qemu/hw/net/msf2-emac.c
Peter Maydell e3d0814368 hw: Use device_class_set_legacy_reset() instead of opencoding
Use device_class_set_legacy_reset() instead of opencoding an
assignment to DeviceClass::reset. This change was produced
with:
 spatch --macro-file scripts/cocci-macro-file.h \
    --sp-file scripts/coccinelle/device-reset.cocci \
    --keep-comments --smpl-spacing --in-place --dir hw

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20240830145812.1967042-8-peter.maydell@linaro.org
2024-09-13 15:31:44 +01:00

593 lines
18 KiB
C

/*
* QEMU model of the Smartfusion2 Ethernet MAC.
*
* Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* Refer to section Ethernet MAC in the document:
* UG0331: SmartFusion2 Microcontroller Subsystem User Guide
* Datasheet URL:
* https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/
* 56758-soc?lang=en&limit=20&limitstart=220
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "hw/registerfields.h"
#include "hw/net/msf2-emac.h"
#include "hw/net/mii.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
REG32(CFG1, 0x0)
FIELD(CFG1, RESET, 31, 1)
FIELD(CFG1, RX_EN, 2, 1)
FIELD(CFG1, TX_EN, 0, 1)
FIELD(CFG1, LB_EN, 8, 1)
REG32(CFG2, 0x4)
REG32(IFG, 0x8)
REG32(HALF_DUPLEX, 0xc)
REG32(MAX_FRAME_LENGTH, 0x10)
REG32(MII_CMD, 0x24)
FIELD(MII_CMD, READ, 0, 1)
REG32(MII_ADDR, 0x28)
FIELD(MII_ADDR, REGADDR, 0, 5)
FIELD(MII_ADDR, PHYADDR, 8, 5)
REG32(MII_CTL, 0x2c)
REG32(MII_STS, 0x30)
REG32(STA1, 0x40)
REG32(STA2, 0x44)
REG32(FIFO_CFG0, 0x48)
REG32(FIFO_CFG4, 0x58)
FIELD(FIFO_CFG4, BCAST, 9, 1)
FIELD(FIFO_CFG4, MCAST, 8, 1)
REG32(FIFO_CFG5, 0x5C)
FIELD(FIFO_CFG5, BCAST, 9, 1)
FIELD(FIFO_CFG5, MCAST, 8, 1)
REG32(DMA_TX_CTL, 0x180)
FIELD(DMA_TX_CTL, EN, 0, 1)
REG32(DMA_TX_DESC, 0x184)
REG32(DMA_TX_STATUS, 0x188)
FIELD(DMA_TX_STATUS, PKTCNT, 16, 8)
FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1)
FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1)
REG32(DMA_RX_CTL, 0x18c)
FIELD(DMA_RX_CTL, EN, 0, 1)
REG32(DMA_RX_DESC, 0x190)
REG32(DMA_RX_STATUS, 0x194)
FIELD(DMA_RX_STATUS, PKTCNT, 16, 8)
FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1)
FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1)
REG32(DMA_IRQ_MASK, 0x198)
REG32(DMA_IRQ, 0x19c)
#define EMPTY_MASK (1 << 31)
#define PKT_SIZE 0x7FF
#define PHYADDR 0x1
#define MAX_PKT_SIZE 2048
typedef struct {
uint32_t pktaddr;
uint32_t pktsize;
uint32_t next;
} EmacDesc;
static uint32_t emac_get_isr(MSF2EmacState *s)
{
uint32_t ier = s->regs[R_DMA_IRQ_MASK];
uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF;
uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF;
uint32_t isr = (rx << 4) | tx;
s->regs[R_DMA_IRQ] = ier & isr;
return s->regs[R_DMA_IRQ];
}
static void emac_update_irq(MSF2EmacState *s)
{
bool intr = emac_get_isr(s);
qemu_set_irq(s->irq, intr);
}
static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
{
address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
/* Convert from LE into host endianness. */
d->pktaddr = le32_to_cpu(d->pktaddr);
d->pktsize = le32_to_cpu(d->pktsize);
d->next = le32_to_cpu(d->next);
}
static void emac_store_desc(MSF2EmacState *s, const EmacDesc *d, hwaddr desc)
{
EmacDesc outd;
/*
* Convert from host endianness into LE. We use a local struct because
* calling code may still want to look at the fields afterwards.
*/
outd.pktaddr = cpu_to_le32(d->pktaddr);
outd.pktsize = cpu_to_le32(d->pktsize);
outd.next = cpu_to_le32(d->next);
address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, &outd, sizeof outd);
}
static void msf2_dma_tx(MSF2EmacState *s)
{
NetClientState *nc = qemu_get_queue(s->nic);
hwaddr desc = s->regs[R_DMA_TX_DESC];
uint8_t buf[MAX_PKT_SIZE];
EmacDesc d;
int size;
uint8_t pktcnt;
uint32_t status;
if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) {
return;
}
while (1) {
emac_load_desc(s, &d, desc);
if (d.pktsize & EMPTY_MASK) {
break;
}
size = d.pktsize & PKT_SIZE;
address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
buf, size);
/*
* This is very basic way to send packets. Ideally there should be
* a FIFO and packets should be sent out from FIFO only when
* R_CFG1 bit 0 is set.
