qemu/target-sparc/op_helper.c
Tsuneo Saito b7785d2072 SPARC64: implement MMU miss traps on nonfaulting loads
Nonfaulting loads should raise fast_data_access_MMU_miss traps as
normal loads do.  It is up to the guest OS kernel that detect MMU misses
on nonfaulting load instructions and make them complete without signaling.

Signed-off-by: Tsuneo Saito <tsnsaito@gmail.com>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2011-07-21 20:01:56 +00:00

4372 lines
119 KiB
C

#include "exec.h"
#include "host-utils.h"
#include "helper.h"
#include "sysemu.h"
//#define DEBUG_MMU
//#define DEBUG_MXCC
//#define DEBUG_UNALIGNED
//#define DEBUG_UNASSIGNED
//#define DEBUG_ASI
//#define DEBUG_PCALL
//#define DEBUG_PSTATE
//#define DEBUG_CACHE_CONTROL
#ifdef DEBUG_MMU
#define DPRINTF_MMU(fmt, ...) \
do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MMU(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_MXCC
#define DPRINTF_MXCC(fmt, ...) \
do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_ASI
#define DPRINTF_ASI(fmt, ...) \
do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
#endif
#ifdef DEBUG_PSTATE
#define DPRINTF_PSTATE(fmt, ...) \
do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_PSTATE(fmt, ...) do {} while (0)
#endif
#ifdef DEBUG_CACHE_CONTROL
#define DPRINTF_CACHE_CONTROL(fmt, ...) \
do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
#endif
#ifdef TARGET_SPARC64
#ifndef TARGET_ABI32
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
#else
#define AM_CHECK(env1) (1)
#endif
#endif
#define DT0 (env->dt0)
#define DT1 (env->dt1)
#define QT0 (env->qt0)
#define QT1 (env->qt1)
/* Leon3 cache control */
/* Cache control: emulate the behavior of cache control registers but without
any effect on the emulated */
#define CACHE_STATE_MASK 0x3
#define CACHE_DISABLED 0x0
#define CACHE_FROZEN 0x1
#define CACHE_ENABLED 0x3
/* Cache Control register fields */
#define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
#define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
#define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
#define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
#define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
#define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
#define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
#define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
#if !defined(CONFIG_USER_ONLY)
static void do_unassigned_access(target_phys_addr_t addr, int is_write,
int is_exec, int is_asi, int size);
#else
#ifdef TARGET_SPARC64
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
int is_asi, int size);
#endif
#endif
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
// Calculates TSB pointer value for fault page size 8k or 64k
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
uint64_t tag_access_register,
int page_size)
{
uint64_t tsb_base = tsb_register & ~0x1fffULL;
int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
int tsb_size = tsb_register & 0xf;
// discard lower 13 bits which hold tag access context
uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
// now reorder bits
uint64_t tsb_base_mask = ~0x1fffULL;
uint64_t va = tag_access_va;
// move va bits to correct position
if (page_size == 8*1024) {
va >>= 9;
} else if (page_size == 64*1024) {
va >>= 12;
}
if (tsb_size) {
tsb_base_mask <<= tsb_size;
}
// calculate tsb_base mask and adjust va if split is in use
if (tsb_split) {
if (page_size == 8*1024) {
va &= ~(1ULL << (13 + tsb_size));
} else if (page_size == 64*1024) {
va |= (1ULL << (13 + tsb_size));
}
tsb_base_mask <<= 1;
}
return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
}
// Calculates tag target register value by reordering bits
// in tag access register
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
{
return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
}
static void replace_tlb_entry(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
CPUState *env1)
{
target_ulong mask, size, va, offset;
// flush page range if translation is valid
if (TTE_IS_VALID(tlb->tte)) {
mask = 0xffffffffffffe000ULL;
mask <<= 3 * ((tlb->tte >> 61) & 3);
size = ~mask + 1;
va = tlb->tag & mask;
for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
tlb_flush_page(env1, va + offset);
}
}
tlb->tag = tlb_tag;
tlb->tte = tlb_tte;
}
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
const char* strmmu, CPUState *env1)
{
unsigned int i;
target_ulong mask;
uint64_t context;
int is_demap_context = (demap_addr >> 6) & 1;
// demap context
switch ((demap_addr >> 4) & 3) {
case 0: // primary
context = env1->dmmu.mmu_primary_context;
break;
case 1: // secondary
context = env1->dmmu.mmu_secondary_context;
break;
case 2: // nucleus
context = 0;
break;
case 3: // reserved
default:
return;
}
for (i = 0; i < 64; i++) {
if (TTE_IS_VALID(tlb[i].tte)) {
if (is_demap_context) {
// will remove non-global entries matching context value
if (TTE_IS_GLOBAL(tlb[i].tte) ||
!tlb_compare_context(&tlb[i], context)) {
continue;
}
} else {
// demap page
// will remove any entry matching VA
mask = 0xffffffffffffe000ULL;
mask <<= 3 * ((tlb[i].tte >> 61) & 3);
if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
continue;
}
// entry should be global or matching context value
if (!TTE_IS_GLOBAL(tlb[i].tte) &&
!tlb_compare_context(&tlb[i], context)) {
continue;
}
}
replace_tlb_entry(&tlb[i], 0, 0, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
dump_mmu(stdout, fprintf, env1);
#endif
}
}
}
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
uint64_t tlb_tag, uint64_t tlb_tte,
const char* strmmu, CPUState *env1)
{
unsigned int i, replace_used;
// Try replacing invalid entry
for (i = 0; i < 64; i++) {
if (!TTE_IS_VALID(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
dump_mmu(stdout, fprintf, env1);
#endif
return;
}
}
// All entries are valid, try replacing unlocked entry
for (replace_used = 0; replace_used < 2; ++replace_used) {
// Used entries are not replaced on first pass
for (i = 0; i < 64; i++) {
if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
strmmu, (replace_used?"used":"unused"), i);
dump_mmu(stdout, fprintf, env1);
#endif
return;
}
}
// Now reset used bit and search for unused entries again
for (i = 0; i < 64; i++) {
TTE_SET_UNUSED(tlb[i].tte);
}
}
#ifdef DEBUG_MMU
DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
#endif
// error state?
}
#endif
static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
{
#ifdef TARGET_SPARC64
if (AM_CHECK(env1))
addr &= 0xffffffffULL;
#endif
return addr;
}
/* returns true if access using this ASI is to have address translated by MMU
otherwise access is to raw physical address */
static inline int is_translating_asi(int asi)
{
#ifdef TARGET_SPARC64
/* Ultrasparc IIi translating asi
- note this list is defined by cpu implementation
*/
switch (asi) {
case 0x04 ... 0x11:
case 0x16 ... 0x19:
case 0x1E ... 0x1F:
case 0x24 ... 0x2C:
case 0x70 ... 0x73:
case 0x78 ... 0x79:
case 0x80 ... 0xFF:
return 1;
default:
return 0;
}
#else
/* TODO: check sparc32 bits */
return 0;
#endif
}
static inline target_ulong asi_address_mask(CPUState *env1,
int asi, target_ulong addr)
{
if (is_translating_asi(asi)) {
return address_mask(env, addr);
} else {
return addr;
}
}
static void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit(env);
}
void HELPER(raise_exception)(int tt)
{
raise_exception(tt);
}
void helper_shutdown(void)
{
#if !defined(CONFIG_USER_ONLY)
qemu_system_shutdown_request();
#endif
}
void helper_check_align(target_ulong addr, uint32_t align)
{
if (addr & align) {
#ifdef DEBUG_UNALIGNED
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
"\n", addr, env->pc);
#endif
raise_exception(TT_UNALIGNED);
}
}
#define F_HELPER(name, p) void helper_f##name##p(void)
#define F_BINOP(name) \
float32 helper_f ## name ## s (float32 src1, float32 src2) \
{ \
return float32_ ## name (src1, src2, &env->fp_status); \
} \
F_HELPER(name, d) \
{ \
DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
} \
F_HELPER(name, q) \
{ \
QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
}
F_BINOP(add);
F_BINOP(sub);
F_BINOP(mul);
F_BINOP(div);
#undef F_BINOP
void helper_fsmuld(float32 src1, float32 src2)
{
DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
float32_to_float64(src2, &env->fp_status),
&env->fp_status);
}
void helper_fdmulq(void)
{
QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
float64_to_float128(DT1, &env->fp_status),
&env->fp_status);
}
float32 helper_fnegs(float32 src)
{
return float32_chs(src);
}
#ifdef TARGET_SPARC64
F_HELPER(neg, d)
{
DT0 = float64_chs(DT1);
}
F_HELPER(neg, q)
{
QT0 = float128_chs(QT1);
}
#endif
/* Integer to float conversion. */
float32 helper_fitos(int32_t src)
{
return int32_to_float32(src, &env->fp_status);
}
void helper_fitod(int32_t src)
{
DT0 = int32_to_float64(src, &env->fp_status);
}
void helper_fitoq(int32_t src)
{
QT0 = int32_to_float128(src, &env->fp_status);
}
#ifdef TARGET_SPARC64
float32 helper_fxtos(void)
{
return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
}
F_HELPER(xto, d)
{
DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
}
F_HELPER(xto, q)
{
QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
}
#endif
#undef F_HELPER
/* floating point conversion */
float32 helper_fdtos(void)
{
return float64_to_float32(DT1, &env->fp_status);
}
void helper_fstod(float32 src)
{
DT0 = float32_to_float64(src, &env->fp_status);
}
float32 helper_fqtos(void)
{
return float128_to_float32(QT1, &env->fp_status);
}
void helper_fstoq(float32 src)
{
QT0 = float32_to_float128(src, &env->fp_status);
}
void helper_fqtod(void)
{
DT0 = float128_to_float64(QT1, &env->fp_status);
}
void helper_fdtoq(void)
{
QT0 = float64_to_float128(DT1, &env->fp_status);
}
/* Float to integer conversion. */
int32_t helper_fstoi(float32 src)
{
return float32_to_int32_round_to_zero(src, &env->fp_status);
}
int32_t helper_fdtoi(void)
