r1 & 0xffff);
qemu_mutex_unlock_iothread();
/* css_do_sic() may actually return a PGM_xxx value to inject */
if (r) {
tcg_s390_program_interrupt(env, -r, GETPC());
}
}
void HELPER(rpcit)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
rpcit_service_call(cpu, r1, r2, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(pcistb)(CPUS390XState *env, uint32_t r1, uint32_t r3,
uint64_t gaddr, uint32_t ar)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
pcistb_service_call(cpu, r1, r3, gaddr, ar, GETPC());
qemu_mutex_unlock_iothread();
}
void HELPER(mpcifc)(CPUS390XState *env, uint32_t r1, uint64_t fiba,
uint32_t ar)
{
S390CPU *cpu = env_archcpu(env);
qemu_mutex_lock_iothread();
mpcifc_service_call(cpu, r1, fiba, ar, GETPC());
qemu_mutex_unlock_iothread();
}
#endif