9c62f1efa8
page_size is a uint32_t, and zasl is a uint8_t, so the expression
`page_size << zasl` is done using 32-bit arithmetic and might overflow.
Since we then compare this against a 64 bit data_size value, Coverity
complains that we might overflow unintentionally. An MDTS/ZASL value in
excess of 4GiB is probably impractical, but it is not entirely
unrealistic, so add a cast such that we handle that case properly.
Fixes: 578d914b26
("hw/block/nvme: align zoned.zasl with mdts")
Fixes: CID 1450756
Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
5349 lines
154 KiB
C
5349 lines
154 KiB
C
/*
|
|
* QEMU NVM Express Controller
|
|
*
|
|
* Copyright (c) 2012, Intel Corporation
|
|
*
|
|
* Written by Keith Busch <keith.busch@intel.com>
|
|
*
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
*/
|
|
|
|
/**
|
|
* Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
|
|
*
|
|
* https://nvmexpress.org/developers/nvme-specification/
|
|
*/
|
|
|
|
/**
|
|
* Usage: add options:
|
|
* -drive file=<file>,if=none,id=<drive_id>
|
|
* -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
|
|
* -device nvme,serial=<serial>,id=<bus_name>, \
|
|
* cmb_size_mb=<cmb_size_mb[optional]>, \
|
|
* [pmrdev=<mem_backend_file_id>,] \
|
|
* max_ioqpairs=<N[optional]>, \
|
|
* aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
|
|
* mdts=<N[optional]>,zoned.zasl=<N[optional]>, \
|
|
* subsys=<subsys_id>
|
|
* -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
|
|
* zoned=<true|false[optional]>, \
|
|
* subsys=<subsys_id>,detached=<true|false[optional]>
|
|
*
|
|
* Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
|
|
* offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
|
|
* device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
|
|
* always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
|
|
*
|
|
* Enabling pmr emulation can be achieved by pointing to memory-backend-file.
|
|
* For example:
|
|
* -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
|
|
* size=<size> .... -device nvme,...,pmrdev=<mem_id>
|
|
*
|
|
* The PMR will use BAR 4/5 exclusively.
|
|
*
|
|
* To place controller(s) and namespace(s) to a subsystem, then provide
|
|
* nvme-subsys device as above.
|
|
*
|
|
* nvme subsystem device parameters
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
* - `nqn`
|
|
* This parameter provides the `<nqn_id>` part of the string
|
|
* `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
|
|
* of subsystem controllers. Note that `<nqn_id>` should be unique per
|
|
* subsystem, but this is not enforced by QEMU. If not specified, it will
|
|
* default to the value of the `id` parameter (`<subsys_id>`).
|
|
*
|
|
* nvme device parameters
|
|
* ~~~~~~~~~~~~~~~~~~~~~~
|
|
* - `subsys`
|
|
* Specifying this parameter attaches the controller to the subsystem and
|
|
* the SUBNQN field in the controller will report the NQN of the subsystem
|
|
* device. This also enables multi controller capability represented in
|
|
* Identify Controller data structure in CMIC (Controller Multi-path I/O and
|
|
* Namesapce Sharing Capabilities).
|
|
*
|
|
* - `aerl`
|
|
* The Asynchronous Event Request Limit (AERL). Indicates the maximum number
|
|
* of concurrently outstanding Asynchronous Event Request commands support
|
|
* by the controller. This is a 0's based value.
|
|
*
|
|
* - `aer_max_queued`
|
|
* This is the maximum number of events that the device will enqueue for
|
|
* completion when there are no outstanding AERs. When the maximum number of
|
|
* enqueued events are reached, subsequent events will be dropped.
|
|
*
|
|
* - `mdts`
|
|
* Indicates the maximum data transfer size for a command that transfers data
|
|
* between host-accessible memory and the controller. The value is specified
|
|
* as a power of two (2^n) and is in units of the minimum memory page size
|
|
* (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
|
|
*
|
|
* - `zoned.zasl`
|
|
* Indicates the maximum data transfer size for the Zone Append command. Like
|
|
* `mdts`, the value is specified as a power of two (2^n) and is in units of
|
|
* the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
|
|
* defaulting to the value of `mdts`).
|
|
*
|
|
* nvme namespace device parameters
|
|
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
* - `subsys`
|
|
* If given, the namespace will be attached to all controllers in the
|
|
* subsystem. Otherwise, `bus` must be given to attach this namespace to a
|
|
* specific controller as a non-shared namespace.
|
|
*
|
|
* - `detached`
|
|
* This parameter is only valid together with the `subsys` parameter. If left
|
|
* at the default value (`false/off`), the namespace will be attached to all
|
|
* controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
|
|
* namespace will be be available in the subsystem not not attached to any
|
|
* controllers.
|
|
*
|
|
* Setting `zoned` to true selects Zoned Command Set at the namespace.
|
|
* In this case, the following namespace properties are available to configure
|
|
* zoned operation:
|
|
* zoned.zone_size=<zone size in bytes, default: 128MiB>
|
|
* The number may be followed by K, M, G as in kilo-, mega- or giga-.
|
|
*
|
|
* zoned.zone_capacity=<zone capacity in bytes, default: zone size>
|
|
* The value 0 (default) forces zone capacity to be the same as zone
|
|
* size. The value of this property may not exceed zone size.
|
|
*
|
|
* zoned.descr_ext_size=<zone descriptor extension size, default 0>
|
|
* This value needs to be specified in 64B units. If it is zero,
|
|
* namespace(s) will not support zone descriptor extensions.
|
|
*
|
|
* zoned.max_active=<Maximum Active Resources (zones), default: 0>
|
|
* The default value means there is no limit to the number of
|
|
* concurrently active zones.
|
|
*
|
|
* zoned.max_open=<Maximum Open Resources (zones), default: 0>
|
|
* The default value means there is no limit to the number of
|
|
* concurrently open zones.
|
|
*
|
|
* zoned.cross_read=<enable RAZB, default: false>
|
|
* Setting this property to true enables Read Across Zone Boundaries.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/block/block.h"
|
|
#include "hw/pci/msix.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "migration/vmstate.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/visitor.h"
|
|
#include "sysemu/hostmem.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "exec/memory.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
#include "qemu/cutils.h"
|
|
#include "trace.h"
|
|
#include "nvme.h"
|
|
#include "nvme-ns.h"
|
|
|
|
#define NVME_MAX_IOQPAIRS 0xffff
|
|
#define NVME_DB_SIZE 4
|
|
#define NVME_SPEC_VER 0x00010400
|
|
#define NVME_CMB_BIR 2
|
|
#define NVME_PMR_BIR 4
|
|
#define NVME_TEMPERATURE 0x143
|
|
#define NVME_TEMPERATURE_WARNING 0x157
|
|
#define NVME_TEMPERATURE_CRITICAL 0x175
|
|
#define NVME_NUM_FW_SLOTS 1
|
|
|
|
#define NVME_GUEST_ERR(trace, fmt, ...) \
|
|
do { \
|
|
(trace_##trace)(__VA_ARGS__); \
|
|
qemu_log_mask(LOG_GUEST_ERROR, #trace \
|
|
" in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
static const bool nvme_feature_support[NVME_FID_MAX] = {
|
|
[NVME_ARBITRATION] = true,
|
|
[NVME_POWER_MANAGEMENT] = true,
|
|
[NVME_TEMPERATURE_THRESHOLD] = true,
|
|
[NVME_ERROR_RECOVERY] = true,
|
|
[NVME_VOLATILE_WRITE_CACHE] = true,
|
|
[NVME_NUMBER_OF_QUEUES] = true,
|
|
[NVME_INTERRUPT_COALESCING] = true,
|
|
[NVME_INTERRUPT_VECTOR_CONF] = true,
|
|
[NVME_WRITE_ATOMICITY] = true,
|
|
[NVME_ASYNCHRONOUS_EVENT_CONF] = true,
|
|
[NVME_TIMESTAMP] = true,
|
|
};
|
|
|
|
static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
|
|
[NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
|
|
[NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
|
|
[NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
|
|
[NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
|
|
[NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
|
|
[NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
|
|
};
|
|
|
|
static const uint32_t nvme_cse_acs[256] = {
|
|
[NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
|
|
};
|
|
|
|
static const uint32_t nvme_cse_iocs_none[256];
|
|
|
|
static const uint32_t nvme_cse_iocs_nvm[256] = {
|
|
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
|
|
};
|
|
|
|
static const uint32_t nvme_cse_iocs_zoned[256] = {
|
|
[NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
|
|
[NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
|
|
[NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
|
|
};
|
|
|
|
static void nvme_process_sq(void *opaque);
|
|
|
|
static uint16_t nvme_cid(NvmeRequest *req)
|
|
{
|
|
if (!req) {
|
|
return 0xffff;
|
|
}
|
|
|
|
return le16_to_cpu(req->cqe.cid);
|
|
}
|
|
|
|
static uint16_t nvme_sqid(NvmeRequest *req)
|
|
{
|
|
return le16_to_cpu(req->sq->sqid);
|
|
}
|
|
|
|
static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
|
|
NvmeZoneState state)
|
|
{
|
|
if (QTAILQ_IN_USE(zone, entry)) {
|
|
switch (nvme_get_zone_state(zone)) {
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
|
|
break;
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
|
|
break;
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
|
|
break;
|
|
case NVME_ZONE_STATE_FULL:
|
|
QTAILQ_REMOVE(&ns->full_zones, zone, entry);
|
|
default:
|
|
;
|
|
}
|
|
}
|
|
|
|
nvme_set_zone_state(zone, state);
|
|
|
|
switch (state) {
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
|
|
break;
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
|
|
break;
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
|
|
break;
|
|
case NVME_ZONE_STATE_FULL:
|
|
QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
|
|
case NVME_ZONE_STATE_READ_ONLY:
|
|
break;
|
|
default:
|
|
zone->d.za = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if we can open a zone without exceeding open/active limits.
|
|
* AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
|
|
*/
|
|
static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
|
|
{
|
|
if (ns->params.max_active_zones != 0 &&
|
|
ns->nr_active_zones + act > ns->params.max_active_zones) {
|
|
trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
|
|
return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
|
|
}
|
|
if (ns->params.max_open_zones != 0 &&
|
|
ns->nr_open_zones + opn > ns->params.max_open_zones) {
|
|
trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
|
|
return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
|
|
{
|
|
hwaddr hi, lo;
|
|
|
|
if (!n->cmb.cmse) {
|
|
return false;
|
|
}
|
|
|
|
lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
|
|
hi = lo + int128_get64(n->cmb.mem.size);
|
|
|
|
return addr >= lo && addr < hi;
|
|
}
|
|
|
|
static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
|
|
{
|
|
hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
|
|
return &n->cmb.buf[addr - base];
|
|
}
|
|
|
|
static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
|
|
{
|
|
hwaddr hi;
|
|
|
|
if (!n->pmr.cmse) {
|
|
return false;
|
|
}
|
|
|
|
hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
|
|
|
|
return addr >= n->pmr.cba && addr < hi;
|
|
}
|
|
|
|
static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
|
|
{
|
|
return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
|
|
}
|
|
|
|
static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
|
|
{
|
|
hwaddr hi = addr + size - 1;
|
|
if (hi < addr) {
|
|
return 1;
|
|
}
|
|
|
|
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
|
|
memcpy(buf, nvme_addr_to_cmb(n, addr), size);
|
|
return 0;
|
|
}
|
|
|
|
if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
|
|
memcpy(buf, nvme_addr_to_pmr(n, addr), size);
|
|
return 0;
|
|
}
|
|
|
|
return pci_dma_read(&n->parent_obj, addr, buf, size);
|
|
}
|
|
|
|
static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
|
|
{
|
|
return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
|
|
}
|
|
|
|
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
|
|
{
|
|
return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
|
|
}
|
|
|
|
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
|
|
{
|
|
return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
|
|
}
|
|
|
|
static void nvme_inc_cq_tail(NvmeCQueue *cq)
|
|
{
|
|
cq->tail++;
|
|
if (cq->tail >= cq->size) {
|
|
cq->tail = 0;
|
|
cq->phase = !cq->phase;
|
|
}
|
|
}
|
|
|
|
static void nvme_inc_sq_head(NvmeSQueue *sq)
|
|
{
|
|
sq->head = (sq->head + 1) % sq->size;
|
|
}
|
|
|
|
static uint8_t nvme_cq_full(NvmeCQueue *cq)
|
|
{
|
|
return (cq->tail + 1) % cq->size == cq->head;
|
|
}
|
|
|
|
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
|
|
{
|
|
return sq->head == sq->tail;
|
|
}
|
|
|
|
static void nvme_irq_check(NvmeCtrl *n)
|
|
{
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
return;
|
|
}
|
|
if (~n->bar.intms & n->irq_status) {
|
|
pci_irq_assert(&n->parent_obj);
|
|
} else {
|
|
pci_irq_deassert(&n->parent_obj);
|
|
}
|
|
}
|
|
|
|
static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
|
|
{
|
|
if (cq->irq_enabled) {
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
trace_pci_nvme_irq_msix(cq->vector);
|
|
msix_notify(&(n->parent_obj), cq->vector);
|
|
} else {
|
|
trace_pci_nvme_irq_pin();
|
|
assert(cq->vector < 32);
|
|
n->irq_status |= 1 << cq->vector;
|
|
nvme_irq_check(n);
|
|
}
|
|
} else {
|
|
trace_pci_nvme_irq_masked();
|
|
}
|
|
}
|
|
|
|
static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
|
|
{
|
|
if (cq->irq_enabled) {
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
return;
|
|
} else {
|
|
assert(cq->vector < 32);
|
|
n->irq_status &= ~(1 << cq->vector);
|
|
nvme_irq_check(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void nvme_req_clear(NvmeRequest *req)
|
|
{
|
|
req->ns = NULL;
|
|
req->opaque = NULL;
|
|
memset(&req->cqe, 0x0, sizeof(req->cqe));
|
|
req->status = NVME_SUCCESS;
|
|
}
|
|
|
|
static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
|
|
{
|
|
if (dma) {
|
|
pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
|
|
sg->flags = NVME_SG_DMA;
|
|
} else {
|
|
qemu_iovec_init(&sg->iov, 0);
|
|
}
|
|
|
|
sg->flags |= NVME_SG_ALLOC;
|
|
}
|
|
|
|
static inline void nvme_sg_unmap(NvmeSg *sg)
|
|
{
|
|
if (!(sg->flags & NVME_SG_ALLOC)) {
|
|
return;
|
|
}
|
|
|
|
if (sg->flags & NVME_SG_DMA) {
|
|
qemu_sglist_destroy(&sg->qsg);
|
|
} else {
|
|
qemu_iovec_destroy(&sg->iov);
|
|
}
|
|
|
|
memset(sg, 0x0, sizeof(*sg));
|
|
}
|
|
|
|
static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
|
|
size_t len)
|
|
{
|
|
if (!len) {
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
trace_pci_nvme_map_addr_cmb(addr, len);
|
|
|
|
if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
|
|
return NVME_DATA_TRAS_ERROR;
|
|
}
|
|
|
|
qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
|
|
size_t len)
|
|
{
|
|
if (!len) {
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
|
|
return NVME_DATA_TRAS_ERROR;
|
|
}
|
|
|
|
qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
|
|
{
|
|
bool cmb = false, pmr = false;
|
|
|
|
if (!len) {
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
trace_pci_nvme_map_addr(addr, len);
|
|
|
|
if (nvme_addr_is_cmb(n, addr)) {
|
|
cmb = true;
|
|
} else if (nvme_addr_is_pmr(n, addr)) {
|
|
pmr = true;
|
|
}
|
|
|
|
if (cmb || pmr) {
|
|
if (sg->flags & NVME_SG_DMA) {
|
|
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
|
|
}
|
|
|
|
if (cmb) {
|
|
return nvme_map_addr_cmb(n, &sg->iov, addr, len);
|
|
} else {
|
|
return nvme_map_addr_pmr(n, &sg->iov, addr, len);
|
|
}
|
|
}
|
|
|
|
if (!(sg->flags & NVME_SG_DMA)) {
|
|
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
|
|
}
|
|
|
|
qemu_sglist_add(&sg->qsg, addr, len);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
|
|
{
|
|
return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
|
|
}
|
|
|
|
static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
|
|
uint64_t prp2, uint32_t len)
|
|
{
|
|
hwaddr trans_len = n->page_size - (prp1 % n->page_size);
|
|
trans_len = MIN(len, trans_len);
|
|
int num_prps = (len >> n->page_bits) + 1;
|
|
uint16_t status;
|
|
int ret;
|
|
|
|
trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
|
|
|
|
nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
|
|
|
|
status = nvme_map_addr(n, sg, prp1, trans_len);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
len -= trans_len;
|
|
if (len) {
|
|
if (len > n->page_size) {
|
|
uint64_t prp_list[n->max_prp_ents];
|
|
uint32_t nents, prp_trans;
|
|
int i = 0;
|
|
|
|
nents = (len + n->page_size - 1) >> n->page_bits;
|
|
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
|
|
ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
|
|
if (ret) {
|
|
trace_pci_nvme_err_addr_read(prp2);
|
|
status = NVME_DATA_TRAS_ERROR;
|
|
goto unmap;
|
|
}
|
|
while (len != 0) {
|
|
uint64_t prp_ent = le64_to_cpu(prp_list[i]);
|
|
|
|
if (i == n->max_prp_ents - 1 && len > n->page_size) {
|
|
if (unlikely(prp_ent & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
|
|
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
goto unmap;
|
|
}
|
|
|
|
i = 0;
|
|
nents = (len + n->page_size - 1) >> n->page_bits;
|
|
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
|
|
ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
|
|
prp_trans);
|
|
if (ret) {
|
|
trace_pci_nvme_err_addr_read(prp_ent);
|
|
status = NVME_DATA_TRAS_ERROR;
|
|
goto unmap;
|
|
}
|
|
prp_ent = le64_to_cpu(prp_list[i]);
|
|
}
|
|
|
|
if (unlikely(prp_ent & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
|
|
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
goto unmap;
|
|
}
|
|
|
|
trans_len = MIN(len, n->page_size);
|
|
status = nvme_map_addr(n, sg, prp_ent, trans_len);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
len -= trans_len;
|
|
i++;
|
|
}
|
|
} else {
|
|
if (unlikely(prp2 & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_prp2_align(prp2);
|
|
status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
goto unmap;
|
|
}
|
|
status = nvme_map_addr(n, sg, prp2, len);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
|
|
unmap:
|
|
nvme_sg_unmap(sg);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Map 'nsgld' data descriptors from 'segment'. The function will subtract the
|
|
* number of bytes mapped in len.