{
return float64_to_int32_round_to_zero(DT1, &env->fp_status);
}
int32_t helper_fqtoi(void)
{
return float128_to_int32_round_to_zero(QT1, &env->fp_status);
}
#ifdef TARGET_SPARC64
void helper_fstox(float32 src)
{
*((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
}
void helper_fdtox(void)
{
*((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
}
void helper_fqtox(void)
{
*((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
}
void helper_faligndata(void)
{
uint64_t tmp;
tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
/* on many architectures a shift of 64 does nothing */
if ((env->gsr & 7) != 0) {
tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
}
*((uint64_t *)&DT0) = tmp;
}
#ifdef HOST_WORDS_BIGENDIAN
#define VIS_B64(n) b[7 - (n)]
#define VIS_W64(n) w[3 - (n)]
#define VIS_SW64(n) sw[3 - (n)]
#define VIS_L64(n) l[1 - (n)]
#define VIS_B32(n) b[3 - (n)]
#define VIS_W32(n) w[1 - (n)]
#else
#define VIS_B64(n) b[n]
#define VIS_W64(n) w[n]
#define VIS_SW64(n) sw[n]
#define VIS_L64(n) l[n]
#define VIS_B32(n) b[n]
#define VIS_W32(n) w[n]
#endif
typedef union {
uint8_t b[8];
uint16_t w[4];
int16_t sw[4];
uint32_t l[2];
uint64_t ll;
float64 d;
} vis64;
typedef union {
uint8_t b[4];
uint16_t w[2];
uint32_t l;
float32 f;
} vis32;
void helper_fpmerge(void)
{
vis64 s, d;
s.d = DT0;
d.d = DT1;
// Reverse calculation order to handle overlap
d.VIS_B64(7) = s.VIS_B64(3);
d.VIS_B64(6) = d.VIS_B64(3);
d.VIS_B64(5) = s.VIS_B64(2);
d.VIS_B64(4) = d.VIS_B64(2);
d.VIS_B64(3) = s.VIS_B64(1);
d.VIS_B64(2) = d.VIS_B64(1);
d.VIS_B64(1) = s.VIS_B64(0);
//d.VIS_B64(0) = d.VIS_B64(0);
DT0 = d.d;
}
void helper_fmul8x16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmul8x16al(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmul8x16au(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmul8sux16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmul8ulx16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_W64(r) = tmp >> 8;
PMUL(0);
PMUL(1);
PMUL(2);
PMUL(3);
#undef PMUL
DT0 = d.d;
}
void helper_fmuld8sux16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_L64(r) = tmp;
// Reverse calculation order to handle overlap
PMUL(1);
PMUL(0);
#undef PMUL
DT0 = d.d;
}
void helper_fmuld8ulx16(void)
{
vis64 s, d;
uint32_t tmp;
s.d = DT0;
d.d = DT1;
#define PMUL(r) \
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
if ((tmp & 0xff) > 0x7f) \
tmp += 0x100; \
d.VIS_L64(r) = tmp;
// Reverse calculation order to handle overlap
PMUL(1);
PMUL(0);
#undef PMUL
DT0 = d.d;
}
void helper_fexpand(void)
{
vis32 s;
vis64 d;
s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
d.d = DT1;
d.VIS_W64(0) = s.VIS_B32(0) << 4;
d.VIS_W64(1) = s.VIS_B32(1) << 4;
d.VIS_W64(2) = s.VIS_B32(2) << 4;
d.VIS_W64(3) = s.VIS_B32(3) << 4;
DT0 = d.d;
}
#define VIS_HELPER(name, F) \
void name##16(void) \
{ \
vis64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
\
d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
\
DT0 = d.d; \
} \
\
uint32_t name##16s(uint32_t src1, uint32_t src2) \
{ \
vis32 s, d; \
\
s.l = src1; \
d.l = src2; \
\
d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
\
return d.l; \
} \
\
void name##32(void) \
{ \
vis64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
\
d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
\
DT0 = d.d; \
} \
\
uint32_t name##32s(uint32_t src1, uint32_t src2) \
{ \
vis32 s, d; \
\
s.l = src1; \
d.l = src2; \
\
d.l = F(d.l, s.l); \
\
return d.l; \
}
#define FADD(a, b) ((a) + (b))
#define FSUB(a, b) ((a) - (b))
VIS_HELPER(helper_fpadd, FADD)
VIS_HELPER(helper_fpsub, FSUB)
#define VIS_CMPHELPER(name, F) \
uint64_t name##16(void) \
{ \
vis64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
\
d.VIS_W64(0) = F(s.VIS_W64(0), d.VIS_W64(0)) ? 1 : 0; \
d.VIS_W64(0) |= F(s.VIS_W64(1), d.VIS_W64(1)) ? 2 : 0; \
d.VIS_W64(0) |= F(s.VIS_W64(2), d.VIS_W64(2)) ? 4 : 0; \
d.VIS_W64(0) |= F(s.VIS_W64(3), d.VIS_W64(3)) ? 8 : 0; \
d.VIS_W64(1) = d.VIS_W64(2) = d.VIS_W64(3) = 0; \
\
return d.ll; \
} \
\
uint64_t name##32(void) \
{ \
vis64 s, d; \
\
s.d = DT0; \
d.d = DT1; \
\
d.VIS_L64(0) = F(s.VIS_L64(0), d.VIS_L64(0)) ? 1 : 0; \
d.VIS_L64(0) |= F(s.VIS_L64(1), d.VIS_L64(1)) ? 2 : 0; \
d.VIS_L64(1) = 0; \
\
return d.ll; \
}
#define FCMPGT(a, b) ((a) > (b))
#define FCMPEQ(a, b) ((a) == (b))
#define FCMPLE(a, b) ((a) <= (b))
#define FCMPNE(a, b) ((a) != (b))
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
VIS_CMPHELPER(helper_fcmple, FCMPLE)
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
#endif
void helper_check_ieee_exceptions(void)
{
target_ulong status;
status = get_float_exception_flags(&env->fp_status);
if (status) {
/* Copy IEEE 754 flags into FSR */
if (status & float_flag_invalid)
env->fsr |= FSR_NVC;
if (status & float_flag_overflow)
env->fsr |= FSR_OFC;
if (status & float_flag_underflow)
env->fsr |= FSR_UFC;
if (status & float_flag_divbyzero)
env->fsr |= FSR_DZC;
if (status & float_flag_inexact)
env->fsr |= FSR_NXC;
if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
/* Unmasked exception, generate a trap */
env->fsr |= FSR_FTT_IEEE_EXCP;
raise_exception(TT_FP_EXCP);
} else {
/* Accumulate exceptions */
env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
}
}
}
void helper_clear_float_exceptions(void)
{
set_float_exception_flags(0, &env->fp_status);
}
float32 helper_fabss(float32 src)
{
return float32_abs(src);
}
#ifdef TARGET_SPARC64
void helper_fabsd(void)
{
DT0 = float64_abs(DT1);
}
void helper_fabsq(void)
{
QT0 = float128_abs(QT1);
}
#endif
float32 helper_fsqrts(float32 src)
{
return float32_sqrt(src, &env->fp_status);
}
void helper_fsqrtd(void)
{
DT0 = float64_sqrt(DT1, &env->fp_status);
}
void helper_fsqrtq(void)
{
QT0 = float128_sqrt(QT1, &env->fp_status);
}
#define GEN_FCMP(name, size, reg1, reg2, FS, E) \
void glue(helper_, name) (void) \
{ \
env->fsr &= FSR_FTT_NMASK; \
if (E && (glue(size, _is_any_nan)(reg1) || \
glue(size, _is_any_nan)(reg2)) && \
(env->fsr & FSR_NVM)) { \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
raise_exception(TT_FP_EXCP); \
} \
switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
case float_relation_unordered: \
if ((env->fsr & FSR_NVM)) { \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
raise_exception(TT_FP_EXCP); \
} else { \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
env->fsr |= FSR_NVA; \
} \
break; \
case float_relation_less: \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
env->fsr |= FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
env->fsr |= FSR_FCC1 << FS; \
break; \
default: \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
break; \
} \
}
#define GEN_FCMPS(name, size, FS, E) \
void glue(helper_, name)(float32 src1, float32 src2) \
{ \
env->fsr &= FSR_FTT_NMASK; \
if (E && (glue(size, _is_any_nan)(src1) || \
glue(size, _is_any_nan)(src2)) && \
(env->fsr & FSR_NVM)) { \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
raise_exception(TT_FP_EXCP); \
} \
switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
case float_relation_unordered: \
if ((env->fsr & FSR_NVM)) { \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
raise_exception(TT_FP_EXCP); \
} else { \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
env->fsr |= FSR_NVA; \
} \
break; \
case float_relation_less: \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
env->fsr |= FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
env->fsr |= FSR_FCC1 << FS; \
break; \
default: \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
break; \
} \
}
GEN_FCMPS(fcmps, float32, 0, 0);
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
GEN_FCMPS(fcmpes, float32, 0, 1);
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
static uint32_t compute_all_flags(void)
{
return env->psr & PSR_ICC;
}
static uint32_t compute_C_flags(void)
{
return env->psr & PSR_CARRY;
}
static inline uint32_t get_NZ_icc(int32_t dst)
{
uint32_t ret = 0;
if (dst == 0) {
ret = PSR_ZERO;
} else if (dst < 0) {
ret = PSR_NEG;
}
return ret;
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_flags_xcc(void)
{
return env->xcc & PSR_ICC;
}
static uint32_t compute_C_flags_xcc(void)
{
return env->xcc & PSR_CARRY;
}
static inline uint32_t get_NZ_xcc(target_long dst)
{
uint32_t ret = 0;
if (!dst) {
ret = PSR_ZERO;
} else if (dst < 0) {
ret = PSR_NEG;
}
return ret;
}
#endif
static inline uint32_t get_V_div_icc(target_ulong src2)
{
uint32_t ret = 0;
if (src2 != 0) {
ret = PSR_OVF;
}
return ret;
}
static uint32_t compute_all_div(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_V_div_icc(CC_SRC2);
return ret;
}
static uint32_t compute_C_div(void)
{
return 0;
}
static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
{
uint32_t ret = 0;
if (dst < src1) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
uint32_t src2)
{
uint32_t ret = 0;
if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
uint32_t src2)
{
uint32_t ret = 0;
if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
ret = PSR_OVF;
}
return ret;
}
#ifdef TARGET_SPARC64
static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
{
uint32_t ret = 0;
if (dst < src1) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
ret = PSR_OVF;
}
return ret;
}
static uint32_t compute_all_add_xcc(void)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_add_xcc(CC_DST, CC_SRC);
ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_add_xcc(void)
{
return get_C_add_xcc(CC_DST, CC_SRC);
}
#endif
static uint32_t compute_all_add(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_add(void)
{
return get_C_add_icc(CC_DST, CC_SRC);
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_addx_xcc(void)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_addx_xcc(void)
{
uint32_t ret;
ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
#endif
static uint32_t compute_all_addx(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_addx(void)
{
uint32_t ret;
ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
{
uint32_t ret = 0;
if ((src1 | src2) & 0x3) {
ret = PSR_OVF;
}
return ret;
}
static uint32_t compute_all_tadd(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_all_taddtv(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
return ret;
}
static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
{
uint32_t ret = 0;
if (src1 < src2) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
uint32_t src2)
{
uint32_t ret = 0;
if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
uint32_t src2)
{
uint32_t ret = 0;
if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
ret = PSR_OVF;
}
return ret;
}
#ifdef TARGET_SPARC64
static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
{
uint32_t ret = 0;
if (src1 < src2) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
ret = PSR_OVF;
}
return ret;
}
static uint32_t compute_all_sub_xcc(void)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_sub_xcc(void)
{
return get_C_sub_xcc(CC_SRC, CC_SRC2);
}
#endif
static uint32_t compute_all_sub(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_sub(void)
{
return get_C_sub_icc(CC_SRC, CC_SRC2);
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_subx_xcc(void)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_subx_xcc(void)
{
uint32_t ret;
ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
#endif
static uint32_t compute_all_subx(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_subx(void)
{
uint32_t ret;
ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_all_tsub(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_all_tsubtv(void)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_all_logic(void)
{
return get_NZ_icc(CC_DST);
}
static uint32_t compute_C_logic(void)
{
return 0;
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_logic_xcc(void)
{
return get_NZ_xcc(CC_DST);
}
#endif
typedef struct CCTable {
uint32_t (*compute_all)(void); /* return all the flags */
uint32_t (*compute_c)(void); /* return the C flag */
} CCTable;
static const CCTable icc_table[CC_OP_NB] = {
/* CC_OP_DYNAMIC should never happen */
[CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
[CC_OP_DIV] = { compute_all_div, compute_C_div },
[CC_OP_ADD] = { compute_all_add, compute_C_add },
[CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
[CC_OP_TADD] = { compute_all_tadd, compute_C_add },
[CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
[CC_OP_SUB] = { compute_all_sub, compute_C_sub },
[CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
[CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
[CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
[CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
};
#ifdef TARGET_SPARC64
static const CCTable xcc_table[CC_OP_NB] = {
/* CC_OP_DYNAMIC should never happen */
[CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
[CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
[CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
[CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
[CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
};
#endif
void helper_compute_psr(void)
{
uint32_t new_psr;
new_psr = icc_table[CC_OP].compute_all();
env->psr = new_psr;
#ifdef TARGET_SPARC64
new_psr = xcc_table[CC_OP].compute_all();
env->xcc = new_psr;
#endif
CC_OP = CC_OP_FLAGS;
}
uint32_t helper_compute_C_icc(void)
{
uint32_t ret;
ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
return ret;
}
static inline void memcpy32(target_ulong *dst, const target_ulong *src)
{
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
}
static void set_cwp(int new_cwp)
{
/* put the modified wrap registers at their proper location */
if (env->cwp == env->nwindows - 1) {
memcpy32(env->regbase, env->regbase + env->nwindows * 16);
}
env->cwp = new_cwp;
/* put the wrap registers at their temporary location */
if (new_cwp == env->nwindows - 1) {
memcpy32(env->regbase + env->nwindows * 16, env->regbase);
}
env->regwptr = env->regbase + (new_cwp * 16);
}
void cpu_set_cwp(CPUState *env1, int new_cwp)
{
CPUState *saved_env;
saved_env = env;
env = env1;
set_cwp(new_cwp);
env = saved_env;
}
static target_ulong get_psr(void)
{
helper_compute_psr();
#if !defined (TARGET_SPARC64)
return env->version | (env->psr & PSR_ICC) |
(env->psref? PSR_EF : 0) |
(env->psrpil << 8) |
(env->psrs? PSR_S : 0) |
(env->psrps? PSR_PS : 0) |
(env->psret? PSR_ET : 0) | env->cwp;
#else
return env->psr & PSR_ICC;
#endif
}
target_ulong cpu_get_psr(CPUState *env1)
{
CPUState *saved_env;
target_ulong ret;
saved_env = env;
env = env1;
ret = get_psr();
env = saved_env;
return ret;
}
static void put_psr(target_ulong val)
{
env->psr = val & PSR_ICC;
#if !defined (TARGET_SPARC64)
env->psref = (val & PSR_EF)? 1 : 0;
env->psrpil = (val & PSR_PIL) >> 8;
#endif
#if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
cpu_check_irqs(env);
#endif
#if !defined (TARGET_SPARC64)
env->psrs = (val & PSR_S)? 1 : 0;
env->psrps = (val & PSR_PS)? 1 : 0;
env->psret = (val & PSR_ET)? 1 : 0;
set_cwp(val & PSR_CWP);
#endif
env->cc_op = CC_OP_FLAGS;
}
void cpu_put_psr(CPUState *env1, target_ulong val)
{
CPUState *saved_env;
saved_env = env;
env = env1;
put_psr(val);
env = saved_env;
}
static int cwp_inc(int cwp)
{
if (unlikely(cwp >= env->nwindows)) {
cwp -= env->nwindows;
}
return cwp;
}
int cpu_cwp_inc(CPUState *env1, int cwp)
{
CPUState *saved_env;
target_ulong ret;
saved_env = env;
env = env1;
ret = cwp_inc(cwp);
env = saved_env;
return ret;
}
static int cwp_dec(int cwp)
{
if (unlikely(cwp < 0)) {
cwp += env->nwindows;
}
return cwp;
}
int cpu_cwp_dec(CPUState *env1, int cwp)
{
CPUState *saved_env;
target_ulong ret;
saved_env = env;
env = env1;
ret = cwp_dec(cwp);
env = saved_env;
return ret;
}
#ifdef TARGET_SPARC64
GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
#endif
#undef GEN_FCMPS
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
defined(DEBUG_MXCC)
static void dump_mxcc(CPUState *env)
{
printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n",
env->mxccdata[0], env->mxccdata[1],
env->mxccdata[2], env->mxccdata[3]);
printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n"
" %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
"\n",
env->mxccregs[0], env->mxccregs[1],
env->mxccregs[2], env->mxccregs[3],
env->mxccregs[4], env->mxccregs[5],
env->mxccregs[6], env->mxccregs[7]);
}
#endif
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
&& defined(DEBUG_ASI)
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
uint64_t r1)
{
switch (size)
{
case 1:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
addr, asi, r1 & 0xff);
break;
case 2:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
addr, asi, r1 & 0xffff);
break;
case 4:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
addr, asi, r1 & 0xffffffff);
break;
case 8:
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
addr, asi, r1);
break;
}
}
#endif
#ifndef TARGET_SPARC64
#ifndef CONFIG_USER_ONLY
/* Leon3 cache control */
static void leon3_cache_control_int(void)
{
uint32_t state = 0;
if (env->cache_control & CACHE_CTRL_IF) {
/* Instruction cache state */
state = env->cache_control & CACHE_STATE_MASK;
if (state == CACHE_ENABLED) {
state = CACHE_FROZEN;
DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n");
}
env->cache_control &= ~CACHE_STATE_MASK;
env->cache_control |= state;
}
if (env->cache_control & CACHE_CTRL_DF) {
/* Data cache state */
state = (env->cache_control >> 2) & CACHE_STATE_MASK;
if (state == CACHE_ENABLED) {
state = CACHE_FROZEN;
DPRINTF_CACHE_CONTROL("Data cache: freeze\n");
}
env->cache_control &= ~(CACHE_STATE_MASK << 2);
env->cache_control |= (state << 2);
}
}
static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
{
DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
addr, val, size);
if (size != 4) {
DPRINTF_CACHE_CONTROL("32bits only\n");
return;
}
switch (addr) {
case 0x00: /* Cache control */
/* These values must always be read as zeros */
val &= ~CACHE_CTRL_FD;
val &= ~CACHE_CTRL_FI;
val &= ~CACHE_CTRL_IB;
val &= ~CACHE_CTRL_IP;
val &= ~CACHE_CTRL_DP;
env->cache_control = val;
break;
case 0x04: /* Instruction cache configuration */
case 0x08: /* Data cache configuration */
/* Read Only */
break;
default:
DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
break;
};
}
static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
{
uint64_t ret = 0;
if (size != 4) {
DPRINTF_CACHE_CONTROL("32bits only\n");
return 0;
}
switch (addr) {
case 0x00: /* Cache control */
ret = env->cache_control;
break;
/* Configuration registers are read and only always keep those
predefined values */
case 0x04: /* Instruction cache configuration */
ret = 0x10220000;
break;
case 0x08: /* Data cache configuration */
ret = 0x18220000;
break;
default:
DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
break;
};
DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
addr, ret, size);
return ret;
}
void leon3_irq_manager(void *irq_manager, int intno)
{
leon3_irq_ack(irq_manager, intno);
leon3_cache_control_int();
}
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
uint64_t ret = 0;
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
uint32_t last_addr = addr;
#endif
helper_check_align(addr, size - 1);
switch (asi) {
case 2: /* SuperSparc MXCC registers and Leon3 cache control */
switch (addr) {
case 0x00: /* Leon3 Cache Control */
case 0x08: /* Leon3 Instruction Cache config */
case 0x0C: /* Leon3 Date Cache config */
if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
ret = leon3_cache_control_ld(addr, size);
}
break;
case 0x01c00a00: /* MXCC control register */
if (size == 8)
ret = env->mxccregs[3];
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
ret = env->mxccregs[3];
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00c00: /* Module reset register */
if (size == 8) {
ret = env->mxccregs[5];
// should we do something here?
