qemu/hw/xen/xen_pt.c
Liang Li 99605175c9 xen-pt: Fix PCI devices re-attach failed
Use the 'xl pci-attach $DomU $BDF' command to attach more than
one PCI devices to the guest, then detach the devices with
'xl pci-detach $DomU $BDF', after that, re-attach these PCI
devices again, an error message will be reported like following:

    libxl: error: libxl_qmp.c:287:qmp_handle_error_response: receive
    an error message from QMP server: Duplicate ID 'pci-pt-03_10.1'
    for device.

If using the 'address_space_memory' as the parameter of
'memory_listener_register', 'xen_pt_region_del' will not be called
if the memory region's name is not 'xen-pci-pt-*' when the devices
is detached. This will cause the device's related QemuOpts object
not be released properly.

Using the device's address space can avoid such issue, because the
calling count of 'xen_pt_region_add' when attaching and the calling
count of 'xen_pt_region_del' when detaching is the same, so all the
memory region ref and unref by the 'xen_pt_region_add' and
'xen_pt_region_del' can be released properly.

Signed-off-by: Liang Li <liang.z.li@intel.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reported-by: Longtao Pang <longtaox.pang@intel.com>
2015-01-13 11:49:46 +00:00

832 lines
26 KiB
C

/*
* Copyright (c) 2007, Neocleus Corporation.
* Copyright (c) 2007, Intel Corporation.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Alex Novik <alex@neocleus.com>
* Allen Kay <allen.m.kay@intel.com>
* Guy Zana <guy@neocleus.com>
*
* This file implements direct PCI assignment to a HVM guest
*/
/*
* Interrupt Disable policy:
*
* INTx interrupt:
* Initialize(register_real_device)
* Map INTx(xc_physdev_map_pirq):
* <fail>
* - Set real Interrupt Disable bit to '1'.
* - Set machine_irq and assigned_device->machine_irq to '0'.
* * Don't bind INTx.
*
* Bind INTx(xc_domain_bind_pt_pci_irq):
* <fail>
* - Set real Interrupt Disable bit to '1'.
* - Unmap INTx.
* - Decrement xen_pt_mapped_machine_irq[machine_irq]
* - Set assigned_device->machine_irq to '0'.
*
* Write to Interrupt Disable bit by guest software(xen_pt_cmd_reg_write)
* Write '0'
* - Set real bit to '0' if assigned_device->machine_irq isn't '0'.
*
* Write '1'
* - Set real bit to '1'.
*
* MSI interrupt:
* Initialize MSI register(xen_pt_msi_setup, xen_pt_msi_update)
* Bind MSI(xc_domain_update_msi_irq)
* <fail>
* - Unmap MSI.
* - Set dev->msi->pirq to '-1'.
*
* MSI-X interrupt:
* Initialize MSI-X register(xen_pt_msix_update_one)
* Bind MSI-X(xc_domain_update_msi_irq)
* <fail>
* - Unmap MSI-X.
* - Set entry->pirq to '-1'.
*/
#include <sys/ioctl.h>
#include "hw/pci/pci.h"
#include "hw/xen/xen.h"
#include "hw/xen/xen_backend.h"
#include "xen_pt.h"
#include "qemu/range.h"
#include "exec/address-spaces.h"
#define XEN_PT_NR_IRQS (256)
static uint8_t xen_pt_mapped_machine_irq[XEN_PT_NR_IRQS] = {0};
void xen_pt_log(const PCIDevice *d, const char *f, ...)
