qemu/hw/dma/sparc32_dma.c
Markus Armbruster 1b111dc121 hw: cannot_instantiate_with_device_add_yet due to pointer props
Pointer properties can be set only by code, not by device_add.  A
device with a pointer property can work with device_add only when the
property may remain null.

This is the case for property "interrupt_vector" of device
"etraxfs,pic".  Add a comment there.

Set cannot_instantiate_with_device_add_yet for the other devices with
pointer properties, with a comment explaining why.

Juha Riihimäki and Peter Maydell deserve my thanks for making "pointer
property must not remain null" blatantly obvious in the OMAP devices.

Only device "smbus-eeprom" is actually changed.  The others are all
sysbus devices, which get cannot_instantiate_with_device_add_yet set
in their abstract base's class init function.  Setting it again in
their class init function is technically redundant, but serves as
insurance for when sysbus devices become available with device_add,
and as documentation.

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@gmail.com> (for ETRAX)
Signed-off-by: Andreas Färber <afaerber@suse.de>
2013-12-24 17:27:17 +01:00

324 lines
9.2 KiB
C

/*
* QEMU Sparc32 DMA controller emulation
*
* Copyright (c) 2006 Fabrice Bellard
*
* Modifications:
* 2010-Feb-14 Artyom Tarasenko : reworked irq generation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/hw.h"
#include "hw/sparc/sparc32_dma.h"
#include "hw/sparc/sun4m.h"
#include "hw/sysbus.h"
#include "trace.h"
/*
* This is the DMA controller part of chip STP2000 (Master I/O), also
* produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
*/
#define DMA_REGS 4
#define DMA_SIZE (4 * sizeof(uint32_t))
/* We need the mask, because one instance of the device is not page
aligned (ledma, start address 0x0010) */
#define DMA_MASK (DMA_SIZE - 1)
/* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
#define DMA_ETH_SIZE (8 * sizeof(uint32_t))
#define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
#define DMA_VER 0xa0000000
#define DMA_INTR 1
#define DMA_INTREN 0x10
#define DMA_WRITE_MEM 0x100
#define DMA_EN 0x200
#define DMA_LOADED 0x04000000
#define DMA_DRAIN_FIFO 0x40
#define DMA_RESET 0x80
/* XXX SCSI and ethernet should have different read-only bit masks */
#define DMA_CSR_RO_MASK 0xfe000007
#define TYPE_SPARC32_DMA "sparc32_dma"
#define SPARC32_DMA(obj) OBJECT_CHECK(DMAState, (obj), TYPE_SPARC32_DMA)
typedef struct DMAState DMAState;
struct DMAState {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t dmaregs[DMA_REGS];
qemu_irq irq;
void *iommu;
qemu_irq gpio[2];
uint32_t is_ledma;
};
enum {
GPIO_RESET = 0,
GPIO_DMA,
};
/* Note: on sparc, the lance 16 bit bus is swapped */
void ledma_memory_read(void *opaque, hwaddr addr,
uint8_t *buf, int len, int do_bswap)
{
DMAState *s = opaque;
int i;
addr |= s->dmaregs[3];
trace_ledma_memory_read(addr);
if (do_bswap) {
sparc_iommu_memory_read(s->iommu, addr, buf, len);
} else {
addr &= ~1;
len &= ~1;
sparc_iommu_memory_read(s->iommu, addr, buf, len);
for(i = 0; i < len; i += 2) {
bswap16s((uint16_t *)(buf + i));
}
}
}
void ledma_memory_write(void *opaque, hwaddr addr,
uint8_t *buf, int len, int do_bswap)
{
DMAState *s = opaque;
int l, i;
uint16_t tmp_buf[32];
addr |= s->dmaregs[3];
trace_ledma_memory_write(addr);
if (do_bswap) {
sparc_iommu_memory_write(s->iommu, addr, buf, len);
} else {
addr &= ~1;
len &= ~1;
while (len > 0) {
l = len;
if (l > sizeof(tmp_buf))
l = sizeof(tmp_buf);
for(i = 0; i < l; i += 2) {
tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
}
sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
len -= l;
buf += l;
addr += l;
}
}
}
static void dma_set_irq(void *opaque, int irq, int level)
{
DMAState *s = opaque;
if (level) {
s->dmaregs[0] |= DMA_INTR;
if (s->dmaregs[0] & DMA_INTREN) {
trace_sparc32_dma_set_irq_raise();
qemu_irq_raise(s->irq);
}
} else {
if (s->dmaregs[0] & DMA_INTR) {
s->dmaregs[0] &= ~DMA_INTR;