|
|
*/
|
|
static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
|
|
NvmeSglDescriptor *segment, uint64_t nsgld,
|
|
size_t *len, NvmeCmd *cmd)
|
|
{
|
|
dma_addr_t addr, trans_len;
|
|
uint32_t dlen;
|
|
uint16_t status;
|
|
|
|
for (int i = 0; i < nsgld; i++) {
|
|
uint8_t type = NVME_SGL_TYPE(segment[i].type);
|
|
|
|
switch (type) {
|
|
case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
|
|
if (cmd->opcode == NVME_CMD_WRITE) {
|
|
continue;
|
|
}
|
|
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
|
|
break;
|
|
case NVME_SGL_DESCR_TYPE_SEGMENT:
|
|
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
|
|
return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
|
|
default:
|
|
return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
|
|
}
|
|
|
|
dlen = le32_to_cpu(segment[i].len);
|
|
|
|
if (!dlen) {
|
|
continue;
|
|
}
|
|
|
|
if (*len == 0) {
|
|
/*
|
|
* All data has been mapped, but the SGL contains additional
|
|
* segments and/or descriptors. The controller might accept
|
|
* ignoring the rest of the SGL.
|
|
*/
|
|
uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
|
|
if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
|
|
break;
|
|
}
|
|
|
|
trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
|
|
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
|
|
}
|
|
|
|
trans_len = MIN(*len, dlen);
|
|
|
|
if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
|
|
goto next;
|
|
}
|
|
|
|
addr = le64_to_cpu(segment[i].addr);
|
|
|
|
if (UINT64_MAX - addr < dlen) {
|
|
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
|
|
}
|
|
|
|
status = nvme_map_addr(n, sg, addr, trans_len);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
next:
|
|
*len -= trans_len;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
|
|
size_t len, NvmeCmd *cmd)
|
|
{
|
|
/*
|
|
* Read the segment in chunks of 256 descriptors (one 4k page) to avoid
|
|
* dynamically allocating a potentially huge SGL. The spec allows the SGL
|
|
* to be larger (as in number of bytes required to describe the SGL
|
|
* descriptors and segment chain) than the command transfer size, so it is
|
|
* not bounded by MDTS.
|
|
*/
|
|
const int SEG_CHUNK_SIZE = 256;
|
|
|
|
NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
|
|
uint64_t nsgld;
|
|
uint32_t seg_len;
|
|
uint16_t status;
|
|
hwaddr addr;
|
|
int ret;
|
|
|
|
sgld = &sgl;
|
|
addr = le64_to_cpu(sgl.addr);
|
|
|
|
trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
|
|
|
|
nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
|
|
|
|
/*
|
|
* If the entire transfer can be described with a single data block it can
|
|
* be mapped directly.
|
|
*/
|
|
if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
|
|
status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
for (;;) {
|
|
switch (NVME_SGL_TYPE(sgld->type)) {
|
|
case NVME_SGL_DESCR_TYPE_SEGMENT:
|
|
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
|
|
break;
|
|
default:
|
|
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
|
|
}
|
|
|
|
seg_len = le32_to_cpu(sgld->len);
|
|
|
|
/* check the length of the (Last) Segment descriptor */
|
|
if ((!seg_len || seg_len & 0xf) &&
|
|
(NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
|
|
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
|
|
}
|
|
|
|
if (UINT64_MAX - addr < seg_len) {
|
|
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
|
|
}
|
|
|
|
nsgld = seg_len / sizeof(NvmeSglDescriptor);
|
|
|
|
while (nsgld > SEG_CHUNK_SIZE) {
|
|
if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
|
|
trace_pci_nvme_err_addr_read(addr);
|
|
status = NVME_DATA_TRAS_ERROR;
|
|
goto unmap;
|
|
}
|
|
|
|
status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
|
|
&len, cmd);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
nsgld -= SEG_CHUNK_SIZE;
|
|
addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
|
|
}
|
|
|
|
ret = nvme_addr_read(n, addr, segment, nsgld *
|
|
sizeof(NvmeSglDescriptor));
|
|
if (ret) {
|
|
trace_pci_nvme_err_addr_read(addr);
|
|
status = NVME_DATA_TRAS_ERROR;
|
|
goto unmap;
|
|
}
|
|
|
|
last_sgld = &segment[nsgld - 1];
|
|
|
|
/*
|
|
* If the segment ends with a Data Block or Bit Bucket Descriptor Type,
|
|
* then we are done.
|
|
*/
|
|
switch (NVME_SGL_TYPE(last_sgld->type)) {
|
|
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
|
|
case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
|
|
status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
goto out;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the last descriptor was not a Data Block or Bit Bucket, then the
|
|
* current segment must not be a Last Segment.
|
|
*/
|
|
if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
|
|
status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
|
|
goto unmap;
|
|
}
|
|
|
|
sgld = last_sgld;
|
|
addr = le64_to_cpu(sgld->addr);
|
|
|
|
/*
|
|
* Do not map the last descriptor; it will be a Segment or Last Segment
|
|
* descriptor and is handled by the next iteration.
|
|
*/
|
|
status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
}
|
|
|
|
out:
|
|
/* if there is any residual left in len, the SGL was too short */
|
|
if (len) {
|
|
status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
|
|
goto unmap;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
|
|
unmap:
|
|
nvme_sg_unmap(sg);
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
|
|
NvmeCmd *cmd)
|
|
{
|
|
uint64_t prp1, prp2;
|
|
|
|
switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
|
|
case NVME_PSDT_PRP:
|
|
prp1 = le64_to_cpu(cmd->dptr.prp1);
|
|
prp2 = le64_to_cpu(cmd->dptr.prp2);
|
|
|
|
return nvme_map_prp(n, sg, prp1, prp2, len);
|
|
case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
|
|
case NVME_PSDT_SGL_MPTR_SGL:
|
|
return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
|
|
default:
|
|
return NVME_INVALID_FIELD;
|
|
}
|
|
}
|
|
|
|
typedef enum NvmeTxDirection {
|
|
NVME_TX_DIRECTION_TO_DEVICE = 0,
|
|
NVME_TX_DIRECTION_FROM_DEVICE = 1,
|
|
} NvmeTxDirection;
|
|
|
|
static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len,
|
|
NvmeTxDirection dir)
|
|
{
|
|
assert(sg->flags & NVME_SG_ALLOC);
|
|
|
|
if (sg->flags & NVME_SG_DMA) {
|
|
uint64_t residual;
|
|
|
|
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
|
|
residual = dma_buf_write(ptr, len, &sg->qsg);
|
|
} else {
|
|
residual = dma_buf_read(ptr, len, &sg->qsg);
|
|
}
|
|
|
|
if (unlikely(residual)) {
|
|
trace_pci_nvme_err_invalid_dma();
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
} else {
|
|
size_t bytes;
|
|
|
|
if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
|
|
bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
|
|
} else {
|
|
bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
|
|
}
|
|
|
|
if (unlikely(bytes != len)) {
|
|
trace_pci_nvme_err_invalid_dma();
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
|
|
NvmeRequest *req)
|
|
{
|
|
uint16_t status;
|
|
|
|
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
|
|
}
|
|
|
|
static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
|
|
NvmeRequest *req)
|
|
{
|
|
uint16_t status;
|
|
|
|
status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
|
|
}
|
|
|
|
static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
|
|
BlockCompletionFunc *cb, NvmeRequest *req)
|
|
{
|
|
assert(req->sg.flags & NVME_SG_ALLOC);
|
|
|
|
if (req->sg.flags & NVME_SG_DMA) {
|
|
req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
|
|
cb, req);
|
|
} else {
|
|
req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
|
|
}
|
|
}
|
|
|
|
static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
|
|
BlockCompletionFunc *cb, NvmeRequest *req)
|
|
{
|
|
assert(req->sg.flags & NVME_SG_ALLOC);
|
|
|
|
if (req->sg.flags & NVME_SG_DMA) {
|
|
req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
|
|
cb, req);
|
|
} else {
|
|
req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
|
|
}
|
|
}
|
|
|
|
static void nvme_post_cqes(void *opaque)
|
|
{
|
|
NvmeCQueue *cq = opaque;
|
|
NvmeCtrl *n = cq->ctrl;
|
|
NvmeRequest *req, *next;
|
|
int ret;
|
|
|
|
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
|
|
NvmeSQueue *sq;
|
|
hwaddr addr;
|
|
|
|
if (nvme_cq_full(cq)) {
|
|
break;
|
|
}
|
|
|
|
sq = req->sq;
|
|
req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
|
|
req->cqe.sq_id = cpu_to_le16(sq->sqid);
|
|
req->cqe.sq_head = cpu_to_le16(sq->head);
|
|
addr = cq->dma_addr + cq->tail * n->cqe_size;
|
|
ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
|
|
sizeof(req->cqe));
|
|
if (ret) {
|
|
trace_pci_nvme_err_addr_write(addr);
|
|
trace_pci_nvme_err_cfs();
|
|
n->bar.csts = NVME_CSTS_FAILED;
|
|
break;
|
|
}
|
|
QTAILQ_REMOVE(&cq->req_list, req, entry);
|
|
nvme_inc_cq_tail(cq);
|
|
nvme_sg_unmap(&req->sg);
|
|
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
|
|
}
|
|
if (cq->tail != cq->head) {
|
|
nvme_irq_assert(n, cq);
|
|
}
|
|
}
|
|
|
|
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
|
|
{
|
|
assert(cq->cqid == req->sq->cqid);
|
|
trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
|
|
req->status);
|
|
|
|
if (req->status) {
|
|
trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
|
|
req->status, req->cmd.opcode);
|
|
}
|
|
|
|
QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
|
|
QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
|
|
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
|
|
static void nvme_process_aers(void *opaque)
|
|
{
|
|
NvmeCtrl *n = opaque;
|
|
NvmeAsyncEvent *event, *next;
|
|
|
|
trace_pci_nvme_process_aers(n->aer_queued);
|
|
|
|
QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
|
|
NvmeRequest *req;
|
|
NvmeAerResult *result;
|
|
|
|
/* can't post cqe if there is nothing to complete */
|
|
if (!n->outstanding_aers) {
|
|
trace_pci_nvme_no_outstanding_aers();
|
|
break;
|
|
}
|
|
|
|
/* ignore if masked (cqe posted, but event not cleared) */
|
|
if (n->aer_mask & (1 << event->result.event_type)) {
|
|
trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
|
|
continue;
|
|
}
|
|
|
|
QTAILQ_REMOVE(&n->aer_queue, event, entry);
|
|
n->aer_queued--;
|
|
|
|
n->aer_mask |= 1 << event->result.event_type;
|
|
n->outstanding_aers--;
|
|
|
|
req = n->aer_reqs[n->outstanding_aers];
|
|
|
|
result = (NvmeAerResult *) &req->cqe.result;
|
|
result->event_type = event->result.event_type;
|
|
result->event_info = event->result.event_info;
|
|
result->log_page = event->result.log_page;
|
|
g_free(event);
|
|
|
|
trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
|
|
result->log_page);
|
|
|
|
nvme_enqueue_req_completion(&n->admin_cq, req);
|
|
}
|
|
}
|
|
|
|
static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
|
|
uint8_t event_info, uint8_t log_page)
|
|
{
|
|
NvmeAsyncEvent *event;
|
|
|
|
trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
|
|
|
|
if (n->aer_queued == n->params.aer_max_queued) {
|
|
trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
|
|
return;
|
|
}
|
|
|
|
event = g_new(NvmeAsyncEvent, 1);
|
|
event->result = (NvmeAerResult) {
|
|
.event_type = event_type,
|
|
.event_info = event_info,
|
|
.log_page = log_page,
|
|
};
|
|
|
|
QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
|
|
n->aer_queued++;
|
|
|
|
nvme_process_aers(n);
|
|
}
|
|
|
|
static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
|
|
{
|
|
uint8_t aer_info;
|
|
|
|
/* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
|
|
if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
|
|
return;
|
|
}
|
|
|
|
switch (event) {
|
|
case NVME_SMART_SPARE:
|
|
aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
|
|
break;
|
|
case NVME_SMART_TEMPERATURE:
|
|
aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
|
|
break;
|
|
case NVME_SMART_RELIABILITY:
|
|
case NVME_SMART_MEDIA_READ_ONLY:
|
|
case NVME_SMART_FAILED_VOLATILE_MEDIA:
|
|
case NVME_SMART_PMR_UNRELIABLE:
|
|
aer_info = NVME_AER_INFO_SMART_RELIABILITY;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
|
|
}
|
|
|
|
static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
|
|
{
|
|
n->aer_mask &= ~(1 << event_type);
|
|
if (!QTAILQ_EMPTY(&n->aer_queue)) {
|
|
nvme_process_aers(n);
|
|
}
|
|
}
|
|
|
|
static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
|
|
{
|
|
uint8_t mdts = n->params.mdts;
|
|
|
|
if (mdts && len > n->page_size << mdts) {
|
|
trace_pci_nvme_err_mdts(len);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
|
|
uint32_t nlb)
|
|
{
|
|
uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
|
|
|
|
if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
|
|
return NVME_LBA_RANGE | NVME_DNR;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
|
|
uint32_t nlb)
|
|
{
|
|
BlockDriverState *bs = blk_bs(ns->blkconf.blk);
|
|
|
|
int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
|
|
int64_t offset = nvme_l2b(ns, slba);
|
|
bool zeroed;
|
|
int ret;
|
|
|
|
Error *local_err = NULL;
|
|
|
|
/*
|
|
* `pnum` holds the number of bytes after offset that shares the same
|
|
* allocation status as the byte at offset. If `pnum` is different from
|
|
* `bytes`, we should check the allocation status of the next range and
|
|
* continue this until all bytes have been checked.
|
|
*/
|
|
do {
|
|
bytes -= pnum;
|
|
|
|
ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
|
|
if (ret < 0) {
|
|
error_setg_errno(&local_err, -ret, "unable to get block status");
|
|
error_report_err(local_err);
|
|
|
|
return NVME_INTERNAL_DEV_ERROR;
|
|
}
|
|
|
|
zeroed = !!(ret & BDRV_BLOCK_ZERO);
|
|
|
|
trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed);
|
|
|
|
if (zeroed) {
|
|
return NVME_DULB;
|
|
}
|
|
|
|
offset += pnum;
|
|
} while (pnum != bytes);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_aio_err(NvmeRequest *req, int ret)
|
|
{
|
|
uint16_t status = NVME_SUCCESS;
|
|
Error *local_err = NULL;
|
|
|
|
switch (req->cmd.opcode) {
|
|
case NVME_CMD_READ:
|
|
status = NVME_UNRECOVERED_READ;
|
|
break;
|
|
case NVME_CMD_FLUSH:
|
|
case NVME_CMD_WRITE:
|
|
case NVME_CMD_WRITE_ZEROES:
|
|
case NVME_CMD_ZONE_APPEND:
|
|
status = NVME_WRITE_FAULT;
|
|
break;
|
|
default:
|
|
status = NVME_INTERNAL_DEV_ERROR;
|
|
break;
|
|
}
|
|
|
|
trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
|
|
|
|
error_setg_errno(&local_err, -ret, "aio failed");
|
|
error_report_err(local_err);
|
|
|
|
/*
|
|
* Set the command status code to the first encountered error but allow a
|
|
* subsequent Internal Device Error to trump it.
|
|
*/
|
|
if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
|
|
return;
|
|
}
|
|
|
|
req->status = status;
|
|
}
|
|
|
|
static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
|
|
{
|
|
return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
|
|
slba / ns->zone_size;
|
|
}
|
|
|
|
static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
|
|
{
|
|
uint32_t zone_idx = nvme_zone_idx(ns, slba);
|
|
|
|
assert(zone_idx < ns->num_zones);
|
|
return &ns->zone_array[zone_idx];
|
|
}
|
|
|
|
static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
|
|
{
|
|
uint64_t zslba = zone->d.zslba;
|
|
|
|
switch (nvme_get_zone_state(zone)) {
|
|
case NVME_ZONE_STATE_EMPTY:
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
return NVME_SUCCESS;
|
|
case NVME_ZONE_STATE_FULL:
|
|
trace_pci_nvme_err_zone_is_full(zslba);
|
|
return NVME_ZONE_FULL;
|
|
case NVME_ZONE_STATE_OFFLINE:
|
|
trace_pci_nvme_err_zone_is_offline(zslba);
|
|
return NVME_ZONE_OFFLINE;
|
|
case NVME_ZONE_STATE_READ_ONLY:
|
|
trace_pci_nvme_err_zone_is_read_only(zslba);
|
|
return NVME_ZONE_READ_ONLY;
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
return NVME_INTERNAL_DEV_ERROR;
|
|
}
|
|
|
|
static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
|
|
uint64_t slba, uint32_t nlb)
|
|
{
|
|
uint64_t zcap = nvme_zone_wr_boundary(zone);
|
|
uint16_t status;
|
|
|
|
status = nvme_check_zone_state_for_write(zone);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
if (unlikely(slba != zone->w_ptr)) {
|
|
trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr);
|
|
return NVME_ZONE_INVALID_WRITE;
|
|
}
|
|
|
|
if (unlikely((slba + nlb) > zcap)) {
|
|
trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
|
|
return NVME_ZONE_BOUNDARY_ERROR;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
|
|
{
|
|
switch (nvme_get_zone_state(zone)) {
|
|
case NVME_ZONE_STATE_EMPTY:
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_FULL:
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
case NVME_ZONE_STATE_READ_ONLY:
|
|
return NVME_SUCCESS;
|
|
case NVME_ZONE_STATE_OFFLINE:
|
|
trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
|
|
return NVME_ZONE_OFFLINE;
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
return NVME_INTERNAL_DEV_ERROR;
|
|
}
|
|
|
|
static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
|
|
uint32_t nlb)
|
|
{
|
|
NvmeZone *zone = nvme_get_zone_by_slba(ns, slba);
|
|
uint64_t bndry = nvme_zone_rd_boundary(ns, zone);
|
|
uint64_t end = slba + nlb;
|
|
uint16_t status;
|
|
|
|
status = nvme_check_zone_state_for_read(zone);
|
|
if (status) {
|
|
;
|
|
} else if (unlikely(end > bndry)) {
|
|
if (!ns->params.cross_zone_read) {
|
|
status = NVME_ZONE_BOUNDARY_ERROR;
|
|
} else {
|
|
/*
|
|
* Read across zone boundary - check that all subsequent
|
|
* zones that are being read have an appropriate state.