{
va_list ap;
va_start(ap, f);
if (d) {
fprintf(stderr, "[%02x:%02x.%d] ", pci_bus_num(d->bus),
PCI_SLOT(d->devfn), PCI_FUNC(d->devfn));
}
vfprintf(stderr, f, ap);
va_end(ap);
}
/* Config Space */
static int xen_pt_pci_config_access_check(PCIDevice *d, uint32_t addr, int len)
{
/* check offset range */
if (addr >= 0xFF) {
XEN_PT_ERR(d, "Failed to access register with offset exceeding 0xFF. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
/* check read size */
if ((len != 1) && (len != 2) && (len != 4)) {
XEN_PT_ERR(d, "Failed to access register with invalid access length. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
/* check offset alignment */
if (addr & (len - 1)) {
XEN_PT_ERR(d, "Failed to access register with invalid access size "
"alignment. (addr: 0x%02x, len: %d)\n", addr, len);
return -1;
}
return 0;
}
int xen_pt_bar_offset_to_index(uint32_t offset)
{
int index = 0;
/* check Exp ROM BAR */
if (offset == PCI_ROM_ADDRESS) {
return PCI_ROM_SLOT;
}
/* calculate BAR index */
index = (offset - PCI_BASE_ADDRESS_0) >> 2;
if (index >= PCI_NUM_REGIONS) {
return -1;
}
return index;
}
static uint32_t xen_pt_pci_read_config(PCIDevice *d, uint32_t addr, int len)
{
XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
uint32_t val = 0;
XenPTRegGroup *reg_grp_entry = NULL;
XenPTReg *reg_entry = NULL;
int rc = 0;
int emul_len = 0;
uint32_t find_addr = addr;
if (xen_pt_pci_config_access_check(d, addr, len)) {
goto exit;
}
/* find register group entry */
reg_grp_entry = xen_pt_find_reg_grp(s, addr);
if (reg_grp_entry) {
/* check 0-Hardwired register group */
if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) {
/* no need to emulate, just return 0 */
val = 0;
goto exit;
}
}
/* read I/O device register value */
rc = xen_host_pci_get_block(&s->real_device, addr, (uint8_t *)&val, len);
if (rc < 0) {
XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc);
memset(&val, 0xff, len);
}
/* just return the I/O device register value for
* passthrough type register group */
if (reg_grp_entry == NULL) {
goto exit;
}
/* adjust the read value to appropriate CFC-CFF window */
val <<= (addr & 3) << 3;
emul_len = len;
/* loop around the guest requested size */
while (emul_len > 0) {
/* find register entry to be emulated */
reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr);
if (reg_entry) {
XenPTRegInfo *reg = reg_entry->reg;
uint32_t real_offset = reg_grp_entry->base_offset + reg->offset;
uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3);
uint8_t *ptr_val = NULL;
valid_mask <<= (find_addr - real_offset) << 3;
ptr_val = (uint8_t *)&val + (real_offset & 3);
/* do emulation based on register size */
switch (reg->size) {
case 1:
if (reg->u.b.read) {
rc = reg->u.b.read(s, reg_entry, ptr_val, valid_mask);
}
break;
case 2:
if (reg->u.w.read) {
rc = reg->u.w.read(s, reg_entry,
(uint16_t *)ptr_val, valid_mask);
}
break;
case 4:
if (reg->u.dw.read) {
rc = reg->u.dw.read(s, reg_entry,
(uint32_t *)ptr_val, valid_mask);
}
break;
}
if (rc < 0) {
xen_shutdown_fatal_error("Internal error: Invalid read "
"emulation. (%s, rc: %d)\n",
__func__, rc);
return 0;
}
/* calculate next address to find */
emul_len -= reg->size;
if (emul_len > 0) {