} else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8)
ret = env->mxccregs[7];
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
size);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
"addr = %08x -> ret = %" PRIx64 ","
"addr = %08x\n", asi, size, sign, last_addr, ret, addr);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
break;
case 3: /* MMU probe */
{
int mmulev;
mmulev = (addr >> 8) & 15;
if (mmulev > 4)
ret = 0;
else
ret = mmu_probe(env, addr, mmulev);
DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
addr, mmulev, ret);
}
break;
case 4: /* read MMU regs */
{
int reg = (addr >> 8) & 0x1f;
ret = env->mmuregs[reg];
if (reg == 3) /* Fault status cleared on read */
env->mmuregs[3] = 0;
else if (reg == 0x13) /* Fault status read */
ret = env->mmuregs[3];
else if (reg == 0x14) /* Fault address read */
ret = env->mmuregs[4];
DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
}
break;
case 5: // Turbosparc ITLB Diagnostic
case 6: // Turbosparc DTLB Diagnostic
case 7: // Turbosparc IOTLB Diagnostic
break;
case 9: /* Supervisor code access */
switch(size) {
case 1:
ret = ldub_code(addr);
break;
case 2:
ret = lduw_code(addr);
break;
default:
case 4:
ret = ldl_code(addr);
break;
case 8:
ret = ldq_code(addr);
break;
}
break;
case 0xa: /* User data access */
switch(size) {
case 1:
ret = ldub_user(addr);
break;
case 2:
ret = lduw_user(addr);
break;
default:
case 4:
ret = ldl_user(addr);
break;
case 8:
ret = ldq_user(addr);
break;
}
break;
case 0xb: /* Supervisor data access */
switch(size) {
case 1:
ret = ldub_kernel(addr);
break;
case 2:
ret = lduw_kernel(addr);
break;
default:
case 4:
ret = ldl_kernel(addr);
break;
case 8:
ret = ldq_kernel(addr);
break;
}
break;
case 0xc: /* I-cache tag */
case 0xd: /* I-cache data */
case 0xe: /* D-cache tag */
case 0xf: /* D-cache data */
break;
case 0x20: /* MMU passthrough */
switch(size) {
case 1:
ret = ldub_phys(addr);
break;
case 2:
ret = lduw_phys(addr);
break;
default:
case 4:
ret = ldl_phys(addr);
break;
case 8:
ret = ldq_phys(addr);
break;
}
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
switch(size) {
case 1:
ret = ldub_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
case 2:
ret = lduw_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
default:
case 4:
ret = ldl_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
case 8:
ret = ldq_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32));
break;
}
break;
case 0x30: // Turbosparc secondary cache diagnostic
case 0x31: // Turbosparc RAM snoop
case 0x32: // Turbosparc page table descriptor diagnostic
case 0x39: /* data cache diagnostic register */
ret = 0;
break;
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
{
int reg = (addr >> 8) & 3;
switch(reg) {
case 0: /* Breakpoint Value (Addr) */
ret = env->mmubpregs[reg];
break;
case 1: /* Breakpoint Mask */
ret = env->mmubpregs[reg];
break;
case 2: /* Breakpoint Control */
ret = env->mmubpregs[reg];
break;
case 3: /* Breakpoint Status */
ret = env->mmubpregs[reg];
env->mmubpregs[reg] = 0ULL;
break;
}
DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
ret);
}
break;
case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
ret = env->mmubpctrv;
break;
case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
ret = env->mmubpctrc;
break;
case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
ret = env->mmubpctrs;
break;
case 0x4c: /* SuperSPARC MMU Breakpoint Action */
ret = env->mmubpaction;
break;
case 8: /* User code access, XXX */
default:
do_unassigned_access(addr, 0, 0, asi, size);
ret = 0;
break;
}
if (sign) {
switch(size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
{
helper_check_align(addr, size - 1);
switch(asi) {
case 2: /* SuperSparc MXCC registers and Leon3 cache control */
switch (addr) {
case 0x00: /* Leon3 Cache Control */
case 0x08: /* Leon3 Instruction Cache config */
case 0x0C: /* Leon3 Date Cache config */
if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
leon3_cache_control_st(addr, val, size);
}
break;
case 0x01c00000: /* MXCC stream data register 0 */
if (size == 8)
env->mxccdata[0] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00008: /* MXCC stream data register 1 */
if (size == 8)
env->mxccdata[1] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00010: /* MXCC stream data register 2 */
if (size == 8)
env->mxccdata[2] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00018: /* MXCC stream data register 3 */
if (size == 8)
env->mxccdata[3] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00100: /* MXCC stream source */
if (size == 8)
env->mxccregs[0] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
0);
env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
8);
env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
16);
env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
24);
break;
case 0x01c00200: /* MXCC stream destination */
if (size == 8)
env->mxccregs[1] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
env->mxccdata[0]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
env->mxccdata[1]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
env->mxccdata[2]);
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
env->mxccdata[3]);
break;
case 0x01c00a00: /* MXCC control register */
if (size == 8)
env->mxccregs[3] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00a04: /* MXCC control register */
if (size == 4)
env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
| val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00e00: /* MXCC error register */
// writing a 1 bit clears the error
if (size == 8)
env->mxccregs[6] &= ~val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
case 0x01c00f00: /* MBus port address register */
if (size == 8)
env->mxccregs[7] = val;
else
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
size);
break;
default:
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
size);
break;
}
DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
asi, size, addr, val);
#ifdef DEBUG_MXCC
dump_mxcc(env);
#endif
break;
case 3: /* MMU flush */
{
int mmulev;
mmulev = (addr >> 8) & 15;
DPRINTF_MMU("mmu flush level %d\n", mmulev);
switch (mmulev) {
case 0: // flush page
tlb_flush_page(env, addr & 0xfffff000);
break;
case 1: // flush segment (256k)
case 2: // flush region (16M)
case 3: // flush context (4G)
case 4: // flush entire
tlb_flush(env, 1);
break;
default:
break;
}
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
}
break;
case 4: /* write MMU regs */
{
int reg = (addr >> 8) & 0x1f;
uint32_t oldreg;
oldreg = env->mmuregs[reg];
switch(reg) {
case 0: // Control Register
env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
(val & 0x00ffffff);
// Mappings generated during no-fault mode or MMU
// disabled mode are invalid in normal mode
if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
(env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
tlb_flush(env, 1);
break;
case 1: // Context Table Pointer Register
env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
break;
case 2: // Context Register
env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
tlb_flush(env, 1);
}
break;
case 3: // Synchronous Fault Status Register with Clear
case 4: // Synchronous Fault Address Register
break;
case 0x10: // TLB Replacement Control Register
env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
break;
case 0x13: // Synchronous Fault Status Register with Read and Clear
env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
break;
case 0x14: // Synchronous Fault Address Register
env->mmuregs[4] = val;
break;
default:
env->mmuregs[reg] = val;
break;
}
if (oldreg != env->mmuregs[reg]) {
DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
reg, oldreg, env->mmuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
}
break;
case 5: // Turbosparc ITLB Diagnostic
case 6: // Turbosparc DTLB Diagnostic
case 7: // Turbosparc IOTLB Diagnostic
break;
case 0xa: /* User data access */
switch(size) {
case 1:
stb_user(addr, val);
break;
case 2:
stw_user(addr, val);
break;
default:
case 4:
stl_user(addr, val);
break;
case 8:
stq_user(addr, val);
break;
}
break;
case 0xb: /* Supervisor data access */
switch(size) {
case 1:
stb_kernel(addr, val);
break;
case 2:
stw_kernel(addr, val);
break;
default:
case 4:
stl_kernel(addr, val);
break;
case 8:
stq_kernel(addr, val);
break;
}
break;
case 0xc: /* I-cache tag */
case 0xd: /* I-cache data */
case 0xe: /* D-cache tag */
case 0xf: /* D-cache data */
case 0x10: /* I/D-cache flush page */
case 0x11: /* I/D-cache flush segment */
case 0x12: /* I/D-cache flush region */
case 0x13: /* I/D-cache flush context */
case 0x14: /* I/D-cache flush user */
break;
case 0x17: /* Block copy, sta access */
{
// val = src
// addr = dst
// copy 32 bytes
unsigned int i;
uint32_t src = val & ~3, dst = addr & ~3, temp;
for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
temp = ldl_kernel(src);
stl_kernel(dst, temp);
}
}
break;
case 0x1f: /* Block fill, stda access */
{
// addr = dst
// fill 32 bytes with val
unsigned int i;
uint32_t dst = addr & 7;
for (i = 0; i < 32; i += 8, dst += 8)
stq_kernel(dst, val);
}
break;
case 0x20: /* MMU passthrough */
{
switch(size) {
case 1:
stb_phys(addr, val);
break;
case 2:
stw_phys(addr, val);
break;
case 4:
default:
stl_phys(addr, val);
break;
case 8:
stq_phys(addr, val);
break;
}
}
break;
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
{
switch(size) {
case 1:
stb_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
break;
case 2:
stw_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
break;
case 4:
default:
stl_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
break;
case 8:
stq_phys((target_phys_addr_t)addr
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
break;
}
}
break;
case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
case 0x31: // store buffer data, Ross RT620 I-cache flush or
// Turbosparc snoop RAM
case 0x32: // store buffer control or Turbosparc page table
// descriptor diagnostic
case 0x36: /* I-cache flash clear */
case 0x37: /* D-cache flash clear */
break;
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
{
int reg = (addr >> 8) & 3;
switch(reg) {
case 0: /* Breakpoint Value (Addr) */
env->mmubpregs[reg] = (val & 0xfffffffffULL);
break;
case 1: /* Breakpoint Mask */
env->mmubpregs[reg] = (val & 0xfffffffffULL);
break;
case 2: /* Breakpoint Control */
env->mmubpregs[reg] = (val & 0x7fULL);
break;
case 3: /* Breakpoint Status */
env->mmubpregs[reg] = (val & 0xfULL);
break;
}
DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
env->mmuregs[reg]);
}
break;
case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
env->mmubpctrv = val & 0xffffffff;
break;
case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
env->mmubpctrc = val & 0x3;
break;
case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
env->mmubpctrs = val & 0x3;
break;
case 0x4c: /* SuperSPARC MMU Breakpoint Action */
env->mmubpaction = val & 0x1fff;
break;
case 8: /* User code access, XXX */
case 9: /* Supervisor code access, XXX */
default:
do_unassigned_access(addr, 1, 0, asi, size);
break;
}
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
}
#endif /* CONFIG_USER_ONLY */
#else /* TARGET_SPARC64 */
#ifdef CONFIG_USER_ONLY
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
uint64_t ret = 0;
#if defined(DEBUG_ASI)
target_ulong last_addr = addr;
#endif
if (asi < 0x80)
raise_exception(TT_PRIV_ACT);
helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr);
switch (asi) {
case 0x82: // Primary no-fault
case 0x8a: // Primary no-fault LE
if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
// Fall through
case 0x80: // Primary
case 0x88: // Primary LE
{
switch(size) {
case 1:
ret = ldub_raw(addr);
break;
case 2:
ret = lduw_raw(addr);
break;
case 4:
ret = ldl_raw(addr);
break;
default:
case 8:
ret = ldq_raw(addr);
break;
}
}
break;
case 0x83: // Secondary no-fault
case 0x8b: // Secondary no-fault LE
if (page_check_range(addr, size, PAGE_READ) == -1) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return 0;
}
// Fall through
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
break;
default:
break;
}
/* Convert from little endian */
switch (asi) {
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0x8a: // Primary no-fault LE
case 0x8b: // Secondary no-fault LE
switch(size) {
case 2:
ret = bswap16(ret);
break;
case 4:
ret = bswap32(ret);
break;
case 8:
ret = bswap64(ret);
break;
default:
break;
}
default:
break;
}
/* Convert to signed number */
if (sign) {
switch(size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
{
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
if (asi < 0x80)
raise_exception(TT_PRIV_ACT);
helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr);
/* Convert to little endian */
switch (asi) {
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
case 8:
val = bswap64(val);
break;
default:
break;
}
default:
break;
}
switch(asi) {
case 0x80: // Primary
case 0x88: // Primary LE
{
switch(size) {
case 1:
stb_raw(addr, val);
break;
case 2:
stw_raw(addr, val);
break;
case 4:
stl_raw(addr, val);
break;
case 8:
default:
stq_raw(addr, val);
break;
}
}
break;
case 0x81: // Secondary
case 0x89: // Secondary LE
// XXX
return;
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
do_unassigned_access(addr, 1, 0, 1, size);
return;
}
}
#else /* CONFIG_USER_ONLY */
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
uint64_t ret = 0;
#if defined(DEBUG_ASI)
target_ulong last_addr = addr;
#endif
asi &= 0xff;
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
raise_exception(TT_PRIV_ACT);
helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr);
/* process nonfaulting loads first */
if ((asi & 0xf6) == 0x82) {
int mmu_idx;
/* secondary space access has lowest asi bit equal to 1 */
if (env->pstate & PS_PRIV) {
mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX;
} else {
mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX;
}
if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) {
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
/* env->exception_index is set in get_physical_address_data(). */
raise_exception(env->exception_index);
}
/* convert nonfaulting load ASIs to normal load ASIs */
asi &= ~0x02;
}
switch (asi) {
case 0x10: // As if user primary
case 0x11: // As if user secondary
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x80: // Primary
case 0x81: // Secondary
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0xe2: // UA2007 Primary block init
case 0xe3: // UA2007 Secondary block init
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (cpu_hypervisor_mode(env)) {
switch(size) {
case 1:
ret = ldub_hypv(addr);
break;
case 2:
ret = lduw_hypv(addr);
break;
case 4:
ret = ldl_hypv(addr);
break;
default:
case 8:
ret = ldq_hypv(addr);
break;
}
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch(size) {
case 1:
ret = ldub_kernel_secondary(addr);
break;
case 2:
ret = lduw_kernel_secondary(addr);
break;
case 4:
ret = ldl_kernel_secondary(addr);
break;
default:
case 8:
ret = ldq_kernel_secondary(addr);
break;
}
} else {
switch(size) {
case 1:
ret = ldub_kernel(addr);
break;
case 2:
ret = lduw_kernel(addr);
break;
case 4:
ret = ldl_kernel(addr);
break;
default:
case 8:
ret = ldq_kernel(addr);
break;
}
}
}
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch(size) {
case 1:
ret = ldub_user_secondary(addr);
break;
case 2:
ret = lduw_user_secondary(addr);
break;
case 4:
ret = ldl_user_secondary(addr);
break;
default:
case 8:
ret = ldq_user_secondary(addr);
break;
}
} else {
switch(size) {
case 1:
ret = ldub_user(addr);
break;
case 2:
ret = lduw_user(addr);
break;
case 4:
ret = ldl_user(addr);
break;
default:
case 8:
ret = ldq_user(addr);
break;
}
}
}
break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
{
switch(size) {
case 1:
ret = ldub_phys(addr);
break;
case 2:
ret = lduw_phys(addr);
break;
case 4:
ret = ldl_phys(addr);
break;
default:
case 8:
ret = ldq_phys(addr);
break;
}
break;
}
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
// Only ldda allowed
raise_exception(TT_ILL_INSN);
return 0;
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
{
switch(size) {
case 1:
ret = ldub_nucleus(addr);
break;
case 2:
ret = lduw_nucleus(addr);
break;
case 4:
ret = ldl_nucleus(addr);
break;
default:
case 8:
ret = ldq_nucleus(addr);
break;
}
break;
}
case 0x4a: // UPA config
// XXX
break;
case 0x45: // LSU
ret = env->lsu;
break;
case 0x50: // I-MMU regs
{
int reg = (addr >> 3) & 0xf;
if (reg == 0) {
// I-TSB Tag Target register
ret = ultrasparc_tag_target(env->immu.tag_access);
} else {
ret = env->immuregs[reg];
}
break;
}
case 0x51: // I-MMU 8k TSB pointer
{
// env->immuregs[5] holds I-MMU TSB register value
// env->immuregs[6] holds I-MMU Tag Access register value
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
8*1024);
break;
}
case 0x52: // I-MMU 64k TSB pointer
{
// env->immuregs[5] holds I-MMU TSB register value
// env->immuregs[6] holds I-MMU Tag Access register value
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
64*1024);
break;
}
case 0x55: // I-MMU data access
{
int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tte;
break;
}
case 0x56: // I-MMU tag read
{
int reg = (addr >> 3) & 0x3f;
ret = env->itlb[reg].tag;
break;
}
case 0x58: // D-MMU regs
{
int reg = (addr >> 3) & 0xf;
if (reg == 0) {
// D-TSB Tag Target register
ret = ultrasparc_tag_target(env->dmmu.tag_access);
} else {
ret = env->dmmuregs[reg];
}
break;
}
case 0x59: // D-MMU 8k TSB pointer
{
// env->dmmuregs[5] holds D-MMU TSB register value
// env->dmmuregs[6] holds D-MMU Tag Access register value
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
8*1024);
break;
}
case 0x5a: // D-MMU 64k TSB pointer
{
// env->dmmuregs[5] holds D-MMU TSB register value
// env->dmmuregs[6] holds D-MMU Tag Access register value
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
64*1024);
break;
}
case 0x5d: // D-MMU data access
{
int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tte;
break;
}
case 0x5e: // D-MMU tag read
{
int reg = (addr >> 3) & 0x3f;
ret = env->dtlb[reg].tag;
break;
}
case 0x46: // D-cache data
case 0x47: // D-cache tag access
case 0x4b: // E-cache error enable
case 0x4c: // E-cache asynchronous fault status
case 0x4d: // E-cache asynchronous fault address
case 0x4e: // E-cache tag data
case 0x66: // I-cache instruction access
case 0x67: // I-cache tag access
case 0x6e: // I-cache predecode
case 0x6f: // I-cache LRU etc.