|
|
*/
|
|
do {
|
|
zone++;
|
|
status = nvme_check_zone_state_for_read(zone);
|
|
if (status) {
|
|
break;
|
|
}
|
|
} while (end > nvme_zone_rd_boundary(ns, zone));
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
|
|
{
|
|
switch (nvme_get_zone_state(zone)) {
|
|
case NVME_ZONE_STATE_FULL:
|
|
return NVME_SUCCESS;
|
|
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
nvme_aor_dec_open(ns);
|
|
/* fallthrough */
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
nvme_aor_dec_active(ns);
|
|
/* fallthrough */
|
|
case NVME_ZONE_STATE_EMPTY:
|
|
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
|
|
return NVME_SUCCESS;
|
|
|
|
default:
|
|
return NVME_ZONE_INVAL_TRANSITION;
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
|
|
{
|
|
switch (nvme_get_zone_state(zone)) {
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
nvme_aor_dec_open(ns);
|
|
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
|
|
/* fall through */
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
return NVME_SUCCESS;
|
|
|
|
default:
|
|
return NVME_ZONE_INVAL_TRANSITION;
|
|
}
|
|
}
|
|
|
|
static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
|
|
{
|
|
NvmeZone *zone;
|
|
|
|
if (ns->params.max_open_zones &&
|
|
ns->nr_open_zones == ns->params.max_open_zones) {
|
|
zone = QTAILQ_FIRST(&ns->imp_open_zones);
|
|
if (zone) {
|
|
/*
|
|
* Automatically close this implicitly open zone.
|
|
*/
|
|
QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
|
|
nvme_zrm_close(ns, zone);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint16_t __nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone,
|
|
bool implicit)
|
|
{
|
|
int act = 0;
|
|
uint16_t status;
|
|
|
|
switch (nvme_get_zone_state(zone)) {
|
|
case NVME_ZONE_STATE_EMPTY:
|
|
act = 1;
|
|
|
|
/* fallthrough */
|
|
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
nvme_zrm_auto_transition_zone(ns);
|
|
status = nvme_aor_check(ns, act, 1);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
if (act) {
|
|
nvme_aor_inc_active(ns);
|
|
}
|
|
|
|
nvme_aor_inc_open(ns);
|
|
|
|
if (implicit) {
|
|
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
/* fallthrough */
|
|
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
if (implicit) {
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
|
|
|
|
/* fallthrough */
|
|
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
return NVME_SUCCESS;
|
|
|
|
default:
|
|
return NVME_ZONE_INVAL_TRANSITION;
|
|
}
|
|
}
|
|
|
|
static inline uint16_t nvme_zrm_auto(NvmeNamespace *ns, NvmeZone *zone)
|
|
{
|
|
return __nvme_zrm_open(ns, zone, true);
|
|
}
|
|
|
|
static inline uint16_t nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone)
|
|
{
|
|
return __nvme_zrm_open(ns, zone, false);
|
|
}
|
|
|
|
static void __nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
|
|
uint32_t nlb)
|
|
{
|
|
zone->d.wp += nlb;
|
|
|
|
if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
|
|
nvme_zrm_finish(ns, zone);
|
|
}
|
|
}
|
|
|
|
static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
|
|
NvmeZone *zone;
|
|
uint64_t slba;
|
|
uint32_t nlb;
|
|
|
|
slba = le64_to_cpu(rw->slba);
|
|
nlb = le16_to_cpu(rw->nlb) + 1;
|
|
zone = nvme_get_zone_by_slba(ns, slba);
|
|
|
|
__nvme_advance_zone_wp(ns, zone, nlb);
|
|
}
|
|
|
|
static inline bool nvme_is_write(NvmeRequest *req)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
|
|
|
|
return rw->opcode == NVME_CMD_WRITE ||
|
|
rw->opcode == NVME_CMD_ZONE_APPEND ||
|
|
rw->opcode == NVME_CMD_WRITE_ZEROES;
|
|
}
|
|
|
|
static void nvme_rw_cb(void *opaque, int ret)
|
|
{
|
|
NvmeRequest *req = opaque;
|
|
NvmeNamespace *ns = req->ns;
|
|
|
|
BlockBackend *blk = ns->blkconf.blk;
|
|
BlockAcctCookie *acct = &req->acct;
|
|
BlockAcctStats *stats = blk_get_stats(blk);
|
|
|
|
trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
|
|
|
|
if (ns->params.zoned && nvme_is_write(req)) {
|
|
nvme_finalize_zoned_write(ns, req);
|
|
}
|
|
|
|
if (!ret) {
|
|
block_acct_done(stats, acct);
|
|
} else {
|
|
block_acct_failed(stats, acct);
|
|
nvme_aio_err(req, ret);
|
|
}
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
}
|
|
|
|
struct nvme_aio_flush_ctx {
|
|
NvmeRequest *req;
|
|
NvmeNamespace *ns;
|
|
BlockAcctCookie acct;
|
|
};
|
|
|
|
static void nvme_aio_flush_cb(void *opaque, int ret)
|
|
{
|
|
struct nvme_aio_flush_ctx *ctx = opaque;
|
|
NvmeRequest *req = ctx->req;
|
|
uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
|
|
|
|
BlockBackend *blk = ctx->ns->blkconf.blk;
|
|
BlockAcctCookie *acct = &ctx->acct;
|
|
BlockAcctStats *stats = blk_get_stats(blk);
|
|
|
|
trace_pci_nvme_aio_flush_cb(nvme_cid(req), blk_name(blk));
|
|
|
|
if (!ret) {
|
|
block_acct_done(stats, acct);
|
|
} else {
|
|
block_acct_failed(stats, acct);
|
|
nvme_aio_err(req, ret);
|
|
}
|
|
|
|
(*num_flushes)--;
|
|
g_free(ctx);
|
|
|
|
if (*num_flushes) {
|
|
return;
|
|
}
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
}
|
|
|
|
static void nvme_aio_discard_cb(void *opaque, int ret)
|
|
{
|
|
NvmeRequest *req = opaque;
|
|
uintptr_t *discards = (uintptr_t *)&req->opaque;
|
|
|
|
trace_pci_nvme_aio_discard_cb(nvme_cid(req));
|
|
|
|
if (ret) {
|
|
nvme_aio_err(req, ret);
|
|
}
|
|
|
|
(*discards)--;
|
|
|
|
if (*discards) {
|
|
return;
|
|
}
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
}
|
|
|
|
struct nvme_zone_reset_ctx {
|
|
NvmeRequest *req;
|
|
NvmeZone *zone;
|
|
};
|
|
|
|
static void nvme_aio_zone_reset_cb(void *opaque, int ret)
|
|
{
|
|
struct nvme_zone_reset_ctx *ctx = opaque;
|
|
NvmeRequest *req = ctx->req;
|
|
NvmeNamespace *ns = req->ns;
|
|
NvmeZone *zone = ctx->zone;
|
|
uintptr_t *resets = (uintptr_t *)&req->opaque;
|
|
|
|
g_free(ctx);
|
|
|
|
trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba);
|
|
|
|
if (!ret) {
|
|
switch (nvme_get_zone_state(zone)) {
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
nvme_aor_dec_open(ns);
|
|
/* fall through */
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
nvme_aor_dec_active(ns);
|
|
/* fall through */
|
|
case NVME_ZONE_STATE_FULL:
|
|
zone->w_ptr = zone->d.zslba;
|
|
zone->d.wp = zone->w_ptr;
|
|
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
|
|
/* fall through */
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
nvme_aio_err(req, ret);
|
|
}
|
|
|
|
(*resets)--;
|
|
|
|
if (*resets) {
|
|
return;
|
|
}
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
}
|
|
|
|
struct nvme_copy_ctx {
|
|
int copies;
|
|
uint8_t *bounce;
|
|
uint32_t nlb;
|
|
};
|
|
|
|
struct nvme_copy_in_ctx {
|
|
NvmeRequest *req;
|
|
QEMUIOVector iov;
|
|
};
|
|
|
|
static void nvme_copy_cb(void *opaque, int ret)
|
|
{
|
|
NvmeRequest *req = opaque;
|
|
NvmeNamespace *ns = req->ns;
|
|
struct nvme_copy_ctx *ctx = req->opaque;
|
|
|
|
trace_pci_nvme_copy_cb(nvme_cid(req));
|
|
|
|
if (ns->params.zoned) {
|
|
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
|
|
uint64_t sdlba = le64_to_cpu(copy->sdlba);
|
|
NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
|
|
|
|
__nvme_advance_zone_wp(ns, zone, ctx->nlb);
|
|
}
|
|
|
|
if (!ret) {
|
|
block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
|
|
} else {
|
|
block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
|
|
nvme_aio_err(req, ret);
|
|
}
|
|
|
|
g_free(ctx->bounce);
|
|
g_free(ctx);
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
}
|
|
|
|
static void nvme_copy_in_complete(NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns = req->ns;
|
|
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
|
|
struct nvme_copy_ctx *ctx = req->opaque;
|
|
uint64_t sdlba = le64_to_cpu(copy->sdlba);
|
|
uint16_t status;
|
|
|
|
trace_pci_nvme_copy_in_complete(nvme_cid(req));
|
|
|
|
block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
|
|
|
|
status = nvme_check_bounds(ns, sdlba, ctx->nlb);
|
|
if (status) {
|
|
trace_pci_nvme_err_invalid_lba_range(sdlba, ctx->nlb, ns->id_ns.nsze);
|
|
goto invalid;
|
|
}
|
|
|
|
if (ns->params.zoned) {
|
|
NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba);
|
|
|
|
status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
|
|
status = nvme_zrm_auto(ns, zone);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
|
|
zone->w_ptr += ctx->nlb;
|
|
}
|
|
|
|
qemu_iovec_init(&req->sg.iov, 1);
|
|
qemu_iovec_add(&req->sg.iov, ctx->bounce, nvme_l2b(ns, ctx->nlb));
|
|
|
|
block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
|
|
BLOCK_ACCT_WRITE);
|
|
|
|
req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba),
|
|
&req->sg.iov, 0, nvme_copy_cb, req);
|
|
|
|
return;
|
|
|
|
invalid:
|
|
req->status = status;
|
|
|
|
g_free(ctx->bounce);
|
|
g_free(ctx);
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
}
|
|
|
|
static void nvme_aio_copy_in_cb(void *opaque, int ret)
|
|
{
|
|
struct nvme_copy_in_ctx *in_ctx = opaque;
|
|
NvmeRequest *req = in_ctx->req;
|
|
NvmeNamespace *ns = req->ns;
|
|
struct nvme_copy_ctx *ctx = req->opaque;
|
|
|
|
qemu_iovec_destroy(&in_ctx->iov);
|
|
g_free(in_ctx);
|
|
|
|
trace_pci_nvme_aio_copy_in_cb(nvme_cid(req));
|
|
|
|
if (ret) {
|
|
nvme_aio_err(req, ret);
|
|
}
|
|
|
|
ctx->copies--;
|
|
|
|
if (ctx->copies) {
|
|
return;
|
|
}
|
|
|
|
if (req->status) {
|
|
block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
|
|
|
|
g_free(ctx->bounce);
|
|
g_free(ctx);
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
|
|
return;
|
|
}
|
|
|
|
nvme_copy_in_complete(req);
|
|
}
|
|
|
|
struct nvme_compare_ctx {
|
|
QEMUIOVector iov;
|
|
uint8_t *bounce;
|
|
};
|
|
|
|
static void nvme_compare_cb(void *opaque, int ret)
|
|
{
|
|
NvmeRequest *req = opaque;
|
|
NvmeNamespace *ns = req->ns;
|
|
struct nvme_compare_ctx *ctx = req->opaque;
|
|
g_autofree uint8_t *buf = NULL;
|
|
uint16_t status;
|
|
|
|
trace_pci_nvme_compare_cb(nvme_cid(req));
|
|
|
|
if (!ret) {
|
|
block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct);
|
|
} else {
|
|
block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct);
|
|
nvme_aio_err(req, ret);
|
|
goto out;
|
|
}
|
|
|
|
buf = g_malloc(ctx->iov.size);
|
|
|
|
status = nvme_h2c(nvme_ctrl(req), buf, ctx->iov.size, req);
|
|
if (status) {
|
|
req->status = status;
|
|
goto out;
|
|
}
|
|
|
|
if (memcmp(buf, ctx->bounce, ctx->iov.size)) {
|
|
req->status = NVME_CMP_FAILURE;
|
|
}
|
|
|
|
out:
|
|
qemu_iovec_destroy(&ctx->iov);
|
|
g_free(ctx->bounce);
|
|
g_free(ctx);
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
}
|
|
|
|
static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns = req->ns;
|
|
NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
|
|
|
|
uint32_t attr = le32_to_cpu(dsm->attributes);
|
|
uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
|
|
|
|
uint16_t status = NVME_SUCCESS;
|
|
|
|
trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr);
|
|
|
|
if (attr & NVME_DSMGMT_AD) {
|
|
int64_t offset;
|
|
size_t len;
|
|
NvmeDsmRange range[nr];
|
|
uintptr_t *discards = (uintptr_t *)&req->opaque;
|
|
|
|
status = nvme_h2c(n, (uint8_t *)range, sizeof(range), req);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* AIO callbacks may be called immediately, so initialize discards to 1
|
|
* to make sure the the callback does not complete the request before
|
|
* all discards have been issued.