find_addr = real_offset + reg->size;
}
} else {
/* nothing to do with passthrough type register,
* continue to find next byte */
emul_len--;
find_addr++;
}
}
/* need to shift back before returning them to pci bus emulator */
val >>= ((addr & 3) << 3);
exit:
XEN_PT_LOG_CONFIG(d, addr, val, len);
return val;
}
static void xen_pt_pci_write_config(PCIDevice *d, uint32_t addr,
uint32_t val, int len)
{
XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
int index = 0;
XenPTRegGroup *reg_grp_entry = NULL;
int rc = 0;
uint32_t read_val = 0;
int emul_len = 0;
XenPTReg *reg_entry = NULL;
uint32_t find_addr = addr;
XenPTRegInfo *reg = NULL;
if (xen_pt_pci_config_access_check(d, addr, len)) {
return;
}
XEN_PT_LOG_CONFIG(d, addr, val, len);
/* check unused BAR register */
index = xen_pt_bar_offset_to_index(addr);
if ((index >= 0) && (val > 0 && val < XEN_PT_BAR_ALLF) &&
(s->bases[index].bar_flag == XEN_PT_BAR_FLAG_UNUSED)) {
XEN_PT_WARN(d, "Guest attempt to set address to unused Base Address "
"Register. (addr: 0x%02x, len: %d)\n", addr, len);
}
/* find register group entry */
reg_grp_entry = xen_pt_find_reg_grp(s, addr);
if (reg_grp_entry) {
/* check 0-Hardwired register group */
if (reg_grp_entry->reg_grp->grp_type == XEN_PT_GRP_TYPE_HARDWIRED) {
/* ignore silently */
XEN_PT_WARN(d, "Access to 0-Hardwired register. "
"(addr: 0x%02x, len: %d)\n", addr, len);
return;
}
}
rc = xen_host_pci_get_block(&s->real_device, addr,
(uint8_t *)&read_val, len);
if (rc < 0) {
XEN_PT_ERR(d, "pci_read_block failed. return value: %d.\n", rc);
memset(&read_val, 0xff, len);
}
/* pass directly to the real device for passthrough type register group */
if (reg_grp_entry == NULL) {
goto out;
}
memory_region_transaction_begin();
pci_default_write_config(d, addr, val, len);
/* adjust the read and write value to appropriate CFC-CFF window */
read_val <<= (addr & 3) << 3;
val <<= (addr & 3) << 3;
emul_len = len;
/* loop around the guest requested size */
while (emul_len > 0) {
/* find register entry to be emulated */
reg_entry = xen_pt_find_reg(reg_grp_entry, find_addr);
if (reg_entry) {
reg = reg_entry->reg;
uint32_t real_offset = reg_grp_entry->base_offset + reg->offset;
uint32_t valid_mask = 0xFFFFFFFF >> ((4 - emul_len) << 3);
uint8_t *ptr_val = NULL;
valid_mask <<= (find_addr - real_offset) << 3;
ptr_val = (uint8_t *)&val + (real_offset & 3);
/* do emulation based on register size */
switch (reg->size) {
case 1:
if (reg->u.b.write) {
rc = reg->u.b.write(s, reg_entry, ptr_val,
read_val >> ((real_offset & 3) << 3),
valid_mask);
}
break;
case 2:
if (reg->u.w.write) {
rc = reg->u.w.write(s, reg_entry, (uint16_t *)ptr_val,
(read_val >> ((real_offset & 3) << 3)),
valid_mask);
}
break;
case 4:
if (reg->u.dw.write) {
rc = reg->u.dw.write(s, reg_entry, (uint32_t *)ptr_val,
(read_val >> ((real_offset & 3) << 3)),
valid_mask);
}
break;
}
if (rc < 0) {
xen_shutdown_fatal_error("Internal error: Invalid write"
" emulation. (%s, rc: %d)\n",
__func__, rc);
return;
}
/* calculate next address to find */
emul_len -= reg->size;
if (emul_len > 0) {
find_addr = real_offset + reg->size;
}
} else {
/* nothing to do with passthrough type register,
* continue to find next byte */
emul_len--;