case 0x76: // E-cache tag
case 0x7e: // E-cache tag
break;
case 0x5b: // D-MMU data pointer
case 0x48: // Interrupt dispatch, RO
case 0x49: // Interrupt data receive
case 0x7f: // Incoming interrupt vector, RO
// XXX
break;
case 0x54: // I-MMU data in, WO
case 0x57: // I-MMU demap, WO
case 0x5c: // D-MMU data in, WO
case 0x5f: // D-MMU demap, WO
case 0x77: // Interrupt vector, WO
default:
do_unassigned_access(addr, 0, 0, 1, size);
ret = 0;
break;
}
/* Convert from little endian */
switch (asi) {
case 0x0c: // Nucleus Little Endian (LE)
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 2:
ret = bswap16(ret);
break;
case 4:
ret = bswap32(ret);
break;
case 8:
ret = bswap64(ret);
break;
default:
break;
}
default:
break;
}
/* Convert to signed number */
if (sign) {
switch(size) {
case 1:
ret = (int8_t) ret;
break;
case 2:
ret = (int16_t) ret;
break;
case 4:
ret = (int32_t) ret;
break;
default:
break;
}
}
#ifdef DEBUG_ASI
dump_asi("read ", last_addr, asi, size, ret);
#endif
return ret;
}
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
{
#ifdef DEBUG_ASI
dump_asi("write", addr, asi, size, val);
#endif
asi &= 0xff;
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
raise_exception(TT_PRIV_ACT);
helper_check_align(addr, size - 1);
addr = asi_address_mask(env, asi, addr);
/* Convert to little endian */
switch (asi) {
case 0x0c: // Nucleus Little Endian (LE)
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
case 0x88: // Primary LE
case 0x89: // Secondary LE
switch(size) {
case 2:
val = bswap16(val);
break;
case 4:
val = bswap32(val);
break;
case 8:
val = bswap64(val);
break;
default:
break;
}
default:
break;
}
switch(asi) {
case 0x10: // As if user primary
case 0x11: // As if user secondary
case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
case 0x80: // Primary
case 0x81: // Secondary
case 0x88: // Primary LE
case 0x89: // Secondary LE
case 0xe2: // UA2007 Primary block init
case 0xe3: // UA2007 Secondary block init
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
if (cpu_hypervisor_mode(env)) {
switch(size) {
case 1:
stb_hypv(addr, val);
break;
case 2:
stw_hypv(addr, val);
break;
case 4:
stl_hypv(addr, val);
break;
case 8:
default:
stq_hypv(addr, val);
break;
}
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch(size) {
case 1:
stb_kernel_secondary(addr, val);
break;
case 2:
stw_kernel_secondary(addr, val);
break;
case 4:
stl_kernel_secondary(addr, val);
break;
case 8:
default:
stq_kernel_secondary(addr, val);
break;
}
} else {
switch(size) {
case 1:
stb_kernel(addr, val);
break;
case 2:
stw_kernel(addr, val);
break;
case 4:
stl_kernel(addr, val);
break;
case 8:
default:
stq_kernel(addr, val);
break;
}
}
}
} else {
/* secondary space access has lowest asi bit equal to 1 */
if (asi & 1) {
switch(size) {
case 1:
stb_user_secondary(addr, val);
break;
case 2:
stw_user_secondary(addr, val);
break;
case 4:
stl_user_secondary(addr, val);
break;
case 8:
default:
stq_user_secondary(addr, val);
break;
}
} else {
switch(size) {
case 1:
stb_user(addr, val);
break;
case 2:
stw_user(addr, val);
break;
case 4:
stl_user(addr, val);
break;
case 8:
default:
stq_user(addr, val);
break;
}
}
}
break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
case 0x1c: // Bypass LE
case 0x1d: // Bypass, non-cacheable LE
{
switch(size) {
case 1:
stb_phys(addr, val);
break;
case 2:
stw_phys(addr, val);
break;
case 4:
stl_phys(addr, val);
break;
case 8:
default:
stq_phys(addr, val);
break;
}
}
return;
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
// Only ldda allowed
raise_exception(TT_ILL_INSN);
return;
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
{
switch(size) {
case 1:
stb_nucleus(addr, val);
break;
case 2:
stw_nucleus(addr, val);
break;
case 4:
stl_nucleus(addr, val);
break;
default:
case 8:
stq_nucleus(addr, val);
break;
}
break;
}
case 0x4a: // UPA config
// XXX
return;
case 0x45: // LSU
{
uint64_t oldreg;
oldreg = env->lsu;
env->lsu = val & (DMMU_E | IMMU_E);
// Mappings generated during D/I MMU disabled mode are
// invalid in normal mode
if (oldreg != env->lsu) {
DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
oldreg, env->lsu);
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env1);
#endif
tlb_flush(env, 1);
}
return;
}
case 0x50: // I-MMU regs
{
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->immuregs[reg];
switch(reg) {
case 0: // RO
return;
case 1: // Not in I-MMU
case 2:
return;
case 3: // SFSR
if ((val & 1) == 0)
val = 0; // Clear SFSR
env->immu.sfsr = val;
break;
case 4: // RO
return;
case 5: // TSB access
DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->immu.tsb, val);
env->immu.tsb = val;
break;
case 6: // Tag access
env->immu.tag_access = val;
break;
case 7:
case 8:
return;
default:
break;
}
if (oldreg != env->immuregs[reg]) {
DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
return;
}
case 0x54: // I-MMU data in
replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
return;
case 0x55: // I-MMU data access
{
// TODO: auto demap
unsigned int i = (addr >> 3) & 0x3f;
replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
#ifdef DEBUG_MMU
DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
dump_mmu(stdout, fprintf, env);
#endif
return;
}
case 0x57: // I-MMU demap
demap_tlb(env->itlb, addr, "immu", env);
return;
case 0x58: // D-MMU regs
{
int reg = (addr >> 3) & 0xf;
uint64_t oldreg;
oldreg = env->dmmuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 3: // SFSR
if ((val & 1) == 0) {
val = 0; // Clear SFSR, Fault address
env->dmmu.sfar = 0;
}
env->dmmu.sfsr = val;
break;
case 1: // Primary context
env->dmmu.mmu_primary_context = val;
/* can be optimized to only flush MMU_USER_IDX
and MMU_KERNEL_IDX entries */
tlb_flush(env, 1);
break;
case 2: // Secondary context
env->dmmu.mmu_secondary_context = val;
/* can be optimized to only flush MMU_USER_SECONDARY_IDX
and MMU_KERNEL_SECONDARY_IDX entries */
tlb_flush(env, 1);
break;
case 5: // TSB access
DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", env->dmmu.tsb, val);
env->dmmu.tsb = val;
break;
case 6: // Tag access
env->dmmu.tag_access = val;
break;
case 7: // Virtual Watchpoint
case 8: // Physical Watchpoint
default:
env->dmmuregs[reg] = val;
break;
}
if (oldreg != env->dmmuregs[reg]) {
DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
}
#ifdef DEBUG_MMU
dump_mmu(stdout, fprintf, env);
#endif
return;
}
case 0x5c: // D-MMU data in
replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
return;
case 0x5d: // D-MMU data access
{
unsigned int i = (addr >> 3) & 0x3f;
replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
#ifdef DEBUG_MMU
DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
dump_mmu(stdout, fprintf, env);
#endif
return;
}
case 0x5f: // D-MMU demap
demap_tlb(env->dtlb, addr, "dmmu", env);
return;
case 0x49: // Interrupt data receive
// XXX
return;
case 0x46: // D-cache data
case 0x47: // D-cache tag access
case 0x4b: // E-cache error enable
case 0x4c: // E-cache asynchronous fault status
case 0x4d: // E-cache asynchronous fault address
case 0x4e: // E-cache tag data
case 0x66: // I-cache instruction access
case 0x67: // I-cache tag access
case 0x6e: // I-cache predecode
case 0x6f: // I-cache LRU etc.
case 0x76: // E-cache tag
case 0x7e: // E-cache tag
return;
case 0x51: // I-MMU 8k TSB pointer, RO
case 0x52: // I-MMU 64k TSB pointer, RO
case 0x56: // I-MMU tag read, RO
case 0x59: // D-MMU 8k TSB pointer, RO
case 0x5a: // D-MMU 64k TSB pointer, RO
case 0x5b: // D-MMU data pointer, RO
case 0x5e: // D-MMU tag read, RO
case 0x48: // Interrupt dispatch, RO
case 0x7f: // Incoming interrupt vector, RO
case 0x82: // Primary no-fault, RO
case 0x83: // Secondary no-fault, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
do_unassigned_access(addr, 1, 0, 1, size);
return;
}
}
#endif /* CONFIG_USER_ONLY */
void helper_ldda_asi(target_ulong addr, int asi, int rd)
{
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|| (cpu_has_hypervisor(env)
&& asi >= 0x30 && asi < 0x80
&& !(env->hpstate & HS_PRIV)))
raise_exception(TT_PRIV_ACT);
addr = asi_address_mask(env, asi, addr);
switch (asi) {
#if !defined(CONFIG_USER_ONLY)
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
helper_check_align(addr, 0xf);
if (rd == 0) {
env->gregs[1] = ldq_nucleus(addr + 8);
if (asi == 0x2c)
bswap64s(&env->gregs[1]);
} else if (rd < 8) {
env->gregs[rd] = ldq_nucleus(addr);
env->gregs[rd + 1] = ldq_nucleus(addr + 8);
if (asi == 0x2c) {
bswap64s(&env->gregs[rd]);
bswap64s(&env->gregs[rd + 1]);
}
} else {
env->regwptr[rd] = ldq_nucleus(addr);
env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
if (asi == 0x2c) {
bswap64s(&env->regwptr[rd]);
bswap64s(&env->regwptr[rd + 1]);
}
}
break;
#endif
default:
helper_check_align(addr, 0x3);
if (rd == 0)
env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
else if (rd < 8) {
env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
} else {
env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
}
break;
}
}
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
{
unsigned int i;
CPU_DoubleU u;
helper_check_align(addr, 3);
addr = asi_address_mask(env, asi, addr);
switch (asi) {
case 0xf0: /* UA2007/JPS1 Block load primary */
case 0xf1: /* UA2007/JPS1 Block load secondary */
case 0xf8: /* UA2007/JPS1 Block load primary LE */
case 0xf9: /* UA2007/JPS1 Block load secondary LE */
if (rd & 7) {
raise_exception(TT_ILL_INSN);
return;
}
helper_check_align(addr, 0x3f);
for (i = 0; i < 16; i++) {
*(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
0);
addr += 4;
}
return;
case 0x16: /* UA2007 Block load primary, user privilege */