|
|
*/
|
|
*discards = 1;
|
|
|
|
for (int i = 0; i < nr; i++) {
|
|
uint64_t slba = le64_to_cpu(range[i].slba);
|
|
uint32_t nlb = le32_to_cpu(range[i].nlb);
|
|
|
|
if (nvme_check_bounds(ns, slba, nlb)) {
|
|
trace_pci_nvme_err_invalid_lba_range(slba, nlb,
|
|
ns->id_ns.nsze);
|
|
continue;
|
|
}
|
|
|
|
trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba,
|
|
nlb);
|
|
|
|
if (nlb > n->dmrsl) {
|
|
trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
|
|
}
|
|
|
|
offset = nvme_l2b(ns, slba);
|
|
len = nvme_l2b(ns, nlb);
|
|
|
|
while (len) {
|
|
size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len);
|
|
|
|
(*discards)++;
|
|
|
|
blk_aio_pdiscard(ns->blkconf.blk, offset, bytes,
|
|
nvme_aio_discard_cb, req);
|
|
|
|
offset += bytes;
|
|
len -= bytes;
|
|
}
|
|
}
|
|
|
|
/* account for the 1-initialization */
|
|
(*discards)--;
|
|
|
|
if (*discards) {
|
|
status = NVME_NO_COMPLETE;
|
|
} else {
|
|
status = req->status;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns = req->ns;
|
|
NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
|
|
g_autofree NvmeCopySourceRange *range = NULL;
|
|
|
|
uint16_t nr = copy->nr + 1;
|
|
uint8_t format = copy->control[0] & 0xf;
|
|
uint32_t nlb = 0;
|
|
|
|
uint8_t *bounce = NULL, *bouncep = NULL;
|
|
struct nvme_copy_ctx *ctx;
|
|
uint16_t status;
|
|
int i;
|
|
|
|
trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
|
|
|
|
if (!(n->id_ctrl.ocfs & (1 << format))) {
|
|
trace_pci_nvme_err_copy_invalid_format(format);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (nr > ns->id_ns.msrc + 1) {
|
|
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
|
|
}
|
|
|
|
range = g_new(NvmeCopySourceRange, nr);
|
|
|
|
status = nvme_h2c(n, (uint8_t *)range, nr * sizeof(NvmeCopySourceRange),
|
|
req);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
uint64_t slba = le64_to_cpu(range[i].slba);
|
|
uint32_t _nlb = le16_to_cpu(range[i].nlb) + 1;
|
|
|
|
if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) {
|
|
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
|
|
}
|
|
|
|
status = nvme_check_bounds(ns, slba, _nlb);
|
|
if (status) {
|
|
trace_pci_nvme_err_invalid_lba_range(slba, _nlb, ns->id_ns.nsze);
|
|
return status;
|
|
}
|
|
|
|
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
|
|
status = nvme_check_dulbe(ns, slba, _nlb);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
}
|
|
|
|
if (ns->params.zoned) {
|
|
status = nvme_check_zone_read(ns, slba, _nlb);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
}
|
|
|
|
nlb += _nlb;
|
|
}
|
|
|
|
if (nlb > le32_to_cpu(ns->id_ns.mcl)) {
|
|
return NVME_CMD_SIZE_LIMIT | NVME_DNR;
|
|
}
|
|
|
|
bounce = bouncep = g_malloc(nvme_l2b(ns, nlb));
|
|
|
|
block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0,
|
|
BLOCK_ACCT_READ);
|
|
|
|
ctx = g_new(struct nvme_copy_ctx, 1);
|
|
|
|
ctx->bounce = bounce;
|
|
ctx->nlb = nlb;
|
|
ctx->copies = 1;
|
|
|
|
req->opaque = ctx;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
uint64_t slba = le64_to_cpu(range[i].slba);
|
|
uint32_t nlb = le16_to_cpu(range[i].nlb) + 1;
|
|
|
|
size_t len = nvme_l2b(ns, nlb);
|
|
int64_t offset = nvme_l2b(ns, slba);
|
|
|
|
trace_pci_nvme_copy_source_range(slba, nlb);
|
|
|
|
struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1);
|
|
in_ctx->req = req;
|
|
|
|
qemu_iovec_init(&in_ctx->iov, 1);
|
|
qemu_iovec_add(&in_ctx->iov, bouncep, len);
|
|
|
|
ctx->copies++;
|
|
|
|
blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0,
|
|
nvme_aio_copy_in_cb, in_ctx);
|
|
|
|
bouncep += len;
|
|
}
|
|
|
|
/* account for the 1-initialization */
|
|
ctx->copies--;
|
|
|
|
if (!ctx->copies) {
|
|
nvme_copy_in_complete(req);
|
|
}
|
|
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
|
|
NvmeNamespace *ns = req->ns;
|
|
BlockBackend *blk = ns->blkconf.blk;
|
|
uint64_t slba = le64_to_cpu(rw->slba);
|
|
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
|
|
size_t len = nvme_l2b(ns, nlb);
|
|
int64_t offset = nvme_l2b(ns, slba);
|
|
uint8_t *bounce = NULL;
|
|
struct nvme_compare_ctx *ctx = NULL;
|
|
uint16_t status;
|
|
|
|
trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
|
|
|
|
status = nvme_check_mdts(n, len);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
status = nvme_check_bounds(ns, slba, nlb);
|
|
if (status) {
|
|
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
|
|
return status;
|
|
}
|
|
|
|
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
|
|
status = nvme_check_dulbe(ns, slba, nlb);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
}
|
|
|
|
bounce = g_malloc(len);
|
|
|
|
ctx = g_new(struct nvme_compare_ctx, 1);
|
|
ctx->bounce = bounce;
|
|
|
|
req->opaque = ctx;
|
|
|
|
qemu_iovec_init(&ctx->iov, 1);
|
|
qemu_iovec_add(&ctx->iov, bounce, len);
|
|
|
|
block_acct_start(blk_get_stats(blk), &req->acct, len, BLOCK_ACCT_READ);
|
|
blk_aio_preadv(blk, offset, &ctx->iov, 0, nvme_compare_cb, req);
|
|
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
|
|
uintptr_t *num_flushes = (uintptr_t *)&req->opaque;
|
|
uint16_t status;
|
|
struct nvme_aio_flush_ctx *ctx;
|
|
NvmeNamespace *ns;
|
|
|
|
trace_pci_nvme_flush(nvme_cid(req), nsid);
|
|
|
|
if (nsid != NVME_NSID_BROADCAST) {
|
|
req->ns = nvme_ns(n, nsid);
|
|
if (unlikely(!req->ns)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
|
|
BLOCK_ACCT_FLUSH);
|
|
req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_rw_cb, req);
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
/* 1-initialize; see comment in nvme_dsm */
|
|
*num_flushes = 1;
|
|
|
|
for (int i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
ctx = g_new(struct nvme_aio_flush_ctx, 1);
|
|
ctx->req = req;
|
|
ctx->ns = ns;
|
|
|
|
(*num_flushes)++;
|
|
|
|
block_acct_start(blk_get_stats(ns->blkconf.blk), &ctx->acct, 0,
|
|
BLOCK_ACCT_FLUSH);
|
|
blk_aio_flush(ns->blkconf.blk, nvme_aio_flush_cb, ctx);
|
|
}
|
|
|
|
/* account for the 1-initialization */
|
|
(*num_flushes)--;
|
|
|
|
if (*num_flushes) {
|
|
status = NVME_NO_COMPLETE;
|
|
} else {
|
|
status = req->status;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
|
|
NvmeNamespace *ns = req->ns;
|
|
uint64_t slba = le64_to_cpu(rw->slba);
|
|
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
|
|
uint64_t data_size = nvme_l2b(ns, nlb);
|
|
uint64_t data_offset;
|
|
BlockBackend *blk = ns->blkconf.blk;
|
|
uint16_t status;
|
|
|
|
trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, data_size, slba);
|
|
|
|
status = nvme_check_mdts(n, data_size);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
|
|
status = nvme_check_bounds(ns, slba, nlb);
|
|
if (status) {
|
|
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
|
|
goto invalid;
|
|
}
|
|
|
|
if (ns->params.zoned) {
|
|
status = nvme_check_zone_read(ns, slba, nlb);
|
|
if (status) {
|
|
trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
|
|
goto invalid;
|
|
}
|
|
}
|
|
|
|
status = nvme_map_dptr(n, &req->sg, data_size, &req->cmd);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
|
|
if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
|
|
status = nvme_check_dulbe(ns, slba, nlb);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
}
|
|
|
|
data_offset = nvme_l2b(ns, slba);
|
|
|
|
block_acct_start(blk_get_stats(blk), &req->acct, data_size,
|
|
BLOCK_ACCT_READ);
|
|
nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
|
|
return NVME_NO_COMPLETE;
|
|
|
|
invalid:
|
|
block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
|
|
return status | NVME_DNR;
|
|
}
|
|
|
|
static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
|
|
bool wrz)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
|
|
NvmeNamespace *ns = req->ns;
|
|
uint64_t slba = le64_to_cpu(rw->slba);
|
|
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
|
|
uint64_t data_size = nvme_l2b(ns, nlb);
|
|
uint64_t data_offset;
|
|
NvmeZone *zone;
|
|
NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
|
|
BlockBackend *blk = ns->blkconf.blk;
|
|
uint16_t status;
|
|
|
|
trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
|
|
nvme_nsid(ns), nlb, data_size, slba);
|
|
|
|
if (!wrz) {
|
|
status = nvme_check_mdts(n, data_size);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
}
|
|
|
|
status = nvme_check_bounds(ns, slba, nlb);
|
|
if (status) {
|
|
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
|
|
goto invalid;
|
|
}
|
|
|
|
if (ns->params.zoned) {
|
|
zone = nvme_get_zone_by_slba(ns, slba);
|
|
|
|
if (append) {
|
|
if (unlikely(slba != zone->d.zslba)) {
|
|
trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
|
|
status = NVME_INVALID_FIELD;
|
|
goto invalid;
|
|
}
|
|
|
|
if (n->params.zasl &&
|
|
data_size > (uint64_t)n->page_size << n->params.zasl) {
|
|
trace_pci_nvme_err_zasl(data_size);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
slba = zone->w_ptr;
|
|
res->slba = cpu_to_le64(slba);
|
|
}
|
|
|
|
status = nvme_check_zone_write(ns, zone, slba, nlb);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
|
|
status = nvme_zrm_auto(ns, zone);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
|
|
zone->w_ptr += nlb;
|
|
}
|
|
|
|
data_offset = nvme_l2b(ns, slba);
|
|
|
|
if (!wrz) {
|
|
status = nvme_map_dptr(n, &req->sg, data_size, &req->cmd);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
|
|
block_acct_start(blk_get_stats(blk), &req->acct, data_size,
|
|
BLOCK_ACCT_WRITE);
|
|
nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
|
|
} else {
|
|
req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
|
|
BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
|
|
req);
|
|
}
|
|
return NVME_NO_COMPLETE;
|
|
|
|
invalid:
|
|
block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
|
|
return status | NVME_DNR;
|
|
}
|
|
|
|
static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
return nvme_do_write(n, req, false, false);
|
|
}
|
|
|
|
static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
return nvme_do_write(n, req, false, true);
|
|
}
|
|
|
|
static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
return nvme_do_write(n, req, true, false);
|
|
}
|
|
|
|
static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
|
|
uint64_t *slba, uint32_t *zone_idx)
|
|
{
|
|
uint32_t dw10 = le32_to_cpu(c->cdw10);
|
|
uint32_t dw11 = le32_to_cpu(c->cdw11);
|
|
|
|
if (!ns->params.zoned) {
|
|
trace_pci_nvme_err_invalid_opc(c->opcode);
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
|
|
*slba = ((uint64_t)dw11) << 32 | dw10;
|
|
if (unlikely(*slba >= ns->id_ns.nsze)) {
|
|
trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
|
|
*slba = 0;
|
|
return NVME_LBA_RANGE | NVME_DNR;
|
|
}
|
|
|
|
*zone_idx = nvme_zone_idx(ns, *slba);
|
|
assert(*zone_idx < ns->num_zones);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
|
|
NvmeRequest *);
|
|
|
|
enum NvmeZoneProcessingMask {
|
|
NVME_PROC_CURRENT_ZONE = 0,
|
|
NVME_PROC_OPENED_ZONES = 1 << 0,
|
|
NVME_PROC_CLOSED_ZONES = 1 << 1,
|
|
NVME_PROC_READ_ONLY_ZONES = 1 << 2,
|
|
NVME_PROC_FULL_ZONES = 1 << 3,
|
|
};
|
|
|
|
static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
|
|
NvmeZoneState state, NvmeRequest *req)
|
|
{
|
|
return nvme_zrm_open(ns, zone);
|
|
}
|
|
|
|
static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
|
|
NvmeZoneState state, NvmeRequest *req)
|
|
{
|
|
return nvme_zrm_close(ns, zone);
|
|
}
|
|
|
|
static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
|
|
NvmeZoneState state, NvmeRequest *req)
|
|
{
|
|
return nvme_zrm_finish(ns, zone);
|
|
}
|
|
|
|
static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone,
|
|
NvmeZoneState state, NvmeRequest *req)
|
|
{
|
|
uintptr_t *resets = (uintptr_t *)&req->opaque;
|
|
struct nvme_zone_reset_ctx *ctx;
|
|
|
|
switch (state) {
|
|
case NVME_ZONE_STATE_EMPTY:
|
|
return NVME_SUCCESS;
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
case NVME_ZONE_STATE_FULL:
|
|
break;
|
|
default:
|
|
return NVME_ZONE_INVAL_TRANSITION;
|
|
}
|
|
|
|
/*
|
|
* The zone reset aio callback needs to know the zone that is being reset
|
|
* in order to transition the zone on completion.
|
|
*/
|
|
ctx = g_new(struct nvme_zone_reset_ctx, 1);
|
|
ctx->req = req;
|
|
ctx->zone = zone;
|
|
|
|
(*resets)++;
|
|
|
|
blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba),
|
|
nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP,
|
|
nvme_aio_zone_reset_cb, ctx);
|
|
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
|
|
NvmeZoneState state, NvmeRequest *req)
|
|
{
|
|
switch (state) {
|
|
case NVME_ZONE_STATE_READ_ONLY:
|
|
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
|
|
/* fall through */
|
|
case NVME_ZONE_STATE_OFFLINE:
|
|
return NVME_SUCCESS;
|
|
default:
|
|
return NVME_ZONE_INVAL_TRANSITION;
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
|
|
{
|
|
uint16_t status;
|
|
uint8_t state = nvme_get_zone_state(zone);
|
|
|
|
if (state == NVME_ZONE_STATE_EMPTY) {
|
|
status = nvme_aor_check(ns, 1, 0);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
nvme_aor_inc_active(ns);
|
|
zone->d.za |= NVME_ZA_ZD_EXT_VALID;
|
|
nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
return NVME_ZONE_INVAL_TRANSITION;
|
|
}
|
|
|
|
static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
|
|
enum NvmeZoneProcessingMask proc_mask,
|
|
op_handler_t op_hndlr, NvmeRequest *req)
|
|
{
|
|
uint16_t status = NVME_SUCCESS;
|
|
NvmeZoneState zs = nvme_get_zone_state(zone);
|
|
bool proc_zone;
|
|
|
|
switch (zs) {
|
|
case NVME_ZONE_STATE_IMPLICITLY_OPEN:
|
|
case NVME_ZONE_STATE_EXPLICITLY_OPEN:
|
|
proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
|
|
break;
|
|
case NVME_ZONE_STATE_CLOSED:
|
|
proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
|
|
break;
|
|
case NVME_ZONE_STATE_READ_ONLY:
|
|
proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
|
|
break;
|
|
case NVME_ZONE_STATE_FULL:
|
|
proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
|
|
break;
|
|
default:
|
|
proc_zone = false;
|
|
}
|
|
|
|
if (proc_zone) {
|
|
status = op_hndlr(ns, zone, zs, req);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
|
|
enum NvmeZoneProcessingMask proc_mask,
|
|
op_handler_t op_hndlr, NvmeRequest *req)
|
|
{
|
|
NvmeZone *next;
|
|
uint16_t status = NVME_SUCCESS;
|
|
int i;
|
|
|
|
if (!proc_mask) {
|
|
status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
|
|
} else {
|
|
if (proc_mask & NVME_PROC_CLOSED_ZONES) {
|
|
QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
|
|
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
|
|
req);
|
|
if (status && status != NVME_NO_COMPLETE) {
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if (proc_mask & NVME_PROC_OPENED_ZONES) {
|
|
QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
|
|
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
|
|
req);
|
|
if (status && status != NVME_NO_COMPLETE) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
|
|
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
|
|
req);
|
|
if (status && status != NVME_NO_COMPLETE) {
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
if (proc_mask & NVME_PROC_FULL_ZONES) {
|
|
QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
|
|
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
|
|
req);
|
|
if (status && status != NVME_NO_COMPLETE) {
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
|
|
for (i = 0; i < ns->num_zones; i++, zone++) {
|
|
status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
|
|
req);
|
|
if (status && status != NVME_NO_COMPLETE) {
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
out:
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
|
|
NvmeNamespace *ns = req->ns;
|
|
NvmeZone *zone;
|
|
uintptr_t *resets;
|
|
uint8_t *zd_ext;
|
|
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
|
|
uint64_t slba = 0;
|
|
uint32_t zone_idx = 0;
|
|
uint16_t status;
|
|
uint8_t action;
|
|
bool all;
|
|
enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
|
|
|
|
action = dw13 & 0xff;
|
|
all = dw13 & 0x100;
|
|
|
|
req->status = NVME_SUCCESS;
|
|
|
|
if (!all) {
|
|
status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
}
|
|
|
|
zone = &ns->zone_array[zone_idx];
|
|
if (slba != zone->d.zslba) {
|
|
trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
switch (action) {
|
|
|
|
case NVME_ZONE_ACTION_OPEN:
|
|
if (all) {
|
|
proc_mask = NVME_PROC_CLOSED_ZONES;
|
|
}
|
|
trace_pci_nvme_open_zone(slba, zone_idx, all);
|
|
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
|
|
break;
|
|
|
|
case NVME_ZONE_ACTION_CLOSE:
|
|
if (all) {
|
|
proc_mask = NVME_PROC_OPENED_ZONES;
|
|
}
|
|
trace_pci_nvme_close_zone(slba, zone_idx, all);
|
|
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
|
|
break;
|
|
|
|
case NVME_ZONE_ACTION_FINISH:
|
|
if (all) {
|
|
proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
|
|
}
|
|
trace_pci_nvme_finish_zone(slba, zone_idx, all);
|
|
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
|
|
break;
|
|
|
|
case NVME_ZONE_ACTION_RESET:
|
|
resets = (uintptr_t *)&req->opaque;
|
|
|
|
if (all) {
|
|
proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES |
|
|
NVME_PROC_FULL_ZONES;
|
|
}
|
|
trace_pci_nvme_reset_zone(slba, zone_idx, all);
|
|
|
|
*resets = 1;
|
|
|
|
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req);
|
|
|
|
(*resets)--;
|
|
|
|
return *resets ? NVME_NO_COMPLETE : req->status;
|
|
|
|
case NVME_ZONE_ACTION_OFFLINE:
|
|
if (all) {
|
|
proc_mask = NVME_PROC_READ_ONLY_ZONES;
|
|
}
|
|
trace_pci_nvme_offline_zone(slba, zone_idx, all);
|
|
status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
|
|
break;
|
|
|
|
case NVME_ZONE_ACTION_SET_ZD_EXT:
|
|
trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
|
|
if (all || !ns->params.zd_extension_size) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
zd_ext = nvme_get_zd_extension(ns, zone_idx);
|
|
status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
|
|
if (status) {
|
|
trace_pci_nvme_err_zd_extension_map_error(zone_idx);
|
|
return status;
|
|
}
|
|
|
|
status = nvme_set_zd_ext(ns, zone);
|
|
if (status == NVME_SUCCESS) {
|
|
trace_pci_nvme_zd_extension_set(zone_idx);
|
|
return status;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
trace_pci_nvme_err_invalid_mgmt_action(action);
|
|
status = NVME_INVALID_FIELD;
|
|
}
|
|
|
|
if (status == NVME_ZONE_INVAL_TRANSITION) {
|
|
trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
|
|
zone->d.za);
|
|
}
|
|
if (status) {
|
|
status |= NVME_DNR;
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
|
|
{
|
|
NvmeZoneState zs = nvme_get_zone_state(zl);
|
|
|
|
switch (zafs) {
|
|
case NVME_ZONE_REPORT_ALL:
|
|
return true;
|
|
case NVME_ZONE_REPORT_EMPTY:
|
|
return zs == NVME_ZONE_STATE_EMPTY;
|
|
case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
|
|
return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
|
|
case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
|
|
return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
|
|
case NVME_ZONE_REPORT_CLOSED:
|
|
return zs == NVME_ZONE_STATE_CLOSED;
|
|
case NVME_ZONE_REPORT_FULL:
|
|
return zs == NVME_ZONE_STATE_FULL;
|
|
case NVME_ZONE_REPORT_READ_ONLY:
|
|
return zs == NVME_ZONE_STATE_READ_ONLY;
|
|
case NVME_ZONE_REPORT_OFFLINE:
|
|
return zs == NVME_ZONE_STATE_OFFLINE;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
|
|
NvmeNamespace *ns = req->ns;
|
|
/* cdw12 is zero-based number of dwords to return. Convert to bytes */
|
|
uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
|
|
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
|
|
uint32_t zone_idx, zra, zrasf, partial;
|
|
uint64_t max_zones, nr_zones = 0;
|
|
uint16_t status;
|
|
uint64_t slba, capacity = nvme_ns_nlbas(ns);
|
|
NvmeZoneDescr *z;
|
|
NvmeZone *zone;
|
|
NvmeZoneReportHeader *header;
|
|
void *buf, *buf_p;
|
|
size_t zone_entry_sz;
|
|
|
|
req->status = NVME_SUCCESS;
|
|
|
|
status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
zra = dw13 & 0xff;
|
|
if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
zrasf = (dw13 >> 8) & 0xff;
|
|
if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (data_size < sizeof(NvmeZoneReportHeader)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
status = nvme_check_mdts(n, data_size);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
partial = (dw13 >> 16) & 0x01;
|
|
|
|
zone_entry_sz = sizeof(NvmeZoneDescr);
|
|
if (zra == NVME_ZONE_REPORT_EXTENDED) {
|
|
zone_entry_sz += ns->params.zd_extension_size;
|
|
}
|
|
|
|
max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
|
|
buf = g_malloc0(data_size);
|
|
|
|
zone = &ns->zone_array[zone_idx];
|
|
for (; slba < capacity; slba += ns->zone_size) {
|
|
if (partial && nr_zones >= max_zones) {
|
|
break;
|
|
}
|
|
if (nvme_zone_matches_filter(zrasf, zone++)) {
|
|
nr_zones++;
|
|
}
|
|
}
|
|
header = (NvmeZoneReportHeader *)buf;
|
|
header->nr_zones = cpu_to_le64(nr_zones);
|
|
|
|
buf_p = buf + sizeof(NvmeZoneReportHeader);
|
|
for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
|
|
zone = &ns->zone_array[zone_idx];
|
|
if (nvme_zone_matches_filter(zrasf, zone)) {
|
|
z = (NvmeZoneDescr *)buf_p;
|
|
buf_p += sizeof(NvmeZoneDescr);
|
|
|
|
z->zt = zone->d.zt;
|
|
z->zs = zone->d.zs;
|
|
z->zcap = cpu_to_le64(zone->d.zcap);
|
|
z->zslba = cpu_to_le64(zone->d.zslba);
|
|
z->za = zone->d.za;
|
|
|
|
if (nvme_wp_is_valid(zone)) {
|
|
z->wp = cpu_to_le64(zone->d.wp);
|
|
} else {
|
|
z->wp = cpu_to_le64(~0ULL);
|
|
}
|
|
|
|
if (zra == NVME_ZONE_REPORT_EXTENDED) {
|
|
if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
|
|
memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
|
|
ns->params.zd_extension_size);
|
|
}
|
|
buf_p += ns->params.zd_extension_size;
|
|
}
|
|
|
|
max_zones--;
|
|
}
|
|
}
|
|
|
|
status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
|
|
|
|
g_free(buf);
|
|
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
|
|
|
|
trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
|
|
req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
|
|
|
|
if (!nvme_nsid_valid(n, nsid)) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
/*
|
|
* In the base NVM command set, Flush may apply to all namespaces
|
|
* (indicated by NSID being set to 0xFFFFFFFF). But if that feature is used
|
|
* along with TP 4056 (Namespace Types), it may be pretty screwed up.