find_addr++;
}
}
/* need to shift back before passing them to xen_host_pci_device */
val >>= (addr & 3) << 3;
memory_region_transaction_commit();
out:
if (!(reg && reg->no_wb)) {
/* unknown regs are passed through */
rc = xen_host_pci_set_block(&s->real_device, addr,
(uint8_t *)&val, len);
if (rc < 0) {
XEN_PT_ERR(d, "pci_write_block failed. return value: %d.\n", rc);
}
}
}
/* register regions */
static uint64_t xen_pt_bar_read(void *o, hwaddr addr,
unsigned size)
{
PCIDevice *d = o;
/* if this function is called, that probably means that there is a
* misconfiguration of the IOMMU. */
XEN_PT_ERR(d, "Should not read BAR through QEMU. @0x"TARGET_FMT_plx"\n",
addr);
return 0;
}
static void xen_pt_bar_write(void *o, hwaddr addr, uint64_t val,
unsigned size)
{
PCIDevice *d = o;
/* Same comment as xen_pt_bar_read function */
XEN_PT_ERR(d, "Should not write BAR through QEMU. @0x"TARGET_FMT_plx"\n",
addr);
}
static const MemoryRegionOps ops = {
.endianness = DEVICE_NATIVE_ENDIAN,
.read = xen_pt_bar_read,
.write = xen_pt_bar_write,
};
static int xen_pt_register_regions(XenPCIPassthroughState *s)
{
int i = 0;
XenHostPCIDevice *d = &s->real_device;
/* Register PIO/MMIO BARs */
for (i = 0; i < PCI_ROM_SLOT; i++) {
XenHostPCIIORegion *r = &d->io_regions[i];
uint8_t type;
if (r->base_addr == 0 || r->size == 0) {
continue;
}
s->bases[i].access.u = r->base_addr;
if (r->type & XEN_HOST_PCI_REGION_TYPE_IO) {
type = PCI_BASE_ADDRESS_SPACE_IO;
} else {
type = PCI_BASE_ADDRESS_SPACE_MEMORY;
if (r->type & XEN_HOST_PCI_REGION_TYPE_PREFETCH) {
type |= PCI_BASE_ADDRESS_MEM_PREFETCH;
}
if (r->type & XEN_HOST_PCI_REGION_TYPE_MEM_64) {
type |= PCI_BASE_ADDRESS_MEM_TYPE_64;
}
}
memory_region_init_io(&s->bar[i], OBJECT(s), &ops, &s->dev,
"xen-pci-pt-bar", r->size);
pci_register_bar(&s->dev, i, type, &s->bar[i]);
XEN_PT_LOG(&s->dev, "IO region %i registered (size=0x%08"PRIx64
" base_addr=0x%08"PRIx64" type: %#x)\n",
i, r->size, r->base_addr, type);
}
/* Register expansion ROM address */
if (d->rom.base_addr && d->rom.size) {
uint32_t bar_data = 0;
/* Re-set BAR reported by OS, otherwise ROM can't be read. */
if (xen_host_pci_get_long(d, PCI_ROM_ADDRESS, &bar_data)) {
return 0;
}
if ((bar_data & PCI_ROM_ADDRESS_MASK) == 0) {
bar_data |= d->rom.base_addr & PCI_ROM_ADDRESS_MASK;
xen_host_pci_set_long(d, PCI_ROM_ADDRESS, bar_data);
}
s->bases[PCI_ROM_SLOT].access.maddr = d->rom.base_addr;
memory_region_init_io(&s->rom, OBJECT(s), &ops, &s->dev,
"xen-pci-pt-rom", d->rom.size);
pci_register_bar(&s->dev, PCI_ROM_SLOT, PCI_BASE_ADDRESS_MEM_PREFETCH,
&s->rom);
XEN_PT_LOG(&s->dev, "Expansion ROM registered (size=0x%08"PRIx64
" base_addr=0x%08"PRIx64")\n",
d->rom.size, d->rom.base_addr);
}
return 0;
}
/* region mapping */
static int xen_pt_bar_from_region(XenPCIPassthroughState *s, MemoryRegion *mr)
{
int i = 0;
for (i = 0; i < PCI_NUM_REGIONS - 1; i++) {
if (mr == &s->bar[i]) {
return i;
}
}
if (mr == &s->rom) {
return PCI_ROM_SLOT;
}
return -1;
}
/*
* This function checks if an io_region overlaps an io_region from another
* device. The io_region to check is provided with (addr, size and type)
* A callback can be provided and will be called for every region that is
* overlapped.