*/
if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) {
qemu_receive_packet(nc, buf, size);
} else {
qemu_send_packet(nc, buf, size);
}
d.pktsize |= EMPTY_MASK;
emac_store_desc(s, &d, desc);
/* update sent packets count */
status = s->regs[R_DMA_TX_STATUS];
pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT);
pktcnt++;
s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS,
PKTCNT, pktcnt);
s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK;
desc = d.next;
}
s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK;
s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK;
}
static void msf2_phy_update_link(MSF2EmacState *s)
{
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP |
MII_BMSR_LINK_ST);
} else {
s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP |
MII_BMSR_LINK_ST);
}
}
static void msf2_phy_reset(MSF2EmacState *s)
{
memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
s->phy_regs[MII_BMCR] = 0x1140;
s->phy_regs[MII_BMSR] = 0x7968;
s->phy_regs[MII_PHYID1] = 0x0022;
s->phy_regs[MII_PHYID2] = 0x1550;
s->phy_regs[MII_ANAR] = 0x01E1;
s->phy_regs[MII_ANLPAR] = 0xCDE1;
msf2_phy_update_link(s);
}
static void write_to_phy(MSF2EmacState *s)
{
uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
R_MII_ADDR_REGADDR_MASK;
uint16_t data = s->regs[R_MII_CTL] & 0xFFFF;
if (phy_addr != PHYADDR) {
return;
}
switch (reg_addr) {
case MII_BMCR:
if (data & MII_BMCR_RESET) {
/* Phy reset */
msf2_phy_reset(s);
data &= ~MII_BMCR_RESET;
}
if (data & MII_BMCR_AUTOEN) {
/* Complete autonegotiation immediately */
data &= ~MII_BMCR_AUTOEN;
s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP;
}
break;
}
s->phy_regs[reg_addr] = data;
}
static uint16_t read_from_phy(MSF2EmacState *s)
{
uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
R_MII_ADDR_REGADDR_MASK;
if (phy_addr == PHYADDR) {
return s->phy_regs[reg_addr];
} else {
return 0xFFFF;
}
}
static void msf2_emac_do_reset(MSF2EmacState *s)
{
memset(&s->regs[0], 0, sizeof(s->regs));
s->regs[R_CFG1] = 0x80000000;
s->regs[R_CFG2] = 0x00007000;
s->regs[R_IFG] = 0x40605060;
s->regs[R_HALF_DUPLEX] = 0x00A1F037;
s->regs[R_MAX_FRAME_LENGTH] = 0x00000600;
s->regs[R_FIFO_CFG5] = 0X3FFFF;
msf2_phy_reset(s);
}
static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size)
{
MSF2EmacState *s = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr) {
case R_DMA_IRQ:
r = emac_get_isr(s);
break;
default:
if (addr >= ARRAY_SIZE(s->regs)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
addr * 4);
return r;
}
r = s->regs[addr];
break;
}
return r;
}
static void emac_write(void *opaque, hwaddr addr, uint64_t val64,
unsigned int size)
{
MSF2EmacState *s = opaque;
uint32_t value = val64;
uint32_t enreqbits;
uint8_t pktcnt;
addr >>= 2;
switch (addr) {
case R_DMA_TX_CTL:
s->regs[addr] = value;
if (value & R_DMA_TX_CTL_EN_MASK) {
msf2_dma_tx(s);
}
break;
case R_DMA_RX_CTL:
s->regs[addr] = value;
if (value & R_DMA_RX_CTL_EN_MASK) {
s->rx_desc = s->regs[R_DMA_RX_DESC];
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
case R_CFG1:
s->regs[addr] = value;
if (value & R_CFG1_RESET_MASK) {
msf2_emac_do_reset(s);
}
break;
case R_FIFO_CFG0:
/*
* For our implementation, turning on modules is instantaneous,
* so the states requested via the *ENREQ bits appear in the
* *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC
* module are not emulated here since it deals with start of frames,
* inter-packet gap and control frames.