if (s->dmaregs[0] & DMA_INTREN) {
trace_sparc32_dma_set_irq_lower();
qemu_irq_lower(s->irq);
}
}
}
}
void espdma_memory_read(void *opaque, uint8_t *buf, int len)
{
DMAState *s = opaque;
trace_espdma_memory_read(s->dmaregs[1]);
sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
s->dmaregs[1] += len;
}
void espdma_memory_write(void *opaque, uint8_t *buf, int len)
{
DMAState *s = opaque;
trace_espdma_memory_write(s->dmaregs[1]);
sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
s->dmaregs[1] += len;
}
static uint64_t dma_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
DMAState *s = opaque;
uint32_t saddr;
if (s->is_ledma && (addr > DMA_MAX_REG_OFFSET)) {
/* aliased to espdma, but we can't get there from here */
/* buggy driver if using undocumented behavior, just return 0 */
trace_sparc32_dma_mem_readl(addr, 0);
return 0;
}
saddr = (addr & DMA_MASK) >> 2;
trace_sparc32_dma_mem_readl(addr, s->dmaregs[saddr]);
return s->dmaregs[saddr];
}
static void dma_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
DMAState *s = opaque;
uint32_t saddr;
if (s->is_ledma && (addr > DMA_MAX_REG_OFFSET)) {
/* aliased to espdma, but we can't get there from here */
trace_sparc32_dma_mem_writel(addr, 0, val);
return;
}
saddr = (addr & DMA_MASK) >> 2;
trace_sparc32_dma_mem_writel(addr, s->dmaregs[saddr], val);
switch (saddr) {
case 0:
if (val & DMA_INTREN) {
if (s->dmaregs[0] & DMA_INTR) {
trace_sparc32_dma_set_irq_raise();
qemu_irq_raise(s->irq);
}
} else {
if (s->dmaregs[0] & (DMA_INTR | DMA_INTREN)) {
trace_sparc32_dma_set_irq_lower();
qemu_irq_lower(s->irq);
}
}
if (val & DMA_RESET) {
qemu_irq_raise(s->gpio[GPIO_RESET]);
qemu_irq_lower(s->gpio[GPIO_RESET]);
} else if (val & DMA_DRAIN_FIFO) {
val &= ~DMA_DRAIN_FIFO;
} else if (val == 0)
val = DMA_DRAIN_FIFO;
if (val & DMA_EN && !(s->dmaregs[0] & DMA_EN)) {
trace_sparc32_dma_enable_raise();
qemu_irq_raise(s->gpio[GPIO_DMA]);
} else if (!(val & DMA_EN) && !!(s->dmaregs[0] & DMA_EN)) {
trace_sparc32_dma_enable_lower();
qemu_irq_lower(s->gpio[GPIO_DMA]);
}
val &= ~DMA_CSR_RO_MASK;
val |= DMA_VER;
s->dmaregs[0] = (s->dmaregs[0] & DMA_CSR_RO_MASK) | val;
break;
case 1:
s->dmaregs[0] |= DMA_LOADED;
/* fall through */
default:
s->dmaregs[saddr] = val;
break;
}
}
static const MemoryRegionOps dma_mem_ops = {
.read = dma_mem_read,
.write = dma_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void dma_reset(DeviceState *d)
{
DMAState *s = SPARC32_DMA(d);
memset(s->dmaregs, 0, DMA_SIZE);
s->dmaregs[0] = DMA_VER;
}
static const VMStateDescription vmstate_dma = {
.name ="sparc32_dma",
.version_id = 2,
.minimum_version_id = 2,
.minimum_version_id_old = 2,
.fields = (VMStateField []) {
VMSTATE_UINT32_ARRAY(dmaregs, DMAState, DMA_REGS),
VMSTATE_END_OF_LIST()
}
};
static int sparc32_dma_init1(SysBusDevice *sbd)
{
DeviceState *dev = DEVICE(sbd);
DMAState *s = SPARC32_DMA(dev);
int reg_size;
sysbus_init_irq(sbd, &s->irq);
reg_size = s->is_ledma ? DMA_ETH_SIZE : DMA_SIZE;
memory_region_init_io(&s->iomem, OBJECT(s), &dma_mem_ops, s,
"dma", reg_size);
sysbus_init_mmio(sbd, &s->iomem);
qdev_init_gpio_in(dev, dma_set_irq, 1);
qdev_init_gpio_out(dev, s->gpio, 2);
return 0;
}
static Property sparc32_dma_properties[] = {
DEFINE_PROP_PTR("iommu_opaque", DMAState, iommu),
DEFINE_PROP_UINT32("is_ledma", DMAState, is_ledma, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void sparc32_dma_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
k->init = sparc32_dma_init1;
dc->reset = dma_reset;
dc->vmsd = &vmstate_dma;
dc->props = sparc32_dma_properties;
/* Reason: pointer property "iommu_opaque" */
dc->cannot_instantiate_with_device_add_yet = true;
}
static const TypeInfo sparc32_dma_info = {
.name = TYPE_SPARC32_DMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(DMAState),
.class_init = sparc32_dma_class_init,
};
static void sparc32_dma_register_types(void)
{
type_register_static(&sparc32_dma_info);
}
type_init(sparc32_dma_register_types)