* The return value indicates if the region is overlappsed */
struct CheckBarArgs {
XenPCIPassthroughState *s;
pcibus_t addr;
pcibus_t size;
uint8_t type;
bool rc;
};
static void xen_pt_check_bar_overlap(PCIBus *bus, PCIDevice *d, void *opaque)
{
struct CheckBarArgs *arg = opaque;
XenPCIPassthroughState *s = arg->s;
uint8_t type = arg->type;
int i;
if (d->devfn == s->dev.devfn) {
return;
}
/* xxx: This ignores bridges. */
for (i = 0; i < PCI_NUM_REGIONS; i++) {
const PCIIORegion *r = &d->io_regions[i];
if (!r->size) {
continue;
}
if ((type & PCI_BASE_ADDRESS_SPACE_IO)
!= (r->type & PCI_BASE_ADDRESS_SPACE_IO)) {
continue;
}
if (ranges_overlap(arg->addr, arg->size, r->addr, r->size)) {
XEN_PT_WARN(&s->dev,
"Overlapped to device [%02x:%02x.%d] Region: %i"
" (addr: %#"FMT_PCIBUS", len: %#"FMT_PCIBUS")\n",
pci_bus_num(bus), PCI_SLOT(d->devfn),
PCI_FUNC(d->devfn), i, r->addr, r->size);
arg->rc = true;
}
}
}
static void xen_pt_region_update(XenPCIPassthroughState *s,
MemoryRegionSection *sec, bool adding)
{
PCIDevice *d = &s->dev;
MemoryRegion *mr = sec->mr;
int bar = -1;
int rc;
int op = adding ? DPCI_ADD_MAPPING : DPCI_REMOVE_MAPPING;
struct CheckBarArgs args = {
.s = s,
.addr = sec->offset_within_address_space,
.size = int128_get64(sec->size),
.rc = false,
};
bar = xen_pt_bar_from_region(s, mr);
if (bar == -1 && (!s->msix || &s->msix->mmio != mr)) {
return;
}
if (s->msix && &s->msix->mmio == mr) {
if (adding) {
s->msix->mmio_base_addr = sec->offset_within_address_space;
rc = xen_pt_msix_update_remap(s, s->msix->bar_index);
}
return;
}
args.type = d->io_regions[bar].type;
pci_for_each_device(d->bus, pci_bus_num(d->bus),
xen_pt_check_bar_overlap, &args);
if (args.rc) {
XEN_PT_WARN(d, "Region: %d (addr: %#"FMT_PCIBUS
", len: %#"FMT_PCIBUS") is overlapped.\n",
bar, sec->offset_within_address_space,
int128_get64(sec->size));
}
if (d->io_regions[bar].type & PCI_BASE_ADDRESS_SPACE_IO) {
uint32_t guest_port = sec->offset_within_address_space;
uint32_t machine_port = s->bases[bar].access.pio_base;
uint32_t size = int128_get64(sec->size);
rc = xc_domain_ioport_mapping(xen_xc, xen_domid,
guest_port, machine_port, size,
op);
if (rc) {
XEN_PT_ERR(d, "%s ioport mapping failed! (rc: %i)\n",
adding ? "create new" : "remove old", rc);
}
} else {
pcibus_t guest_addr = sec->offset_within_address_space;
pcibus_t machine_addr = s->bases[bar].access.maddr
+ sec->offset_within_region;
pcibus_t size = int128_get64(sec->size);
rc = xc_domain_memory_mapping(xen_xc, xen_domid,
XEN_PFN(guest_addr + XC_PAGE_SIZE - 1),
XEN_PFN(machine_addr + XC_PAGE_SIZE - 1),
XEN_PFN(size + XC_PAGE_SIZE - 1),
op);
if (rc) {
XEN_PT_ERR(d, "%s mem mapping failed! (rc: %i)\n",
adding ? "create new" : "remove old", rc);
}
}
}
static void xen_pt_region_add(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
memory_listener);
memory_region_ref(sec->mr);
xen_pt_region_update(s, sec, true);
}
static void xen_pt_region_del(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
memory_listener);
xen_pt_region_update(s, sec, false);
memory_region_unref(sec->mr);
}
static void xen_pt_io_region_add(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
io_listener);
memory_region_ref(sec->mr);
xen_pt_region_update(s, sec, true);