|
|
*
|
|
* If NSID is indeed set to 0xFFFFFFFF, we simply cannot associate the
|
|
* opcode with a specific command since we cannot determine a unique I/O
|
|
* command set. Opcode 0x0 could have any other meaning than something
|
|
* equivalent to flushing and say it DOES have completely different
|
|
* semantics in some other command set - does an NSID of 0xFFFFFFFF then
|
|
* mean "for all namespaces, apply whatever command set specific command
|
|
* that uses the 0x0 opcode?" Or does it mean "for all namespaces, apply
|
|
* whatever command that uses the 0x0 opcode if, and only if, it allows
|
|
* NSID to be 0xFFFFFFFF"?
|
|
*
|
|
* Anyway (and luckily), for now, we do not care about this since the
|
|
* device only supports namespace types that includes the NVM Flush command
|
|
* (NVM and Zoned), so always do an NVM Flush.
|
|
*/
|
|
if (req->cmd.opcode == NVME_CMD_FLUSH) {
|
|
return nvme_flush(n, req);
|
|
}
|
|
|
|
req->ns = nvme_ns(n, nsid);
|
|
if (unlikely(!req->ns)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (!(req->ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
|
|
trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
|
|
switch (req->cmd.opcode) {
|
|
case NVME_CMD_WRITE_ZEROES:
|
|
return nvme_write_zeroes(n, req);
|
|
case NVME_CMD_ZONE_APPEND:
|
|
return nvme_zone_append(n, req);
|
|
case NVME_CMD_WRITE:
|
|
return nvme_write(n, req);
|
|
case NVME_CMD_READ:
|
|
return nvme_read(n, req);
|
|
case NVME_CMD_COMPARE:
|
|
return nvme_compare(n, req);
|
|
case NVME_CMD_DSM:
|
|
return nvme_dsm(n, req);
|
|
case NVME_CMD_COPY:
|
|
return nvme_copy(n, req);
|
|
case NVME_CMD_ZONE_MGMT_SEND:
|
|
return nvme_zone_mgmt_send(n, req);
|
|
case NVME_CMD_ZONE_MGMT_RECV:
|
|
return nvme_zone_mgmt_recv(n, req);
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
|
|
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
|
|
{
|
|
n->sq[sq->sqid] = NULL;
|
|
timer_free(sq->timer);
|
|
g_free(sq->io_req);
|
|
if (sq->sqid) {
|
|
g_free(sq);
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
|
|
NvmeRequest *r, *next;
|
|
NvmeSQueue *sq;
|
|
NvmeCQueue *cq;
|
|
uint16_t qid = le16_to_cpu(c->qid);
|
|
|
|
if (unlikely(!qid || nvme_check_sqid(n, qid))) {
|
|
trace_pci_nvme_err_invalid_del_sq(qid);
|
|
return NVME_INVALID_QID | NVME_DNR;
|
|
}
|
|
|
|
trace_pci_nvme_del_sq(qid);
|
|
|
|
sq = n->sq[qid];
|
|
while (!QTAILQ_EMPTY(&sq->out_req_list)) {
|
|
r = QTAILQ_FIRST(&sq->out_req_list);
|
|
assert(r->aiocb);
|
|
blk_aio_cancel(r->aiocb);
|
|
}
|
|
if (!nvme_check_cqid(n, sq->cqid)) {
|
|
cq = n->cq[sq->cqid];
|
|
QTAILQ_REMOVE(&cq->sq_list, sq, entry);
|
|
|
|
nvme_post_cqes(cq);
|
|
QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
|
|
if (r->sq == sq) {
|
|
QTAILQ_REMOVE(&cq->req_list, r, entry);
|
|
QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
nvme_free_sq(sq, n);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
|
|
uint16_t sqid, uint16_t cqid, uint16_t size)
|
|
{
|
|
int i;
|
|
NvmeCQueue *cq;
|
|
|
|
sq->ctrl = n;
|
|
sq->dma_addr = dma_addr;
|
|
sq->sqid = sqid;
|
|
sq->size = size;
|
|
sq->cqid = cqid;
|
|
sq->head = sq->tail = 0;
|
|
sq->io_req = g_new0(NvmeRequest, sq->size);
|
|
|
|
QTAILQ_INIT(&sq->req_list);
|
|
QTAILQ_INIT(&sq->out_req_list);
|
|
for (i = 0; i < sq->size; i++) {
|
|
sq->io_req[i].sq = sq;
|
|
QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
|
|
}
|
|
sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
|
|
|
|
assert(n->cq[cqid]);
|
|
cq = n->cq[cqid];
|
|
QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
|
|
n->sq[sqid] = sq;
|
|
}
|
|
|
|
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeSQueue *sq;
|
|
NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
|
|
|
|
uint16_t cqid = le16_to_cpu(c->cqid);
|
|
uint16_t sqid = le16_to_cpu(c->sqid);
|
|
uint16_t qsize = le16_to_cpu(c->qsize);
|
|
uint16_t qflags = le16_to_cpu(c->sq_flags);
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
|
|
trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
|
|
|
|
if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
|
|
trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
|
|
return NVME_INVALID_CQID | NVME_DNR;
|
|
}
|
|
if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
|
|
n->sq[sqid] != NULL)) {
|
|
trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
|
|
return NVME_INVALID_QID | NVME_DNR;
|
|
}
|
|
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
|
|
trace_pci_nvme_err_invalid_create_sq_size(qsize);
|
|
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
|
|
}
|
|
if (unlikely(prp1 & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_create_sq_addr(prp1);
|
|
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
}
|
|
if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
|
|
trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
sq = g_malloc0(sizeof(*sq));
|
|
nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
struct nvme_stats {
|
|
uint64_t units_read;
|
|
uint64_t units_written;
|
|
uint64_t read_commands;
|
|
uint64_t write_commands;
|
|
};
|
|
|
|
static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
|
|
{
|
|
BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
|
|
|
|
stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
|
|
stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
|
|
stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
|
|
stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
|
|
}
|
|
|
|
static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
|
|
uint64_t off, NvmeRequest *req)
|
|
{
|
|
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
|
|
struct nvme_stats stats = { 0 };
|
|
NvmeSmartLog smart = { 0 };
|
|
uint32_t trans_len;
|
|
NvmeNamespace *ns;
|
|
time_t current_ms;
|
|
|
|
if (off >= sizeof(smart)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (nsid != 0xffffffff) {
|
|
ns = nvme_ns(n, nsid);
|
|
if (!ns) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
nvme_set_blk_stats(ns, &stats);
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
nvme_set_blk_stats(ns, &stats);
|
|
}
|
|
}
|
|
|
|
trans_len = MIN(sizeof(smart) - off, buf_len);
|
|
smart.critical_warning = n->smart_critical_warning;
|
|
|
|
smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
|
|
1000));
|
|
smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
|
|
1000));
|
|
smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
|
|
smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
|
|
|
|
smart.temperature = cpu_to_le16(n->temperature);
|
|
|
|
if ((n->temperature >= n->features.temp_thresh_hi) ||
|
|
(n->temperature <= n->features.temp_thresh_low)) {
|
|
smart.critical_warning |= NVME_SMART_TEMPERATURE;
|
|
}
|
|
|
|
current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
|
|
smart.power_on_hours[0] =
|
|
cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
|
|
|
|
if (!rae) {
|
|
nvme_clear_events(n, NVME_AER_TYPE_SMART);
|
|
}
|
|
|
|
return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
|
|
}
|
|
|
|
static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
|
|
NvmeRequest *req)
|
|
{
|
|
uint32_t trans_len;
|
|
NvmeFwSlotInfoLog fw_log = {
|
|
.afi = 0x1,
|
|
};
|
|
|
|
if (off >= sizeof(fw_log)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
|
|
trans_len = MIN(sizeof(fw_log) - off, buf_len);
|
|
|
|
return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
|
|
}
|
|
|
|
static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
|
|
uint64_t off, NvmeRequest *req)
|
|
{
|
|
uint32_t trans_len;
|
|
NvmeErrorLog errlog;
|
|
|
|
if (off >= sizeof(errlog)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (!rae) {
|
|
nvme_clear_events(n, NVME_AER_TYPE_ERROR);
|
|
}
|
|
|
|
memset(&errlog, 0x0, sizeof(errlog));
|
|
trans_len = MIN(sizeof(errlog) - off, buf_len);
|
|
|
|
return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
|
|
}
|
|
|
|
static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
|
|
uint64_t off, NvmeRequest *req)
|
|
{
|
|
uint32_t nslist[1024];
|
|
uint32_t trans_len;
|
|
int i = 0;
|
|
uint32_t nsid;
|
|
|
|
memset(nslist, 0x0, sizeof(nslist));
|
|
trans_len = MIN(sizeof(nslist) - off, buf_len);
|
|
|
|
while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
|
|
NVME_CHANGED_NSID_SIZE) {
|
|
/*
|
|
* If more than 1024 namespaces, the first entry in the log page should
|
|
* be set to 0xffffffff and the others to 0 as spec.
|
|
*/
|
|
if (i == ARRAY_SIZE(nslist)) {
|
|
memset(nslist, 0x0, sizeof(nslist));
|
|
nslist[0] = 0xffffffff;
|
|
break;
|
|
}
|
|
|
|
nslist[i++] = nsid;
|
|
clear_bit(nsid, n->changed_nsids);
|
|
}
|
|
|
|
/*
|
|
* Remove all the remaining list entries in case returns directly due to
|
|
* more than 1024 namespaces.
|
|
*/
|
|
if (nslist[0] == 0xffffffff) {
|
|
bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
|
|
}
|
|
|
|
if (!rae) {
|
|
nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
|
|
}
|
|
|
|
return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
|
|
}
|
|
|
|
static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
|
|
uint64_t off, NvmeRequest *req)
|
|
{
|
|
NvmeEffectsLog log = {};
|
|
const uint32_t *src_iocs = NULL;
|
|
uint32_t trans_len;
|
|
|
|
if (off >= sizeof(log)) {
|
|
trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
switch (NVME_CC_CSS(n->bar.cc)) {
|
|
case NVME_CC_CSS_NVM:
|
|
src_iocs = nvme_cse_iocs_nvm;
|
|
/* fall through */
|
|
case NVME_CC_CSS_ADMIN_ONLY:
|
|
break;
|
|
case NVME_CC_CSS_CSI:
|
|
switch (csi) {
|
|
case NVME_CSI_NVM:
|
|
src_iocs = nvme_cse_iocs_nvm;
|
|
break;
|
|
case NVME_CSI_ZONED:
|
|
src_iocs = nvme_cse_iocs_zoned;
|
|
break;
|
|
}
|
|
}
|
|
|
|
memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
|
|
|
|
if (src_iocs) {
|
|
memcpy(log.iocs, src_iocs, sizeof(log.iocs));
|
|
}
|
|
|
|
trans_len = MIN(sizeof(log) - off, buf_len);
|
|
|
|
return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
|
|
}
|
|
|
|
static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeCmd *cmd = &req->cmd;
|
|
|
|
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
|
|
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
|
|
uint32_t dw12 = le32_to_cpu(cmd->cdw12);
|
|
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
|
|
uint8_t lid = dw10 & 0xff;
|
|
uint8_t lsp = (dw10 >> 8) & 0xf;
|
|
uint8_t rae = (dw10 >> 15) & 0x1;
|
|
uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
|
|
uint32_t numdl, numdu;
|
|
uint64_t off, lpol, lpou;
|
|
size_t len;
|
|
uint16_t status;
|
|
|
|
numdl = (dw10 >> 16);
|
|
numdu = (dw11 & 0xffff);
|
|
lpol = dw12;
|
|
lpou = dw13;
|
|
|
|
len = (((numdu << 16) | numdl) + 1) << 2;
|
|
off = (lpou << 32ULL) | lpol;
|
|
|
|
if (off & 0x3) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
|
|
|
|
status = nvme_check_mdts(n, len);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
switch (lid) {
|
|
case NVME_LOG_ERROR_INFO:
|
|
return nvme_error_info(n, rae, len, off, req);
|
|
case NVME_LOG_SMART_INFO:
|
|
return nvme_smart_info(n, rae, len, off, req);
|
|
case NVME_LOG_FW_SLOT_INFO:
|
|
return nvme_fw_log_info(n, len, off, req);
|
|
case NVME_LOG_CHANGED_NSLIST:
|
|
return nvme_changed_nslist(n, rae, len, off, req);
|
|
case NVME_LOG_CMD_EFFECTS:
|
|
return nvme_cmd_effects(n, csi, len, off, req);
|
|
default:
|
|
trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
|
|
{
|
|
n->cq[cq->cqid] = NULL;
|
|
timer_free(cq->timer);
|
|
if (msix_enabled(&n->parent_obj)) {
|
|
msix_vector_unuse(&n->parent_obj, cq->vector);
|
|
}
|
|
if (cq->cqid) {
|
|
g_free(cq);
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
|
|
NvmeCQueue *cq;
|
|
uint16_t qid = le16_to_cpu(c->qid);
|
|
|
|
if (unlikely(!qid || nvme_check_cqid(n, qid))) {
|
|
trace_pci_nvme_err_invalid_del_cq_cqid(qid);
|
|
return NVME_INVALID_CQID | NVME_DNR;
|
|
}
|
|
|
|
cq = n->cq[qid];
|
|
if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
|
|
trace_pci_nvme_err_invalid_del_cq_notempty(qid);
|
|
return NVME_INVALID_QUEUE_DEL;
|
|
}
|
|
nvme_irq_deassert(n, cq);
|
|
trace_pci_nvme_del_cq(qid);
|
|
nvme_free_cq(cq, n);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
|
|
uint16_t cqid, uint16_t vector, uint16_t size,
|
|
uint16_t irq_enabled)
|
|
{
|
|
int ret;
|
|
|
|
if (msix_enabled(&n->parent_obj)) {
|
|
ret = msix_vector_use(&n->parent_obj, vector);
|
|
assert(ret == 0);
|
|
}
|
|
cq->ctrl = n;
|
|
cq->cqid = cqid;
|
|
cq->size = size;
|
|
cq->dma_addr = dma_addr;
|
|
cq->phase = 1;
|
|
cq->irq_enabled = irq_enabled;
|
|
cq->vector = vector;
|
|
cq->head = cq->tail = 0;
|
|
QTAILQ_INIT(&cq->req_list);
|
|
QTAILQ_INIT(&cq->sq_list);
|
|
n->cq[cqid] = cq;
|
|
cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
|
|
}
|
|
|
|
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeCQueue *cq;
|
|
NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
|
|
uint16_t cqid = le16_to_cpu(c->cqid);
|
|
uint16_t vector = le16_to_cpu(c->irq_vector);
|
|
uint16_t qsize = le16_to_cpu(c->qsize);
|
|
uint16_t qflags = le16_to_cpu(c->cq_flags);
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
|
|
trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
|
|
NVME_CQ_FLAGS_IEN(qflags) != 0);
|
|
|
|
if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
|
|
n->cq[cqid] != NULL)) {
|
|
trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
|
|
return NVME_INVALID_QID | NVME_DNR;
|
|
}
|
|
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
|
|
trace_pci_nvme_err_invalid_create_cq_size(qsize);
|
|
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
|
|
}
|
|
if (unlikely(prp1 & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_create_cq_addr(prp1);
|
|
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
}
|
|
if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
|
|
trace_pci_nvme_err_invalid_create_cq_vector(vector);
|
|
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
|
|
}
|
|
if (unlikely(vector >= n->params.msix_qsize)) {
|
|
trace_pci_nvme_err_invalid_create_cq_vector(vector);
|
|
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
|
|
}
|
|
if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
|
|
trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
cq = g_malloc0(sizeof(*cq));
|
|
nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
|
|
NVME_CQ_FLAGS_IEN(qflags));
|
|
|
|
/*
|
|
* It is only required to set qs_created when creating a completion queue;
|
|
* creating a submission queue without a matching completion queue will
|
|
* fail.