*/
enreqbits = extract32(value, 8, 5);
s->regs[addr] = deposit32(value, 16, 5, enreqbits);
break;
case R_DMA_TX_DESC:
if (value & 0x3) {
qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be"
" 32 bit aligned\n");
}
/* Ignore [1:0] bits */
s->regs[addr] = value & ~3;
break;
case R_DMA_RX_DESC:
if (value & 0x3) {
qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be"
" 32 bit aligned\n");
}
/* Ignore [1:0] bits */
s->regs[addr] = value & ~3;
break;
case R_DMA_TX_STATUS:
if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) {
s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK;
}
if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) {
pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT);
pktcnt--;
s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS,
PKTCNT, pktcnt);
if (pktcnt == 0) {
s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK;
}
}
break;
case R_DMA_RX_STATUS:
if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) {
s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK;
}
if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) {
pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT);
pktcnt--;
s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS,
PKTCNT, pktcnt);
if (pktcnt == 0) {
s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK;
}
}
break;
case R_DMA_IRQ:
break;
case R_MII_CMD:
if (value & R_MII_CMD_READ_MASK) {
s->regs[R_MII_STS] = read_from_phy(s);
}
break;
case R_MII_CTL:
s->regs[addr] = value;
write_to_phy(s);
break;
case R_STA1:
s->regs[addr] = value;
/*
* R_STA1 [31:24] : octet 1 of mac address
* R_STA1 [23:16] : octet 2 of mac address
* R_STA1 [15:8] : octet 3 of mac address
* R_STA1 [7:0] : octet 4 of mac address
*/
stl_be_p(s->mac_addr, value);
break;
case R_STA2:
s->regs[addr] = value;
/*
* R_STA2 [31:24] : octet 5 of mac address
* R_STA2 [23:16] : octet 6 of mac address
*/
stw_be_p(s->mac_addr + 4, value >> 16);
break;
default:
if (addr >= ARRAY_SIZE(s->regs)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
addr * 4);
return;
}
s->regs[addr] = value;
break;
}
emac_update_irq(s);
}
static const MemoryRegionOps emac_ops = {
.read = emac_read,
.write = emac_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4
}
};
static bool emac_can_rx(NetClientState *nc)
{
MSF2EmacState *s = qemu_get_nic_opaque(nc);
return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) &&
(s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK);
}
static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf)
{
/* The broadcast MAC address: FF:FF:FF:FF:FF:FF */
const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF };
bool bcast_en = true;
bool mcast_en = true;
if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) {
bcast_en = true; /* Broadcast dont care for drop circuitry */
} else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) {
bcast_en = false;
}
if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) {
mcast_en = true; /* Multicast dont care for drop circuitry */
} else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) {
mcast_en = false;
}
if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) {
return bcast_en;
}
if (buf[0] & 1) {
return mcast_en;
}
return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr));
}
static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size)
{
MSF2EmacState *s = qemu_get_nic_opaque(nc);
EmacDesc d;
uint8_t pktcnt;
uint32_t status;
if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) {
return size;
}
if (!addr_filter_ok(s, buf)) {
return size;
}
emac_load_desc(s, &d, s->rx_desc);
if (d.pktsize & EMPTY_MASK) {
address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
buf, size & PKT_SIZE);
d.pktsize = size & PKT_SIZE;
emac_store_desc(s, &d, s->rx_desc);
/* update received packets count */
status = s->regs[R_DMA_RX_STATUS];
pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT);
pktcnt++;
s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS,
PKTCNT, pktcnt);
s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK;
s->rx_desc = d.next;
} else {
s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK;
s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK;
}
emac_update_irq(s);
return size;
}
static void msf2_emac_reset(DeviceState *dev)
{
MSF2EmacState *s = MSS_EMAC(dev);
msf2_emac_do_reset(s);
}
static void emac_set_link(NetClientState *nc)
{
MSF2EmacState *s = qemu_get_nic_opaque(nc);
msf2_phy_update_link(s);
}
static NetClientInfo net_msf2_emac_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = emac_can_rx,
.receive = emac_rx,
.link_status_changed = emac_set_link,
};
static void msf2_emac_realize(DeviceState *dev, Error **errp)
{
MSF2EmacState *s = MSS_EMAC(dev);
if (!s->dma_mr) {
error_setg(errp, "MSS_EMAC 'ahb-bus' link not set");
return;
}
address_space_init(&s->dma_as, s->dma_mr, "emac-ahb");
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id,
&dev->mem_reentrancy_guard, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static void msf2_emac_init(Object *obj)
{
MSF2EmacState *s = MSS_EMAC(obj);
sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
memory_region_init_io(&s->mmio, obj, &emac_ops, s,
"msf2-emac", R_MAX * 4);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
}
static Property msf2_emac_properties[] = {
DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_NIC_PROPERTIES(MSF2EmacState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_msf2_emac = {
.name = TYPE_MSS_EMAC,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN),
VMSTATE_UINT32(rx_desc, MSF2EmacState),
VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS),
VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX),
VMSTATE_END_OF_LIST()
}
};
static void msf2_emac_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = msf2_emac_realize;
device_class_set_legacy_reset(dc, msf2_emac_reset);
dc->vmsd = &vmstate_msf2_emac;
device_class_set_props(dc, msf2_emac_properties);
}
static const TypeInfo msf2_emac_info = {
.name = TYPE_MSS_EMAC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MSF2EmacState),
.instance_init = msf2_emac_init,
.class_init = msf2_emac_class_init,
};
static void msf2_emac_register_types(void)
{
type_register_static(&msf2_emac_info);
}
type_init(msf2_emac_register_types)