}
static void xen_pt_io_region_del(MemoryListener *l, MemoryRegionSection *sec)
{
XenPCIPassthroughState *s = container_of(l, XenPCIPassthroughState,
io_listener);
xen_pt_region_update(s, sec, false);
memory_region_unref(sec->mr);
}
static const MemoryListener xen_pt_memory_listener = {
.region_add = xen_pt_region_add,
.region_del = xen_pt_region_del,
.priority = 10,
};
static const MemoryListener xen_pt_io_listener = {
.region_add = xen_pt_io_region_add,
.region_del = xen_pt_io_region_del,
.priority = 10,
};
/* init */
static int xen_pt_initfn(PCIDevice *d)
{
XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
int rc = 0;
uint8_t machine_irq = 0;
int pirq = XEN_PT_UNASSIGNED_PIRQ;
/* register real device */
XEN_PT_LOG(d, "Assigning real physical device %02x:%02x.%d"
" to devfn %#x\n",
s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function,
s->dev.devfn);
rc = xen_host_pci_device_get(&s->real_device,
s->hostaddr.domain, s->hostaddr.bus,
s->hostaddr.slot, s->hostaddr.function);
if (rc) {
XEN_PT_ERR(d, "Failed to \"open\" the real pci device. rc: %i\n", rc);
return -1;
}
s->is_virtfn = s->real_device.is_virtfn;
if (s->is_virtfn) {
XEN_PT_LOG(d, "%04x:%02x:%02x.%d is a SR-IOV Virtual Function\n",
s->real_device.domain, s->real_device.bus,
s->real_device.dev, s->real_device.func);
}
/* Initialize virtualized PCI configuration (Extended 256 Bytes) */
if (xen_host_pci_get_block(&s->real_device, 0, d->config,
PCI_CONFIG_SPACE_SIZE) == -1) {
xen_host_pci_device_put(&s->real_device);
return -1;
}
s->memory_listener = xen_pt_memory_listener;
s->io_listener = xen_pt_io_listener;
/* Handle real device's MMIO/PIO BARs */
xen_pt_register_regions(s);
/* reinitialize each config register to be emulated */
if (xen_pt_config_init(s)) {
XEN_PT_ERR(d, "PCI Config space initialisation failed.\n");
xen_host_pci_device_put(&s->real_device);
return -1;
}
/* Bind interrupt */
if (!s->dev.config[PCI_INTERRUPT_PIN]) {
XEN_PT_LOG(d, "no pin interrupt\n");
goto out;
}
machine_irq = s->real_device.irq;
rc = xc_physdev_map_pirq(xen_xc, xen_domid, machine_irq, &pirq);
if (rc < 0) {
XEN_PT_ERR(d, "Mapping machine irq %u to pirq %i failed, (rc: %d)\n",
machine_irq, pirq, rc);
/* Disable PCI intx assertion (turn on bit10 of devctl) */
xen_host_pci_set_word(&s->real_device,
PCI_COMMAND,
pci_get_word(s->dev.config + PCI_COMMAND)
| PCI_COMMAND_INTX_DISABLE);
machine_irq = 0;
s->machine_irq = 0;
} else {
machine_irq = pirq;
s->machine_irq = pirq;
xen_pt_mapped_machine_irq[machine_irq]++;
}
/* bind machine_irq to device */
if (machine_irq != 0) {
uint8_t e_intx = xen_pt_pci_intx(s);
rc = xc_domain_bind_pt_pci_irq(xen_xc, xen_domid, machine_irq,
pci_bus_num(d->bus),
PCI_SLOT(d->devfn),
e_intx);
if (rc < 0) {
XEN_PT_ERR(d, "Binding of interrupt %i failed! (rc: %d)\n",
e_intx, rc);
/* Disable PCI intx assertion (turn on bit10 of devctl) */
xen_host_pci_set_word(&s->real_device, PCI_COMMAND,
*(uint16_t *)(&s->dev.config[PCI_COMMAND])
| PCI_COMMAND_INTX_DISABLE);
xen_pt_mapped_machine_irq[machine_irq]--;
if (xen_pt_mapped_machine_irq[machine_irq] == 0) {
if (xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq)) {
XEN_PT_ERR(d, "Unmapping of machine interrupt %i failed!"