|
|
*/
|
|
n->qs_created = true;
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
|
|
|
|
return nvme_c2h(n, id, sizeof(id), req);
|
|
}
|
|
|
|
static inline bool nvme_csi_has_nvm_support(NvmeNamespace *ns)
|
|
{
|
|
switch (ns->csi) {
|
|
case NVME_CSI_NVM:
|
|
case NVME_CSI_ZONED:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
trace_pci_nvme_identify_ctrl();
|
|
|
|
return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
|
|
}
|
|
|
|
static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
|
|
|
|
trace_pci_nvme_identify_ctrl_csi(c->csi);
|
|
|
|
switch (c->csi) {
|
|
case NVME_CSI_NVM:
|
|
((NvmeIdCtrlNvm *)&id)->dmrsl = cpu_to_le32(n->dmrsl);
|
|
break;
|
|
|
|
case NVME_CSI_ZONED:
|
|
((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
|
|
break;
|
|
|
|
default:
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
return nvme_c2h(n, id, sizeof(id), req);
|
|
}
|
|
|
|
static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
|
|
{
|
|
NvmeNamespace *ns;
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
uint32_t nsid = le32_to_cpu(c->nsid);
|
|
|
|
trace_pci_nvme_identify_ns(nsid);
|
|
|
|
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = nvme_ns(n, nsid);
|
|
if (unlikely(!ns)) {
|
|
if (!active) {
|
|
ns = nvme_subsys_ns(n->subsys, nsid);
|
|
if (!ns) {
|
|
return nvme_rpt_empty_id_struct(n, req);
|
|
}
|
|
} else {
|
|
return nvme_rpt_empty_id_struct(n, req);
|
|
}
|
|
}
|
|
|
|
if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
|
|
return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
|
|
}
|
|
|
|
return NVME_INVALID_CMD_SET | NVME_DNR;
|
|
}
|
|
|
|
static uint16_t nvme_identify_ns_attached_list(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
uint16_t min_id = le16_to_cpu(c->ctrlid);
|
|
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
|
|
uint16_t *ids = &list[1];
|
|
NvmeNamespace *ns;
|
|
NvmeCtrl *ctrl;
|
|
int cntlid, nr_ids = 0;
|
|
|
|
trace_pci_nvme_identify_ns_attached_list(min_id);
|
|
|
|
if (c->nsid == NVME_NSID_BROADCAST) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
ns = nvme_subsys_ns(n->subsys, c->nsid);
|
|
if (!ns) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
|
|
ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
|
|
if (!ctrl) {
|
|
continue;
|
|
}
|
|
|
|
if (!nvme_ns_is_attached(ctrl, ns)) {
|
|
continue;
|
|
}
|
|
|
|
ids[nr_ids++] = cntlid;
|
|
}
|
|
|
|
list[0] = nr_ids;
|
|
|
|
return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
|
|
}
|
|
|
|
static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
|
|
bool active)
|
|
{
|
|
NvmeNamespace *ns;
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
uint32_t nsid = le32_to_cpu(c->nsid);
|
|
|
|
trace_pci_nvme_identify_ns_csi(nsid, c->csi);
|
|
|
|
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = nvme_ns(n, nsid);
|
|
if (unlikely(!ns)) {
|
|
if (!active) {
|
|
ns = nvme_subsys_ns(n->subsys, nsid);
|
|
if (!ns) {
|
|
return nvme_rpt_empty_id_struct(n, req);
|
|
}
|
|
} else {
|
|
return nvme_rpt_empty_id_struct(n, req);
|
|
}
|
|
}
|
|
|
|
if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) {
|
|
return nvme_rpt_empty_id_struct(n, req);
|
|
} else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
|
|
return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
|
|
req);
|
|
}
|
|
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
|
|
bool active)
|
|
{
|
|
NvmeNamespace *ns;
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
uint32_t min_nsid = le32_to_cpu(c->nsid);
|
|
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
|
|
static const int data_len = sizeof(list);
|
|
uint32_t *list_ptr = (uint32_t *)list;
|
|
int i, j = 0;
|
|
|
|
trace_pci_nvme_identify_nslist(min_nsid);
|
|
|
|
/*
|
|
* Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
|
|
* since the Active Namespace ID List should return namespaces with ids
|
|
* *higher* than the NSID specified in the command. This is also specified
|
|
* in the spec (NVM Express v1.3d, Section 5.15.4).
|
|
*/
|
|
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
if (!active) {
|
|
ns = nvme_subsys_ns(n->subsys, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
if (ns->params.nsid <= min_nsid) {
|
|
continue;
|
|
}
|
|
list_ptr[j++] = cpu_to_le32(ns->params.nsid);
|
|
if (j == data_len / sizeof(uint32_t)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return nvme_c2h(n, list, data_len, req);
|
|
}
|
|
|
|
static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
|
|
bool active)
|
|
{
|
|
NvmeNamespace *ns;
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
uint32_t min_nsid = le32_to_cpu(c->nsid);
|
|
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
|
|
static const int data_len = sizeof(list);
|
|
uint32_t *list_ptr = (uint32_t *)list;
|
|
int i, j = 0;
|
|
|
|
trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
|
|
|
|
/*
|
|
* Same as in nvme_identify_nslist(), 0xffffffff/0xfffffffe are invalid.
|
|
*/
|
|
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
if (!active) {
|
|
ns = nvme_subsys_ns(n->subsys, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
|
|
continue;
|
|
}
|
|
list_ptr[j++] = cpu_to_le32(ns->params.nsid);
|
|
if (j == data_len / sizeof(uint32_t)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
return nvme_c2h(n, list, data_len, req);
|
|
}
|
|
|
|
static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns;
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
uint32_t nsid = le32_to_cpu(c->nsid);
|
|
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
|
|
|
|
struct data {
|
|
struct {
|
|
NvmeIdNsDescr hdr;
|
|
uint8_t v[NVME_NIDL_UUID];
|
|
} uuid;
|
|
struct {
|
|
NvmeIdNsDescr hdr;
|
|
uint8_t v;
|
|
} csi;
|
|
};
|
|
|
|
struct data *ns_descrs = (struct data *)list;
|
|
|
|
trace_pci_nvme_identify_ns_descr_list(nsid);
|
|
|
|
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = nvme_ns(n, nsid);
|
|
if (unlikely(!ns)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
/*
|
|
* Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
|
|
* structure, a Namespace UUID (nidt = 0x3) must be reported in the
|
|
* Namespace Identification Descriptor. Add the namespace UUID here.
|
|
*/
|
|
ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
|
|
ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID;
|
|
memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
|
|
|
|
ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI;
|
|
ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI;
|
|
ns_descrs->csi.v = ns->csi;
|
|
|
|
return nvme_c2h(n, list, sizeof(list), req);
|
|
}
|
|
|
|
static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
|
|
static const int data_len = sizeof(list);
|
|
|
|
trace_pci_nvme_identify_cmd_set();
|
|
|
|
NVME_SET_CSI(*list, NVME_CSI_NVM);
|
|
NVME_SET_CSI(*list, NVME_CSI_ZONED);
|
|
|
|
return nvme_c2h(n, list, data_len, req);
|
|
}
|
|
|
|
static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
|
|
trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
|
|
c->csi);
|
|
|
|
switch (c->cns) {
|
|
case NVME_ID_CNS_NS:
|
|
return nvme_identify_ns(n, req, true);
|
|
case NVME_ID_CNS_NS_PRESENT:
|
|
return nvme_identify_ns(n, req, false);
|
|
case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
|
|
return nvme_identify_ns_attached_list(n, req);
|
|
case NVME_ID_CNS_CS_NS:
|
|
return nvme_identify_ns_csi(n, req, true);
|
|
case NVME_ID_CNS_CS_NS_PRESENT:
|
|
return nvme_identify_ns_csi(n, req, false);
|
|
case NVME_ID_CNS_CTRL:
|
|
return nvme_identify_ctrl(n, req);
|
|
case NVME_ID_CNS_CS_CTRL:
|
|
return nvme_identify_ctrl_csi(n, req);
|
|
case NVME_ID_CNS_NS_ACTIVE_LIST:
|
|
return nvme_identify_nslist(n, req, true);
|
|
case NVME_ID_CNS_NS_PRESENT_LIST:
|
|
return nvme_identify_nslist(n, req, false);
|
|
case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
|
|
return nvme_identify_nslist_csi(n, req, true);
|
|
case NVME_ID_CNS_CS_NS_PRESENT_LIST:
|
|
return nvme_identify_nslist_csi(n, req, false);
|
|
case NVME_ID_CNS_NS_DESCR_LIST:
|
|
return nvme_identify_ns_descr_list(n, req);
|
|
case NVME_ID_CNS_IO_COMMAND_SET:
|
|
return nvme_identify_cmd_set(n, req);
|
|
default:
|
|
trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
|
|
|
|
req->cqe.result = 1;
|
|
if (nvme_check_sqid(n, sqid)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
|
|
{
|
|
trace_pci_nvme_setfeat_timestamp(ts);
|
|
|
|
n->host_timestamp = le64_to_cpu(ts);
|
|
n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
|
|
static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
|
|
{
|
|
uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
|
|
uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
|
|
|
|
union nvme_timestamp {
|
|
struct {
|
|
uint64_t timestamp:48;
|
|
uint64_t sync:1;
|
|
uint64_t origin:3;
|
|
uint64_t rsvd1:12;
|
|
};
|
|
uint64_t all;
|
|
};
|
|
|
|
union nvme_timestamp ts;
|
|
ts.all = 0;
|
|
ts.timestamp = n->host_timestamp + elapsed_time;
|
|
|
|
/* If the host timestamp is non-zero, set the timestamp origin */
|
|
ts.origin = n->host_timestamp ? 0x01 : 0x00;
|
|
|
|
trace_pci_nvme_getfeat_timestamp(ts.all);
|
|
|
|
return cpu_to_le64(ts.all);
|
|
}
|
|
|
|
static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint64_t timestamp = nvme_get_timestamp(n);
|
|
|
|
return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req);
|
|
}
|
|
|
|
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeCmd *cmd = &req->cmd;
|
|
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
|
|
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
|
|
uint32_t nsid = le32_to_cpu(cmd->nsid);
|
|
uint32_t result;
|
|
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
|
|
NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
|
|
uint16_t iv;
|
|
NvmeNamespace *ns;
|
|
int i;
|
|
|
|
static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
|
|
[NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
|
|
};
|
|
|
|
trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
|
|
|
|
if (!nvme_feature_support[fid]) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
|
|
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
|
|
/*
|
|
* The Reservation Notification Mask and Reservation Persistence
|
|
* features require a status code of Invalid Field in Command when
|
|
* NSID is 0xFFFFFFFF. Since the device does not support those
|
|
* features we can always return Invalid Namespace or Format as we
|
|
* should do for all other features.
|
|
*/
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
if (!nvme_ns(n, nsid)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
switch (sel) {
|
|
case NVME_GETFEAT_SELECT_CURRENT:
|
|
break;
|
|
case NVME_GETFEAT_SELECT_SAVED:
|
|
/* no features are saveable by the controller; fallthrough */
|
|
case NVME_GETFEAT_SELECT_DEFAULT:
|
|
goto defaults;
|
|
case NVME_GETFEAT_SELECT_CAP:
|
|
result = nvme_feature_cap[fid];
|
|
goto out;
|
|
}
|
|
|
|
switch (fid) {
|
|
case NVME_TEMPERATURE_THRESHOLD:
|
|
result = 0;
|
|
|
|
/*
|
|
* The controller only implements the Composite Temperature sensor, so
|
|
* return 0 for all other sensors.
|
|
*/
|
|
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
|
|
goto out;
|
|
}
|
|
|
|
switch (NVME_TEMP_THSEL(dw11)) {
|
|
case NVME_TEMP_THSEL_OVER:
|
|
result = n->features.temp_thresh_hi;
|
|
goto out;
|
|
case NVME_TEMP_THSEL_UNDER:
|
|
result = n->features.temp_thresh_low;
|
|
goto out;
|
|
}
|
|
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
case NVME_ERROR_RECOVERY:
|
|
if (!nvme_nsid_valid(n, nsid)) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = nvme_ns(n, nsid);
|
|
if (unlikely(!ns)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
result = ns->features.err_rec;
|
|
goto out;
|
|
case NVME_VOLATILE_WRITE_CACHE:
|
|
result = 0;
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
result = blk_enable_write_cache(ns->blkconf.blk);
|
|
if (result) {
|
|
break;
|
|
}
|
|
}
|
|
trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
|
|
goto out;
|
|
case NVME_ASYNCHRONOUS_EVENT_CONF:
|
|
result = n->features.async_config;
|
|
goto out;
|
|
case NVME_TIMESTAMP:
|
|
return nvme_get_feature_timestamp(n, req);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
defaults:
|
|
switch (fid) {
|
|
case NVME_TEMPERATURE_THRESHOLD:
|
|
result = 0;
|
|
|
|
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
|
|
break;
|
|
}
|
|
|
|
if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
|
|
result = NVME_TEMPERATURE_WARNING;
|
|
}
|
|
|
|
break;
|
|
case NVME_NUMBER_OF_QUEUES:
|
|
result = (n->params.max_ioqpairs - 1) |
|
|
((n->params.max_ioqpairs - 1) << 16);
|
|
trace_pci_nvme_getfeat_numq(result);
|
|
break;
|
|
case NVME_INTERRUPT_VECTOR_CONF:
|
|
iv = dw11 & 0xffff;
|
|
if (iv >= n->params.max_ioqpairs + 1) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
result = iv;
|
|
if (iv == n->admin_cq.vector) {
|
|
result |= NVME_INTVC_NOCOALESCING;
|
|
}
|
|
break;
|
|
case NVME_COMMAND_SET_PROFILE:
|
|
result = 0;
|
|
break;
|
|
default:
|
|
result = nvme_feature_default[fid];
|
|
break;
|
|
}
|
|
|
|
out:
|
|
req->cqe.result = cpu_to_le32(result);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint16_t ret;
|
|
uint64_t timestamp;
|
|
|
|
ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
nvme_set_timestamp(n, timestamp);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns = NULL;
|
|
|
|
NvmeCmd *cmd = &req->cmd;
|
|
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
|
|
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
|
|
uint32_t nsid = le32_to_cpu(cmd->nsid);
|
|
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
|
|
uint8_t save = NVME_SETFEAT_SAVE(dw10);
|
|
int i;
|
|
|
|
trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
|
|
|
|
if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
|
|
return NVME_FID_NOT_SAVEABLE | NVME_DNR;
|
|
}
|
|
|
|
if (!nvme_feature_support[fid]) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
|
|
if (nsid != NVME_NSID_BROADCAST) {
|
|
if (!nvme_nsid_valid(n, nsid)) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = nvme_ns(n, nsid);
|
|
if (unlikely(!ns)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
} else if (nsid && nsid != NVME_NSID_BROADCAST) {
|
|
if (!nvme_nsid_valid(n, nsid)) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
|
|
}
|
|
|
|
if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
|
|
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
|
|
}
|
|
|
|
switch (fid) {
|
|
case NVME_TEMPERATURE_THRESHOLD:
|
|
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
|
|
break;
|
|
}
|
|
|
|
switch (NVME_TEMP_THSEL(dw11)) {
|
|
case NVME_TEMP_THSEL_OVER:
|
|
n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
|
|
break;
|
|
case NVME_TEMP_THSEL_UNDER:
|
|
n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
|
|
break;
|
|
default:
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if ((n->temperature >= n->features.temp_thresh_hi) ||
|
|
(n->temperature <= n->features.temp_thresh_low)) {
|
|
nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
|
|
}
|
|
|
|
break;
|
|
case NVME_ERROR_RECOVERY:
|
|
if (nsid == NVME_NSID_BROADCAST) {
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
|
|
ns->features.err_rec = dw11;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
assert(ns);
|
|
if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
|
|
ns->features.err_rec = dw11;
|
|
}
|
|
break;
|
|
case NVME_VOLATILE_WRITE_CACHE:
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
|
|
blk_flush(ns->blkconf.blk);
|
|
}
|
|
|
|
blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
|
|
}
|
|
|
|
break;
|
|
|
|
case NVME_NUMBER_OF_QUEUES:
|
|
if (n->qs_created) {
|
|
return NVME_CMD_SEQ_ERROR | NVME_DNR;
|
|
}
|
|
|
|
/*
|
|
* NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
|
|
* and NSQR.