case 0x17: /* UA2007 Block load secondary, user privilege */
case 0x1e: /* UA2007 Block load primary LE, user privilege */
case 0x1f: /* UA2007 Block load secondary LE, user privilege */
case 0x70: /* JPS1 Block load primary, user privilege */
case 0x71: /* JPS1 Block load secondary, user privilege */
case 0x78: /* JPS1 Block load primary LE, user privilege */
case 0x79: /* JPS1 Block load secondary LE, user privilege */
if (rd & 7) {
raise_exception(TT_ILL_INSN);
return;
}
helper_check_align(addr, 0x3f);
for (i = 0; i < 16; i++) {
*(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x19, 4,
0);
addr += 4;
}
return;
default:
break;
}
switch(size) {
default:
case 4:
*((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
break;
case 8:
u.ll = helper_ld_asi(addr, asi, size, 0);
*((uint32_t *)&env->fpr[rd++]) = u.l.upper;
*((uint32_t *)&env->fpr[rd++]) = u.l.lower;
break;
case 16:
u.ll = helper_ld_asi(addr, asi, 8, 0);
*((uint32_t *)&env->fpr[rd++]) = u.l.upper;
*((uint32_t *)&env->fpr[rd++]) = u.l.lower;
u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
*((uint32_t *)&env->fpr[rd++]) = u.l.upper;
*((uint32_t *)&env->fpr[rd++]) = u.l.lower;
break;
}
}
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
{
unsigned int i;
target_ulong val = 0;
CPU_DoubleU u;
helper_check_align(addr, 3);
addr = asi_address_mask(env, asi, addr);
switch (asi) {
case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */
case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */
case 0xf0: /* UA2007/JPS1 Block store primary */
case 0xf1: /* UA2007/JPS1 Block store secondary */
case 0xf8: /* UA2007/JPS1 Block store primary LE */
case 0xf9: /* UA2007/JPS1 Block store secondary LE */
if (rd & 7) {
raise_exception(TT_ILL_INSN);
return;
}
helper_check_align(addr, 0x3f);
for (i = 0; i < 16; i++) {
val = *(uint32_t *)&env->fpr[rd++];
helper_st_asi(addr, val, asi & 0x8f, 4);
addr += 4;
}
return;
case 0x16: /* UA2007 Block load primary, user privilege */
case 0x17: /* UA2007 Block load secondary, user privilege */
case 0x1e: /* UA2007 Block load primary LE, user privilege */
case 0x1f: /* UA2007 Block load secondary LE, user privilege */
case 0x70: /* JPS1 Block store primary, user privilege */
case 0x71: /* JPS1 Block store secondary, user privilege */
case 0x78: /* JPS1 Block load primary LE, user privilege */
case 0x79: /* JPS1 Block load secondary LE, user privilege */
if (rd & 7) {
raise_exception(TT_ILL_INSN);
return;
}
helper_check_align(addr, 0x3f);
for (i = 0; i < 16; i++) {
val = *(uint32_t *)&env->fpr[rd++];
helper_st_asi(addr, val, asi & 0x19, 4);
addr += 4;
}
return;
default:
break;
}
switch(size) {
default:
case 4:
helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
break;
case 8:
u.l.upper = *(uint32_t *)&env->fpr[rd++];
u.l.lower = *(uint32_t *)&env->fpr[rd++];
helper_st_asi(addr, u.ll, asi, size);
break;
case 16:
u.l.upper = *(uint32_t *)&env->fpr[rd++];
u.l.lower = *(uint32_t *)&env->fpr[rd++];
helper_st_asi(addr, u.ll, asi, 8);
u.l.upper = *(uint32_t *)&env->fpr[rd++];
u.l.lower = *(uint32_t *)&env->fpr[rd++];
helper_st_asi(addr + 8, u.ll, asi, 8);
break;
}
}
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
target_ulong val2, uint32_t asi)
{
target_ulong ret;
val2 &= 0xffffffffUL;
ret = helper_ld_asi(addr, asi, 4, 0);
ret &= 0xffffffffUL;
if (val2 == ret)
helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
return ret;
}
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
target_ulong val2, uint32_t asi)
{
target_ulong ret;
ret = helper_ld_asi(addr, asi, 8, 0);
if (val2 == ret)
helper_st_asi(addr, val1, asi, 8);
return ret;
}
#endif /* TARGET_SPARC64 */
#ifndef TARGET_SPARC64
void helper_rett(void)
{
unsigned int cwp;
if (env->psret == 1)
raise_exception(TT_ILL_INSN);
env->psret = 1;
cwp = cwp_inc(env->cwp + 1) ;
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
env->psrs = env->psrps;
}
#endif
static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc)
{
int overflow = 0;
uint64_t x0;
uint32_t x1;
x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
x1 = (b & 0xffffffff);
if (x1 == 0) {
raise_exception(TT_DIV_ZERO);
}
x0 = x0 / x1;
if (x0 > 0xffffffff) {
x0 = 0xffffffff;
overflow = 1;
}
if (cc) {
env->cc_dst = x0;
env->cc_src2 = overflow;
env->cc_op = CC_OP_DIV;
}
return x0;
}
target_ulong helper_udiv(target_ulong a, target_ulong b)
{
return helper_udiv_common(a, b, 0);
}
target_ulong helper_udiv_cc(target_ulong a, target_ulong b)
{
return helper_udiv_common(a, b, 1);
}
static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
{
int overflow = 0;
int64_t x0;
int32_t x1;
x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
x1 = (b & 0xffffffff);
if (x1 == 0) {
raise_exception(TT_DIV_ZERO);
}
x0 = x0 / x1;
if ((int32_t) x0 != x0) {
x0 = x0 < 0 ? 0x80000000: 0x7fffffff;
overflow = 1;
}
if (cc) {
env->cc_dst = x0;
env->cc_src2 = overflow;
env->cc_op = CC_OP_DIV;
}
return x0;
}
target_ulong helper_sdiv(target_ulong a, target_ulong b)
{
return helper_sdiv_common(a, b, 0);
}
target_ulong helper_sdiv_cc(target_ulong a, target_ulong b)
{
return helper_sdiv_common(a, b, 1);
}
void helper_stdf(target_ulong addr, int mem_idx)
{
helper_check_align(addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case MMU_USER_IDX:
stfq_user(addr, DT0);
break;
case MMU_KERNEL_IDX:
stfq_kernel(addr, DT0);
break;
#ifdef TARGET_SPARC64
case MMU_HYPV_IDX:
stfq_hypv(addr, DT0);
break;
#endif
default:
DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
break;
}
#else
stfq_raw(address_mask(env, addr), DT0);
#endif
}
void helper_lddf(target_ulong addr, int mem_idx)
{
helper_check_align(addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case MMU_USER_IDX:
DT0 = ldfq_user(addr);
break;
case MMU_KERNEL_IDX:
DT0 = ldfq_kernel(addr);
break;
#ifdef TARGET_SPARC64
case MMU_HYPV_IDX:
DT0 = ldfq_hypv(addr);
break;
#endif
default:
DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
break;
}
#else
DT0 = ldfq_raw(address_mask(env, addr));
#endif
}
void helper_ldqf(target_ulong addr, int mem_idx)
{
// XXX add 128 bit load
CPU_QuadU u;
helper_check_align(addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case MMU_USER_IDX:
u.ll.upper = ldq_user(addr);
u.ll.lower = ldq_user(addr + 8);
QT0 = u.q;
break;
case MMU_KERNEL_IDX:
u.ll.upper = ldq_kernel(addr);
u.ll.lower = ldq_kernel(addr + 8);
QT0 = u.q;
break;
#ifdef TARGET_SPARC64
case MMU_HYPV_IDX:
u.ll.upper = ldq_hypv(addr);
u.ll.lower = ldq_hypv(addr + 8);
QT0 = u.q;
break;
#endif
default:
DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
break;
}
#else
u.ll.upper = ldq_raw(address_mask(env, addr));
u.ll.lower = ldq_raw(address_mask(env, addr + 8));
QT0 = u.q;
#endif
}
void helper_stqf(target_ulong addr, int mem_idx)
{
// XXX add 128 bit store
CPU_QuadU u;
helper_check_align(addr, 7);
#if !defined(CONFIG_USER_ONLY)
switch (mem_idx) {
case MMU_USER_IDX:
u.q = QT0;
stq_user(addr, u.ll.upper);
stq_user(addr + 8, u.ll.lower);
break;
case MMU_KERNEL_IDX:
u.q = QT0;
stq_kernel(addr, u.ll.upper);
stq_kernel(addr + 8, u.ll.lower);
break;
#ifdef TARGET_SPARC64
case MMU_HYPV_IDX:
u.q = QT0;
stq_hypv(addr, u.ll.upper);
stq_hypv(addr + 8, u.ll.lower);
break;
#endif
default:
DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
break;
}
#else
u.q = QT0;
stq_raw(address_mask(env, addr), u.ll.upper);
stq_raw(address_mask(env, addr + 8), u.ll.lower);
#endif
}
static inline void set_fsr(void)
{
int rnd_mode;
switch (env->fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
rnd_mode = float_round_nearest_even;
break;
default:
case FSR_RD_ZERO:
rnd_mode = float_round_to_zero;
break;
case FSR_RD_POS:
rnd_mode = float_round_up;
break;
case FSR_RD_NEG:
rnd_mode = float_round_down;
break;
}
set_float_rounding_mode(rnd_mode, &env->fp_status);
}
void helper_ldfsr(uint32_t new_fsr)
{
env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
set_fsr();
}
#ifdef TARGET_SPARC64
void helper_ldxfsr(uint64_t new_fsr)
{
env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
set_fsr();
}
#endif
void helper_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit(env);
}
#ifndef TARGET_SPARC64
/* XXX: use another pointer for %iN registers to avoid slow wrapping
handling ? */
void helper_save(void)
{
uint32_t cwp;
cwp = cwp_dec(env->cwp - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_OVF);
}
set_cwp(cwp);
}
void helper_restore(void)
{
uint32_t cwp;
cwp = cwp_inc(env->cwp + 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
set_cwp(cwp);
}
void helper_wrpsr(target_ulong new_psr)
{
if ((new_psr & PSR_CWP) >= env->nwindows) {
raise_exception(TT_ILL_INSN);
} else {
cpu_put_psr(env, new_psr);
}
}
target_ulong helper_rdpsr(void)
{
return get_psr();
}
#else
/* XXX: use another pointer for %iN registers to avoid slow wrapping
handling ? */
void helper_save(void)
{
uint32_t cwp;
cwp = cwp_dec(env->cwp - 1);
if (env->cansave == 0) {
raise_exception(TT_SPILL | (env->otherwin != 0 ?
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
((env->wstate & 0x7) << 2)));
} else {
if (env->cleanwin - env->canrestore == 0) {
// XXX Clean windows without trap
raise_exception(TT_CLRWIN);
} else {
env->cansave--;
env->canrestore++;
set_cwp(cwp);
}
}
}
void helper_restore(void)
{
uint32_t cwp;
cwp = cwp_inc(env->cwp + 1);
if (env->canrestore == 0) {
raise_exception(TT_FILL | (env->otherwin != 0 ?
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
((env->wstate & 0x7) << 2)));
} else {
env->cansave++;
env->canrestore--;
set_cwp(cwp);
}
}
void helper_flushw(void)
{
if (env->cansave != env->nwindows - 2) {
raise_exception(TT_SPILL | (env->otherwin != 0 ?