" (rc: %d)\n", machine_irq, rc);
}
}
s->machine_irq = 0;
}
}
out:
memory_listener_register(&s->memory_listener, &s->dev.bus_master_as);
memory_listener_register(&s->io_listener, &address_space_io);
XEN_PT_LOG(d,
"Real physical device %02x:%02x.%d registered successfully!\n",
s->hostaddr.bus, s->hostaddr.slot, s->hostaddr.function);
return 0;
}
static void xen_pt_unregister_device(PCIDevice *d)
{
XenPCIPassthroughState *s = DO_UPCAST(XenPCIPassthroughState, dev, d);
uint8_t machine_irq = s->machine_irq;
uint8_t intx = xen_pt_pci_intx(s);
int rc;
if (machine_irq) {
rc = xc_domain_unbind_pt_irq(xen_xc, xen_domid, machine_irq,
PT_IRQ_TYPE_PCI,
pci_bus_num(d->bus),
PCI_SLOT(s->dev.devfn),
intx,
0 /* isa_irq */);
if (rc < 0) {
XEN_PT_ERR(d, "unbinding of interrupt INT%c failed."
" (machine irq: %i, rc: %d)"
" But bravely continuing on..\n",
'a' + intx, machine_irq, rc);
}
}
if (s->msi) {
xen_pt_msi_disable(s);
}
if (s->msix) {
xen_pt_msix_disable(s);
}
if (machine_irq) {
xen_pt_mapped_machine_irq[machine_irq]--;
if (xen_pt_mapped_machine_irq[machine_irq] == 0) {
rc = xc_physdev_unmap_pirq(xen_xc, xen_domid, machine_irq);
if (rc < 0) {
XEN_PT_ERR(d, "unmapping of interrupt %i failed. (rc: %d)"
" But bravely continuing on..\n",
machine_irq, rc);
}
}
}
/* delete all emulated config registers */
xen_pt_config_delete(s);
memory_listener_unregister(&s->memory_listener);
memory_listener_unregister(&s->io_listener);
xen_host_pci_device_put(&s->real_device);
}
static Property xen_pci_passthrough_properties[] = {
DEFINE_PROP_PCI_HOST_DEVADDR("hostaddr", XenPCIPassthroughState, hostaddr),
DEFINE_PROP_END_OF_LIST(),
};
static void xen_pci_passthrough_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->init = xen_pt_initfn;
k->exit = xen_pt_unregister_device;
k->config_read = xen_pt_pci_read_config;
k->config_write = xen_pt_pci_write_config;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
dc->desc = "Assign an host PCI device with Xen";
dc->props = xen_pci_passthrough_properties;
};
static const TypeInfo xen_pci_passthrough_info = {
.name = "xen-pci-passthrough",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(XenPCIPassthroughState),
.class_init = xen_pci_passthrough_class_init,
};
static void xen_pci_passthrough_register_types(void)
{
type_register_static(&xen_pci_passthrough_info);
}
type_init(xen_pci_passthrough_register_types)