|
|
*/
|
|
if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
|
|
((dw11 >> 16) & 0xFFFF) + 1,
|
|
n->params.max_ioqpairs,
|
|
n->params.max_ioqpairs);
|
|
req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
|
|
((n->params.max_ioqpairs - 1) << 16));
|
|
break;
|
|
case NVME_ASYNCHRONOUS_EVENT_CONF:
|
|
n->features.async_config = dw11;
|
|
break;
|
|
case NVME_TIMESTAMP:
|
|
return nvme_set_feature_timestamp(n, req);
|
|
case NVME_COMMAND_SET_PROFILE:
|
|
if (dw11 & 0x1ff) {
|
|
trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
|
|
return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
|
|
}
|
|
break;
|
|
default:
|
|
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
|
|
}
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
trace_pci_nvme_aer(nvme_cid(req));
|
|
|
|
if (n->outstanding_aers > n->params.aerl) {
|
|
trace_pci_nvme_aer_aerl_exceeded();
|
|
return NVME_AER_LIMIT_EXCEEDED;
|
|
}
|
|
|
|
n->aer_reqs[n->outstanding_aers] = req;
|
|
n->outstanding_aers++;
|
|
|
|
if (!QTAILQ_EMPTY(&n->aer_queue)) {
|
|
nvme_process_aers(n);
|
|
}
|
|
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static void __nvme_select_ns_iocs(NvmeCtrl *n, NvmeNamespace *ns);
|
|
static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns;
|
|
NvmeCtrl *ctrl;
|
|
uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
|
|
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
|
|
uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
|
|
bool attach = !(dw10 & 0xf);
|
|
uint16_t *nr_ids = &list[0];
|
|
uint16_t *ids = &list[1];
|
|
uint16_t ret;
|
|
int i;
|
|
|
|
trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
|
|
|
|
ns = nvme_subsys_ns(n->subsys, nsid);
|
|
if (!ns) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
if (!*nr_ids) {
|
|
return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
|
|
}
|
|
|
|
for (i = 0; i < *nr_ids; i++) {
|
|
ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
|
|
if (!ctrl) {
|
|
return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
|
|
}
|
|
|
|
if (attach) {
|
|
if (nvme_ns_is_attached(ctrl, ns)) {
|
|
return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
|
|
}
|
|
|
|
nvme_ns_attach(ctrl, ns);
|
|
__nvme_select_ns_iocs(ctrl, ns);
|
|
} else {
|
|
if (!nvme_ns_is_attached(ctrl, ns)) {
|
|
return NVME_NS_NOT_ATTACHED | NVME_DNR;
|
|
}
|
|
|
|
nvme_ns_detach(ctrl, ns);
|
|
}
|
|
|
|
/*
|
|
* Add namespace id to the changed namespace id list for event clearing
|
|
* via Get Log Page command.
|
|
*/
|
|
if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
|
|
nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
|
|
NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
|
|
NVME_LOG_CHANGED_NSLIST);
|
|
}
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
|
|
nvme_adm_opc_str(req->cmd.opcode));
|
|
|
|
if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
|
|
trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
|
|
/* SGLs shall not be used for Admin commands in NVMe over PCIe */
|
|
if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
switch (req->cmd.opcode) {
|
|
case NVME_ADM_CMD_DELETE_SQ:
|
|
return nvme_del_sq(n, req);
|
|
case NVME_ADM_CMD_CREATE_SQ:
|
|
return nvme_create_sq(n, req);
|
|
case NVME_ADM_CMD_GET_LOG_PAGE:
|
|
return nvme_get_log(n, req);
|
|
case NVME_ADM_CMD_DELETE_CQ:
|
|
return nvme_del_cq(n, req);
|
|
case NVME_ADM_CMD_CREATE_CQ:
|
|
return nvme_create_cq(n, req);
|
|
case NVME_ADM_CMD_IDENTIFY:
|
|
return nvme_identify(n, req);
|
|
case NVME_ADM_CMD_ABORT:
|
|
return nvme_abort(n, req);
|
|
case NVME_ADM_CMD_SET_FEATURES:
|
|
return nvme_set_feature(n, req);
|
|
case NVME_ADM_CMD_GET_FEATURES:
|
|
return nvme_get_feature(n, req);
|
|
case NVME_ADM_CMD_ASYNC_EV_REQ:
|
|
return nvme_aer(n, req);
|
|
case NVME_ADM_CMD_NS_ATTACHMENT:
|
|
return nvme_ns_attachment(n, req);
|
|
default:
|
|
assert(false);
|
|
}
|
|
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
|
|
static void nvme_process_sq(void *opaque)
|
|
{
|
|
NvmeSQueue *sq = opaque;
|
|
NvmeCtrl *n = sq->ctrl;
|
|
NvmeCQueue *cq = n->cq[sq->cqid];
|
|
|
|
uint16_t status;
|
|
hwaddr addr;
|
|
NvmeCmd cmd;
|
|
NvmeRequest *req;
|
|
|
|
while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
|
|
addr = sq->dma_addr + sq->head * n->sqe_size;
|
|
if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
|
|
trace_pci_nvme_err_addr_read(addr);
|
|
trace_pci_nvme_err_cfs();
|
|
n->bar.csts = NVME_CSTS_FAILED;
|
|
break;
|
|
}
|
|
nvme_inc_sq_head(sq);
|
|
|
|
req = QTAILQ_FIRST(&sq->req_list);
|
|
QTAILQ_REMOVE(&sq->req_list, req, entry);
|
|
QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
|
|
nvme_req_clear(req);
|
|
req->cqe.cid = cmd.cid;
|
|
memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
|
|
|
|
status = sq->sqid ? nvme_io_cmd(n, req) :
|
|
nvme_admin_cmd(n, req);
|
|
if (status != NVME_NO_COMPLETE) {
|
|
req->status = status;
|
|
nvme_enqueue_req_completion(cq, req);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void nvme_ctrl_reset(NvmeCtrl *n)
|
|
{
|
|
NvmeNamespace *ns;
|
|
int i;
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ns_drain(ns);
|
|
}
|
|
|
|
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
|
|
if (n->sq[i] != NULL) {
|
|
nvme_free_sq(n->sq[i], n);
|
|
}
|
|
}
|
|
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
|
|
if (n->cq[i] != NULL) {
|
|
nvme_free_cq(n->cq[i], n);
|
|
}
|
|
}
|
|
|
|
while (!QTAILQ_EMPTY(&n->aer_queue)) {
|
|
NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
|
|
QTAILQ_REMOVE(&n->aer_queue, event, entry);
|
|
g_free(event);
|
|
}
|
|
|
|
n->aer_queued = 0;
|
|
n->outstanding_aers = 0;
|
|
n->qs_created = false;
|
|
|
|
n->bar.cc = 0;
|
|
}
|
|
|
|
static void nvme_ctrl_shutdown(NvmeCtrl *n)
|
|
{
|
|
NvmeNamespace *ns;
|
|
int i;
|
|
|
|
if (n->pmr.dev) {
|
|
memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
|
|
}
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ns_shutdown(ns);
|
|
}
|
|
}
|
|
|
|
static void __nvme_select_ns_iocs(NvmeCtrl *n, NvmeNamespace *ns)
|
|
{
|
|
ns->iocs = nvme_cse_iocs_none;
|
|
switch (ns->csi) {
|
|
case NVME_CSI_NVM:
|
|
if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) {
|
|
ns->iocs = nvme_cse_iocs_nvm;
|
|
}
|
|
break;
|
|
case NVME_CSI_ZONED:
|
|
if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) {
|
|
ns->iocs = nvme_cse_iocs_zoned;
|
|
} else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) {
|
|
ns->iocs = nvme_cse_iocs_nvm;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void nvme_select_ns_iocs(NvmeCtrl *n)
|
|
{
|
|
NvmeNamespace *ns;
|
|
int i;
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
__nvme_select_ns_iocs(n, ns);
|
|
}
|
|
}
|
|
|
|
static int nvme_start_ctrl(NvmeCtrl *n)
|
|
{
|
|
uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
|
|
uint32_t page_size = 1 << page_bits;
|
|
|
|
if (unlikely(n->cq[0])) {
|
|
trace_pci_nvme_err_startfail_cq();
|
|
return -1;
|
|
}
|
|
if (unlikely(n->sq[0])) {
|
|
trace_pci_nvme_err_startfail_sq();
|
|
return -1;
|
|
}
|
|
if (unlikely(!n->bar.asq)) {
|
|
trace_pci_nvme_err_startfail_nbarasq();
|
|
return -1;
|
|
}
|
|
if (unlikely(!n->bar.acq)) {
|
|
trace_pci_nvme_err_startfail_nbaracq();
|
|
return -1;
|
|
}
|
|
if (unlikely(n->bar.asq & (page_size - 1))) {
|
|
trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
|
|
return -1;
|
|
}
|
|
if (unlikely(n->bar.acq & (page_size - 1))) {
|
|
trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
|
|
return -1;
|
|
}
|
|
if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
|
|
trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_MPS(n->bar.cc) <
|
|
NVME_CAP_MPSMIN(n->bar.cap))) {
|
|
trace_pci_nvme_err_startfail_page_too_small(
|
|
NVME_CC_MPS(n->bar.cc),
|
|
NVME_CAP_MPSMIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_MPS(n->bar.cc) >
|
|
NVME_CAP_MPSMAX(n->bar.cap))) {
|
|
trace_pci_nvme_err_startfail_page_too_large(
|
|
NVME_CC_MPS(n->bar.cc),
|
|
NVME_CAP_MPSMAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
|
|
NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
|
|
trace_pci_nvme_err_startfail_cqent_too_small(
|
|
NVME_CC_IOCQES(n->bar.cc),
|
|
NVME_CTRL_CQES_MIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
|
|
NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
|
|
trace_pci_nvme_err_startfail_cqent_too_large(
|
|
NVME_CC_IOCQES(n->bar.cc),
|
|
NVME_CTRL_CQES_MAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
|
|
NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
|
|
trace_pci_nvme_err_startfail_sqent_too_small(
|
|
NVME_CC_IOSQES(n->bar.cc),
|
|
NVME_CTRL_SQES_MIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
|
|
NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
|
|
trace_pci_nvme_err_startfail_sqent_too_large(
|
|
NVME_CC_IOSQES(n->bar.cc),
|
|
NVME_CTRL_SQES_MAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
|
|
trace_pci_nvme_err_startfail_asqent_sz_zero();
|
|
return -1;
|
|
}
|
|
if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
|
|
trace_pci_nvme_err_startfail_acqent_sz_zero();
|
|
return -1;
|
|
}
|
|
|
|
n->page_bits = page_bits;
|
|
n->page_size = page_size;
|
|
n->max_prp_ents = n->page_size / sizeof(uint64_t);
|
|
n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
|
|
n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
|
|
nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
|
|
NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
|
|
nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
|
|
NVME_AQA_ASQS(n->bar.aqa) + 1);
|
|
|
|
nvme_set_timestamp(n, 0ULL);
|
|
|
|
QTAILQ_INIT(&n->aer_queue);
|
|
|
|
nvme_select_ns_iocs(n);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_cmb_enable_regs(NvmeCtrl *n)
|
|
{
|
|
NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1);
|
|
NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1);
|
|
NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
|
|
|
|
NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
|
|
NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
|
|
NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
|
|
}
|
|
|
|
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
if (unlikely(offset & (sizeof(uint32_t) - 1))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
|
|
"MMIO write not 32-bit aligned,"
|
|
" offset=0x%"PRIx64"", offset);
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
|
|
if (unlikely(size < sizeof(uint32_t))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
|
|
"MMIO write smaller than 32-bits,"
|
|
" offset=0x%"PRIx64", size=%u",
|
|
offset, size);
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
|
|
switch (offset) {
|
|
case 0xc: /* INTMS */
|
|
if (unlikely(msix_enabled(&(n->parent_obj)))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
|
|
"undefined access to interrupt mask set"
|
|
" when MSI-X is enabled");
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
n->bar.intms |= data & 0xffffffff;
|
|
n->bar.intmc = n->bar.intms;
|
|
trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
|
|
nvme_irq_check(n);
|
|
break;
|
|
case 0x10: /* INTMC */
|
|
if (unlikely(msix_enabled(&(n->parent_obj)))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
|
|
"undefined access to interrupt mask clr"
|
|
" when MSI-X is enabled");
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
n->bar.intms &= ~(data & 0xffffffff);
|
|
n->bar.intmc = n->bar.intms;
|
|
trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
|
|
nvme_irq_check(n);
|
|
break;
|
|
case 0x14: /* CC */
|
|
trace_pci_nvme_mmio_cfg(data & 0xffffffff);
|
|
/* Windows first sends data, then sends enable bit */
|
|
if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
|
|
!NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
|
|
{
|
|
n->bar.cc = data;
|
|
}
|
|
|
|
if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
|
|
n->bar.cc = data;
|
|
if (unlikely(nvme_start_ctrl(n))) {
|
|
trace_pci_nvme_err_startfail();
|
|
n->bar.csts = NVME_CSTS_FAILED;
|
|
} else {
|
|
trace_pci_nvme_mmio_start_success();
|
|
n->bar.csts = NVME_CSTS_READY;
|
|
}
|
|
} else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
|
|
trace_pci_nvme_mmio_stopped();
|
|
nvme_ctrl_reset(n);
|
|
n->bar.csts &= ~NVME_CSTS_READY;
|
|
}
|
|
if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
|
|
trace_pci_nvme_mmio_shutdown_set();
|
|
nvme_ctrl_shutdown(n);
|
|
n->bar.cc = data;
|
|
n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
|
|
} else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
|
|
trace_pci_nvme_mmio_shutdown_cleared();
|
|
n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
|
|
n->bar.cc = data;
|
|
}
|
|
break;
|
|
case 0x1C: /* CSTS */
|
|
if (data & (1 << 4)) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
|
|
"attempted to W1C CSTS.NSSRO"
|
|
" but CAP.NSSRS is zero (not supported)");
|
|
} else if (data != 0) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
|
|
"attempted to set a read only bit"
|
|
" of controller status");
|
|
}
|
|
break;
|
|
case 0x20: /* NSSR */
|
|
if (data == 0x4E564D65) {
|
|
trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
|
|
} else {
|
|
/* The spec says that writes of other values have no effect */
|
|
return;
|
|
}
|
|
break;
|
|
case 0x24: /* AQA */
|
|
n->bar.aqa = data & 0xffffffff;
|
|
trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
|
|
break;
|
|
case 0x28: /* ASQ */
|
|
n->bar.asq = size == 8 ? data :
|
|
(n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff);
|
|
trace_pci_nvme_mmio_asqaddr(data);
|
|
break;
|
|
case 0x2c: /* ASQ hi */
|
|
n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32);
|
|
trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
|
|
break;
|
|
case 0x30: /* ACQ */
|
|
trace_pci_nvme_mmio_acqaddr(data);
|
|
n->bar.acq = size == 8 ? data :
|
|
(n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff);
|
|
break;
|
|
case 0x34: /* ACQ hi */
|
|
n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32);
|
|
trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
|
|
break;
|
|
case 0x38: /* CMBLOC */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
|
|
"invalid write to reserved CMBLOC"
|
|
" when CMBSZ is zero, ignored");
|
|
return;
|
|
case 0x3C: /* CMBSZ */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
|
|
"invalid write to read only CMBSZ, ignored");
|
|
return;
|
|
case 0x50: /* CMBMSC */
|
|
if (!NVME_CAP_CMBS(n->bar.cap)) {
|
|
return;
|
|
}
|
|
|
|
n->bar.cmbmsc = size == 8 ? data :
|
|
(n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff);
|
|
n->cmb.cmse = false;
|
|
|
|
if (NVME_CMBMSC_CRE(data)) {
|
|
nvme_cmb_enable_regs(n);
|
|
|
|
if (NVME_CMBMSC_CMSE(data)) {
|
|
hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT;
|
|
if (cba + int128_get64(n->cmb.mem.size) < cba) {
|
|
NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1);
|
|
return;
|
|
}
|
|
|
|
n->cmb.cba = cba;
|
|
n->cmb.cmse = true;
|
|
}
|
|
} else {
|
|
n->bar.cmbsz = 0;
|
|
n->bar.cmbloc = 0;
|
|
}
|
|
|
|
return;
|
|
case 0x54: /* CMBMSC hi */
|
|
n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32);
|
|
return;
|
|
|
|
case 0xE00: /* PMRCAP */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
|
|
"invalid write to PMRCAP register, ignored");
|
|
return;
|
|
case 0xE04: /* PMRCTL */
|
|
n->bar.pmrctl = data;
|
|
if (NVME_PMRCTL_EN(data)) {
|
|
memory_region_set_enabled(&n->pmr.dev->mr, true);
|
|
n->bar.pmrsts = 0;
|
|
} else {
|
|
memory_region_set_enabled(&n->pmr.dev->mr, false);
|
|
NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1);
|
|
n->pmr.cmse = false;
|
|
}
|
|
return;
|
|
case 0xE08: /* PMRSTS */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
|
|
"invalid write to PMRSTS register, ignored");
|
|
return;
|
|
case 0xE0C: /* PMREBS */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
|
|
"invalid write to PMREBS register, ignored");
|
|
return;
|
|
case 0xE10: /* PMRSWTP */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
|
|
"invalid write to PMRSWTP register, ignored");
|
|
return;
|
|
case 0xE14: /* PMRMSCL */
|
|
if (!NVME_CAP_PMRS(n->bar.cap)) {
|
|
return;
|
|
}
|
|
|
|
n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff);
|
|
n->pmr.cmse = false;
|
|
|
|
if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) {
|
|
hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT;
|
|
if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
|
|
NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1);
|
|
return;
|
|
}
|
|
|
|
n->pmr.cmse = true;
|
|
n->pmr.cba = cba;
|
|
}
|
|
|
|
return;
|
|
case 0xE18: /* PMRMSCU */
|
|
if (!NVME_CAP_PMRS(n->bar.cap)) {
|
|
return;
|
|
}
|
|
|
|
n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32);
|
|
return;
|
|
default:
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
|
|
"invalid MMIO write,"
|
|
" offset=0x%"PRIx64", data=%"PRIx64"",
|
|
offset, data);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
uint8_t *ptr = (uint8_t *)&n->bar;
|
|
uint64_t val = 0;
|
|
|
|
trace_pci_nvme_mmio_read(addr, size);
|
|
|
|
if (unlikely(addr & (sizeof(uint32_t) - 1))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
|
|
"MMIO read not 32-bit aligned,"
|
|
" offset=0x%"PRIx64"", addr);
|
|
/* should RAZ, fall through for now */
|
|
} else if (unlikely(size < sizeof(uint32_t))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
|
|
"MMIO read smaller than 32-bits,"
|
|
" offset=0x%"PRIx64"", addr);
|
|
/* should RAZ, fall through for now */
|
|
}
|
|
|
|
if (addr < sizeof(n->bar)) {
|
|
/*
|
|
* When PMRWBM bit 1 is set then read from
|
|
* from PMRSTS should ensure prior writes
|
|
* made it to persistent media
|
|
*/
|
|
if (addr == 0xE08 &&
|
|
(NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
|
|
memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
|
|
}
|
|
memcpy(&val, ptr + addr, size);
|
|
} else {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
|
|
"MMIO read beyond last register,"
|
|
" offset=0x%"PRIx64", returning 0", addr);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
|
|
{
|
|
uint32_t qid;
|
|
|
|
if (unlikely(addr & ((1 << 2) - 1))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
|
|
"doorbell write not 32-bit aligned,"
|
|
" offset=0x%"PRIx64", ignoring", addr);
|
|
return;
|
|
}
|
|
|
|
if (((addr - 0x1000) >> 2) & 1) {
|
|
/* Completion queue doorbell write */
|
|
|
|
uint16_t new_head = val & 0xffff;
|
|
int start_sqs;
|
|
NvmeCQueue *cq;
|
|
|
|
qid = (addr - (0x1000 + (1 << 2))) >> 3;
|
|
if (unlikely(nvme_check_cqid(n, qid))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
|
|
"completion queue doorbell write"
|
|
" for nonexistent queue,"
|
|
" sqid=%"PRIu32", ignoring", qid);
|
|
|
|
/*
|
|
* NVM Express v1.3d, Section 4.1 state: "If host software writes
|
|
* an invalid value to the Submission Queue Tail Doorbell or
|
|
* Completion Queue Head Doorbell regiter and an Asynchronous Event
|
|
* Request command is outstanding, then an asynchronous event is
|
|
* posted to the Admin Completion Queue with a status code of
|
|
* Invalid Doorbell Write Value."