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
((env->wstate & 0x7) << 2)));
}
}
void helper_saved(void)
{
env->cansave++;
if (env->otherwin == 0)
env->canrestore--;
else
env->otherwin--;
}
void helper_restored(void)
{
env->canrestore++;
if (env->cleanwin < env->nwindows - 1)
env->cleanwin++;
if (env->otherwin == 0)
env->cansave--;
else
env->otherwin--;
}
static target_ulong get_ccr(void)
{
target_ulong psr;
psr = get_psr();
return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
}
target_ulong cpu_get_ccr(CPUState *env1)
{
CPUState *saved_env;
target_ulong ret;
saved_env = env;
env = env1;
ret = get_ccr();
env = saved_env;
return ret;
}
static void put_ccr(target_ulong val)
{
target_ulong tmp = val;
env->xcc = (tmp >> 4) << 20;
env->psr = (tmp & 0xf) << 20;
CC_OP = CC_OP_FLAGS;
}
void cpu_put_ccr(CPUState *env1, target_ulong val)
{
CPUState *saved_env;
saved_env = env;
env = env1;
put_ccr(val);
env = saved_env;
}
static target_ulong get_cwp64(void)
{
return env->nwindows - 1 - env->cwp;
}
target_ulong cpu_get_cwp64(CPUState *env1)
{
CPUState *saved_env;
target_ulong ret;
saved_env = env;
env = env1;
ret = get_cwp64();
env = saved_env;
return ret;
}
static void put_cwp64(int cwp)
{
if (unlikely(cwp >= env->nwindows || cwp < 0)) {
cwp %= env->nwindows;
}
set_cwp(env->nwindows - 1 - cwp);
}
void cpu_put_cwp64(CPUState *env1, int cwp)
{
CPUState *saved_env;
saved_env = env;
env = env1;
put_cwp64(cwp);
env = saved_env;
}
target_ulong helper_rdccr(void)
{
return get_ccr();
}
void helper_wrccr(target_ulong new_ccr)
{
put_ccr(new_ccr);
}
// CWP handling is reversed in V9, but we still use the V8 register
// order.
target_ulong helper_rdcwp(void)
{
return get_cwp64();
}
void helper_wrcwp(target_ulong new_cwp)
{
put_cwp64(new_cwp);
}
// This function uses non-native bit order
#define GET_FIELD(X, FROM, TO) \
((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
// This function uses the order in the manuals, i.e. bit 0 is 2^0
#define GET_FIELD_SP(X, FROM, TO) \
GET_FIELD(X, 63 - (TO), 63 - (FROM))
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
{
return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
(GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
(GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
(GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
(GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
(GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
(((pixel_addr >> 55) & 1) << 4) |
(GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
GET_FIELD_SP(pixel_addr, 11, 12);
}
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
{
uint64_t tmp;
tmp = addr + offset;
env->gsr &= ~7ULL;
env->gsr |= tmp & 7ULL;
return tmp & ~7ULL;
}
target_ulong helper_popc(target_ulong val)
{
return ctpop64(val);
}
static inline uint64_t *get_gregset(uint32_t pstate)
{
switch (pstate) {
default:
DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
pstate,
(pstate & PS_IG) ? " IG" : "",
(pstate & PS_MG) ? " MG" : "",
(pstate & PS_AG) ? " AG" : "");
/* pass through to normal set of global registers */
case 0:
return env->bgregs;
case PS_AG:
return env->agregs;
case PS_MG:
return env->mgregs;
case PS_IG:
return env->igregs;
}
}
static inline void change_pstate(uint32_t new_pstate)
{
uint32_t pstate_regs, new_pstate_regs;
uint64_t *src, *dst;
if (env->def->features & CPU_FEATURE_GL) {
// PS_AG is not implemented in this case
new_pstate &= ~PS_AG;
}
pstate_regs = env->pstate & 0xc01;
new_pstate_regs = new_pstate & 0xc01;
if (new_pstate_regs != pstate_regs) {
DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
pstate_regs, new_pstate_regs);
// Switch global register bank
src = get_gregset(new_pstate_regs);
dst = get_gregset(pstate_regs);
memcpy32(dst, env->gregs);
memcpy32(env->gregs, src);
}
else {
DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
new_pstate_regs);
}
env->pstate = new_pstate;
}
void helper_wrpstate(target_ulong new_state)
{
change_pstate(new_state & 0xf3f);
#if !defined(CONFIG_USER_ONLY)
if (cpu_interrupts_enabled(env)) {
cpu_check_irqs(env);
}
#endif
}
void cpu_change_pstate(CPUState *env1, uint32_t new_pstate)
{
CPUState *saved_env;
saved_env = env;
env = env1;
change_pstate(new_pstate);
env = saved_env;
}
void helper_wrpil(target_ulong new_pil)
{
#if !defined(CONFIG_USER_ONLY)
DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
env->psrpil, (uint32_t)new_pil);
env->psrpil = new_pil;
if (cpu_interrupts_enabled(env)) {
cpu_check_irqs(env);
}
#endif
}
void helper_done(void)
{
trap_state* tsptr = cpu_tsptr(env);
env->pc = tsptr->tnpc;
env->npc = tsptr->tnpc + 4;
put_ccr(tsptr->tstate >> 32);
env->asi = (tsptr->tstate >> 24) & 0xff;
change_pstate((tsptr->tstate >> 8) & 0xf3f);
put_cwp64(tsptr->tstate & 0xff);
env->tl--;
DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
#if !defined(CONFIG_USER_ONLY)
if (cpu_interrupts_enabled(env)) {
cpu_check_irqs(env);
}
#endif
}
void helper_retry(void)
{
trap_state* tsptr = cpu_tsptr(env);
env->pc = tsptr->tpc;
env->npc = tsptr->tnpc;
put_ccr(tsptr->tstate >> 32);
env->asi = (tsptr->tstate >> 24) & 0xff;
change_pstate((tsptr->tstate >> 8) & 0xf3f);
put_cwp64(tsptr->tstate & 0xff);
env->tl--;
DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
#if !defined(CONFIG_USER_ONLY)
if (cpu_interrupts_enabled(env)) {
cpu_check_irqs(env);
}
#endif
}
static void do_modify_softint(const char* operation, uint32_t value)
{
if (env->softint != value) {
env->softint = value;
DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
#if !defined(CONFIG_USER_ONLY)
if (cpu_interrupts_enabled(env)) {
cpu_check_irqs(env);
}
#endif
}
}
void helper_set_softint(uint64_t value)
{
do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
}
void helper_clear_softint(uint64_t value)
{
do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
}
void helper_write_softint(uint64_t value)
{
do_modify_softint("helper_write_softint", (uint32_t)value);
}
#endif
#ifdef TARGET_SPARC64
trap_state* cpu_tsptr(CPUState* env)
{
return &env->ts[env->tl & MAXTL_MASK];
}
#endif
#if !defined(CONFIG_USER_ONLY)
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
void *retaddr);
#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
/* XXX: make it generic ? */
static void cpu_restore_state2(void *retaddr)
{
TranslationBlock *tb;
unsigned long pc;
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc);
}
}
}
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
void *retaddr)
{
#ifdef DEBUG_UNALIGNED
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
"\n", addr, env->pc);
#endif
cpu_restore_state2(retaddr);
raise_exception(TT_UNALIGNED);
}
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
int ret;
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (ret) {
cpu_restore_state2(retaddr);
cpu_loop_exit(env);
}
env = saved_env;
}
#endif /* !CONFIG_USER_ONLY */
#ifndef TARGET_SPARC64
#if !defined(CONFIG_USER_ONLY)
static void do_unassigned_access(target_phys_addr_t addr, int is_write,
int is_exec, int is_asi, int size)
{
CPUState *saved_env;
int fault_type;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
#ifdef DEBUG_UNASSIGNED
if (is_asi)
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" asi 0x%02x from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, is_asi, env->pc);
else
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
" from " TARGET_FMT_lx "\n",
is_exec ? "exec" : is_write ? "write" : "read", size,
size == 1 ? "" : "s", addr, env->pc);
#endif
/* Don't overwrite translation and access faults */
fault_type = (env->mmuregs[3] & 0x1c) >> 2;
if ((fault_type > 4) || (fault_type == 0)) {
env->mmuregs[3] = 0; /* Fault status register */
if (is_asi)
env->mmuregs[3] |= 1 << 16;
if (env->psrs)
env->mmuregs[3] |= 1 << 5;
if (is_exec)
env->mmuregs[3] |= 1 << 6;
if (is_write)
env->mmuregs[3] |= 1 << 7;
env->mmuregs[3] |= (5 << 2) | 2;
/* SuperSPARC will never place instruction fault addresses in the FAR */
if (!is_exec) {
env->mmuregs[4] = addr; /* Fault address register */
}
}
/* overflow (same type fault was not read before another fault) */
if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
env->mmuregs[3] |= 1;
}
if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
if (is_exec)
raise_exception(TT_CODE_ACCESS);
else
raise_exception(TT_DATA_ACCESS);
}
/* flush neverland mappings created during no-fault mode,
so the sequential MMU faults report proper fault types */
if (env->mmuregs[0] & MMU_NF) {
tlb_flush(env, 1);
}
env = saved_env;
}
#endif
#else
#if defined(CONFIG_USER_ONLY)
static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
int is_asi, int size)
#else
static void do_unassigned_access(target_phys_addr_t addr, int is_write,
int is_exec, int is_asi, int size)
#endif
{
CPUState *saved_env;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
#ifdef DEBUG_UNASSIGNED
printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
"\n", addr, env->pc);
#endif
if (is_exec)
raise_exception(TT_CODE_ACCESS);
else
raise_exception(TT_DATA_ACCESS);
env = saved_env;
}
#endif
#ifdef TARGET_SPARC64
void helper_tick_set_count(void *opaque, uint64_t count)
{
#if !defined(CONFIG_USER_ONLY)
cpu_tick_set_count(opaque, count);
#endif
}
uint64_t helper_tick_get_count(void *opaque)
{
#if !defined(CONFIG_USER_ONLY)
return cpu_tick_get_count(opaque);
#else
return 0;
#endif
}
void helper_tick_set_limit(void *opaque, uint64_t limit)
{
#if !defined(CONFIG_USER_ONLY)
cpu_tick_set_limit(opaque, limit);
#endif
}
#endif
#if !defined(CONFIG_USER_ONLY)
void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
int is_write, int is_exec, int is_asi, int size)
{
env = env1;
do_unassigned_access(addr, is_write, is_exec, is_asi, size);
}
#endif