|
|
*
|
|
* Also note that the spec includes the "Invalid Doorbell Register"
|
|
* status code, but nowhere does it specify when to use it.
|
|
* However, it seems reasonable to use it here in a similar
|
|
* fashion.
|
|
*/
|
|
if (n->outstanding_aers) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
|
|
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
|
|
NVME_LOG_ERROR_INFO);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
cq = n->cq[qid];
|
|
if (unlikely(new_head >= cq->size)) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
|
|
"completion queue doorbell write value"
|
|
" beyond queue size, sqid=%"PRIu32","
|
|
" new_head=%"PRIu16", ignoring",
|
|
qid, new_head);
|
|
|
|
if (n->outstanding_aers) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
|
|
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
|
|
NVME_LOG_ERROR_INFO);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
|
|
|
|
start_sqs = nvme_cq_full(cq) ? 1 : 0;
|
|
cq->head = new_head;
|
|
if (start_sqs) {
|
|
NvmeSQueue *sq;
|
|
QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
|
|
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
|
|
if (cq->tail == cq->head) {
|
|
nvme_irq_deassert(n, cq);
|
|
}
|
|
} else {
|
|
/* Submission queue doorbell write */
|
|
|
|
uint16_t new_tail = val & 0xffff;
|
|
NvmeSQueue *sq;
|
|
|
|
qid = (addr - 0x1000) >> 3;
|
|
if (unlikely(nvme_check_sqid(n, qid))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
|
|
"submission queue doorbell write"
|
|
" for nonexistent queue,"
|
|
" sqid=%"PRIu32", ignoring", qid);
|
|
|
|
if (n->outstanding_aers) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
|
|
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
|
|
NVME_LOG_ERROR_INFO);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
sq = n->sq[qid];
|
|
if (unlikely(new_tail >= sq->size)) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
|
|
"submission queue doorbell write value"
|
|
" beyond queue size, sqid=%"PRIu32","
|
|
" new_tail=%"PRIu16", ignoring",
|
|
qid, new_tail);
|
|
|
|
if (n->outstanding_aers) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
|
|
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
|
|
NVME_LOG_ERROR_INFO);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
|
|
|
|
sq->tail = new_tail;
|
|
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
}
|
|
|
|
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
|
|
trace_pci_nvme_mmio_write(addr, data, size);
|
|
|
|
if (addr < sizeof(n->bar)) {
|
|
nvme_write_bar(n, addr, data, size);
|
|
} else {
|
|
nvme_process_db(n, addr, data);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps nvme_mmio_ops = {
|
|
.read = nvme_mmio_read,
|
|
.write = nvme_mmio_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 2,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
stn_le_p(&n->cmb.buf[addr], size, data);
|
|
}
|
|
|
|
static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
return ldn_le_p(&n->cmb.buf[addr], size);
|
|
}
|
|
|
|
static const MemoryRegionOps nvme_cmb_ops = {
|
|
.read = nvme_cmb_read,
|
|
.write = nvme_cmb_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
|
|
{
|
|
NvmeParams *params = &n->params;
|
|
|
|
if (params->num_queues) {
|
|
warn_report("num_queues is deprecated; please use max_ioqpairs "
|
|
"instead");
|
|
|
|
params->max_ioqpairs = params->num_queues - 1;
|
|
}
|
|
|
|
if (n->conf.blk) {
|
|
warn_report("drive property is deprecated; "
|
|
"please use an nvme-ns device instead");
|
|
}
|
|
|
|
if (params->max_ioqpairs < 1 ||
|
|
params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
|
|
error_setg(errp, "max_ioqpairs must be between 1 and %d",
|
|
NVME_MAX_IOQPAIRS);
|
|
return;
|
|
}
|
|
|
|
if (params->msix_qsize < 1 ||
|
|
params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
|
|
error_setg(errp, "msix_qsize must be between 1 and %d",
|
|
PCI_MSIX_FLAGS_QSIZE + 1);
|
|
return;
|
|
}
|
|
|
|
if (!params->serial) {
|
|
error_setg(errp, "serial property not set");
|
|
return;
|
|
}
|
|
|
|
if (n->pmr.dev) {
|
|
if (host_memory_backend_is_mapped(n->pmr.dev)) {
|
|
error_setg(errp, "can't use already busy memdev: %s",
|
|
object_get_canonical_path_component(OBJECT(n->pmr.dev)));
|
|
return;
|
|
}
|
|
|
|
if (!is_power_of_2(n->pmr.dev->size)) {
|
|
error_setg(errp, "pmr backend size needs to be power of 2 in size");
|
|
return;
|
|
}
|
|
|
|
host_memory_backend_set_mapped(n->pmr.dev, true);
|
|
}
|
|
|
|
if (n->params.zasl > n->params.mdts) {
|
|
error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
|
|
"than or equal to mdts (Maximum Data Transfer Size)");
|
|
return;
|
|
}
|
|
}
|
|
|
|
static void nvme_init_state(NvmeCtrl *n)
|
|
{
|
|
n->num_namespaces = NVME_MAX_NAMESPACES;
|
|
/* add one to max_ioqpairs to account for the admin queue pair */
|
|
n->reg_size = pow2ceil(sizeof(NvmeBar) +
|
|
2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
|
|
n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
|
|
n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
|
|
n->temperature = NVME_TEMPERATURE;
|
|
n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
|
|
n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
|
|
n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
|
|
}
|
|
|
|
static int nvme_attach_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
|
|
{
|
|
if (nvme_ns_is_attached(n, ns)) {
|
|
error_setg(errp,
|
|
"namespace %d is already attached to controller %d",
|
|
nvme_nsid(ns), n->cntlid);
|
|
return -1;
|
|
}
|
|
|
|
nvme_ns_attach(n, ns);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
|
|
{
|
|
uint32_t nsid = nvme_nsid(ns);
|
|
|
|
if (nsid > NVME_MAX_NAMESPACES) {
|
|
error_setg(errp, "invalid namespace id (must be between 0 and %d)",
|
|
NVME_MAX_NAMESPACES);
|
|
return -1;
|
|
}
|
|
|
|
if (!nsid) {
|
|
for (int i = 1; i <= n->num_namespaces; i++) {
|
|
if (!nvme_ns(n, i)) {
|
|
nsid = ns->params.nsid = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!nsid) {
|
|
error_setg(errp, "no free namespace id");
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (n->namespaces[nsid - 1]) {
|
|
error_setg(errp, "namespace id '%d' is already in use", nsid);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
trace_pci_nvme_register_namespace(nsid);
|
|
|
|
/*
|
|
* If subsys is not given, namespae is always attached to the controller
|
|
* because there's no subsystem to manage namespace allocation.
|
|
*/
|
|
if (!n->subsys) {
|
|
if (ns->params.detached) {
|
|
error_setg(errp,
|
|
"detached needs nvme-subsys specified nvme or nvme-ns");
|
|
return -1;
|
|
}
|
|
|
|
return nvme_attach_namespace(n, ns, errp);
|
|
} else {
|
|
if (!ns->params.detached) {
|
|
return nvme_attach_namespace(n, ns, errp);
|
|
}
|
|
}
|
|
|
|
n->dmrsl = MIN_NON_ZERO(n->dmrsl,
|
|
BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
|
|
{
|
|
uint64_t cmb_size = n->params.cmb_size_mb * MiB;
|
|
|
|
n->cmb.buf = g_malloc0(cmb_size);
|
|
memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
|
|
"nvme-cmb", cmb_size);
|
|
pci_register_bar(pci_dev, NVME_CMB_BIR,
|
|
PCI_BASE_ADDRESS_SPACE_MEMORY |
|
|
PCI_BASE_ADDRESS_MEM_TYPE_64 |
|
|
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
|
|
|
|
NVME_CAP_SET_CMBS(n->bar.cap, 1);
|
|
|
|
if (n->params.legacy_cmb) {
|
|
nvme_cmb_enable_regs(n);
|
|
n->cmb.cmse = true;
|
|
}
|
|
}
|
|
|
|
static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
|
|
{
|
|
NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1);
|
|
NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1);
|
|
NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
|
|
/* Turn on bit 1 support */
|
|
NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
|
|
NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1);
|
|
|
|
pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
|
|
PCI_BASE_ADDRESS_SPACE_MEMORY |
|
|
PCI_BASE_ADDRESS_MEM_TYPE_64 |
|
|
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
|
|
|
|
memory_region_set_enabled(&n->pmr.dev->mr, false);
|
|
}
|
|
|
|
static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
|
|
{
|
|
uint8_t *pci_conf = pci_dev->config;
|
|
uint64_t bar_size, msix_table_size, msix_pba_size;
|
|
unsigned msix_table_offset, msix_pba_offset;
|
|
int ret;
|
|
|
|
Error *err = NULL;
|
|
|
|
pci_conf[PCI_INTERRUPT_PIN] = 1;
|
|
pci_config_set_prog_interface(pci_conf, 0x2);
|
|
|
|
if (n->params.use_intel_id) {
|
|
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
|
|
pci_config_set_device_id(pci_conf, 0x5845);
|
|
} else {
|
|
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
|
|
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
|
|
}
|
|
|
|
pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
|
|
pcie_endpoint_cap_init(pci_dev, 0x80);
|
|
|
|
bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
|
|
msix_table_offset = bar_size;
|
|
msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
|
|
|
|
bar_size += msix_table_size;
|
|
bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
|
|
msix_pba_offset = bar_size;
|
|
msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
|
|
|
|
bar_size += msix_pba_size;
|
|
bar_size = pow2ceil(bar_size);
|
|
|
|
memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
|
|
memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
|
|
n->reg_size);
|
|
memory_region_add_subregion(&n->bar0, 0, &n->iomem);
|
|
|
|
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
|
|
PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
|
|
ret = msix_init(pci_dev, n->params.msix_qsize,
|
|
&n->bar0, 0, msix_table_offset,
|
|
&n->bar0, 0, msix_pba_offset, 0, &err);
|
|
if (ret < 0) {
|
|
if (ret == -ENOTSUP) {
|
|
warn_report_err(err);
|
|
} else {
|
|
error_propagate(errp, err);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (n->params.cmb_size_mb) {
|
|
nvme_init_cmb(n, pci_dev);
|
|
}
|
|
|
|
if (n->pmr.dev) {
|
|
nvme_init_pmr(n, pci_dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_init_subnqn(NvmeCtrl *n)
|
|
{
|
|
NvmeSubsystem *subsys = n->subsys;
|
|
NvmeIdCtrl *id = &n->id_ctrl;
|
|
|
|
if (!subsys) {
|
|
snprintf((char *)id->subnqn, sizeof(id->subnqn),
|
|
"nqn.2019-08.org.qemu:%s", n->params.serial);
|
|
} else {
|
|
pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
|
|
}
|
|
}
|
|
|
|
static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
|
|
{
|
|
NvmeIdCtrl *id = &n->id_ctrl;
|
|
uint8_t *pci_conf = pci_dev->config;
|
|
|
|
id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
|
|
id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
|
|
strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
|
|
strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
|
|
strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
|
|
|
|
id->cntlid = cpu_to_le16(n->cntlid);
|
|
|
|
id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
|
|
|
|
id->rab = 6;
|
|
|
|
if (n->params.use_intel_id) {
|
|
id->ieee[0] = 0xb3;
|
|
id->ieee[1] = 0x02;
|
|
id->ieee[2] = 0x00;
|
|
} else {
|
|
id->ieee[0] = 0x00;
|
|
id->ieee[1] = 0x54;
|
|
id->ieee[2] = 0x52;
|
|
}
|
|
|
|
id->mdts = n->params.mdts;
|
|
id->ver = cpu_to_le32(NVME_SPEC_VER);
|
|
id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT);
|
|
id->cntrltype = 0x1;
|
|
|
|
/*
|
|
* Because the controller always completes the Abort command immediately,
|
|
* there can never be more than one concurrently executing Abort command,
|
|
* so this value is never used for anything. Note that there can easily be
|
|
* many Abort commands in the queues, but they are not considered
|
|
* "executing" until processed by nvme_abort.
|
|
*
|
|
* The specification recommends a value of 3 for Abort Command Limit (four
|
|
* concurrently outstanding Abort commands), so lets use that though it is
|
|
* inconsequential.
|
|
*/
|
|
id->acl = 3;
|
|
id->aerl = n->params.aerl;
|
|
id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
|
|
id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
|
|
|
|
/* recommended default value (~70 C) */
|
|
id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
|
|
id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
|
|
|
|
id->sqes = (0x6 << 4) | 0x6;
|
|
id->cqes = (0x4 << 4) | 0x4;
|
|
id->nn = cpu_to_le32(n->num_namespaces);
|
|
id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
|
|
NVME_ONCS_FEATURES | NVME_ONCS_DSM |
|
|
NVME_ONCS_COMPARE | NVME_ONCS_COPY);
|
|
|
|
/*
|
|
* NOTE: If this device ever supports a command set that does NOT use 0x0
|
|
* as a Flush-equivalent operation, support for the broadcast NSID in Flush
|
|
* should probably be removed.
|
|
*
|
|
* See comment in nvme_io_cmd.
|
|
*/
|
|
id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
|
|
|
|
id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0);
|
|
id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
|
|
NVME_CTRL_SGLS_BITBUCKET);
|
|
|
|
nvme_init_subnqn(n);
|
|
|
|
id->psd[0].mp = cpu_to_le16(0x9c4);
|
|
id->psd[0].enlat = cpu_to_le32(0x10);
|
|
id->psd[0].exlat = cpu_to_le32(0x4);
|
|
|
|
if (n->subsys) {
|
|
id->cmic |= NVME_CMIC_MULTI_CTRL;
|
|
}
|
|
|
|
NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
|
|
NVME_CAP_SET_CQR(n->bar.cap, 1);
|
|
NVME_CAP_SET_TO(n->bar.cap, 0xf);
|
|
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
|
|
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP);
|
|
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
|
|
NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
|
|
NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0);
|
|
NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0);
|
|
|
|
n->bar.vs = NVME_SPEC_VER;
|
|
n->bar.intmc = n->bar.intms = 0;
|
|
}
|
|
|
|
static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
|
|
{
|
|
int cntlid;
|
|
|
|
if (!n->subsys) {
|
|
return 0;
|
|
}
|
|
|
|
cntlid = nvme_subsys_register_ctrl(n, errp);
|
|
if (cntlid < 0) {
|
|
return -1;
|
|
}
|
|
|
|
n->cntlid = cntlid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_realize(PCIDevice *pci_dev, Error **errp)
|
|
{
|
|
NvmeCtrl *n = NVME(pci_dev);
|
|
NvmeNamespace *ns;
|
|
Error *local_err = NULL;
|
|
|
|
nvme_check_constraints(n, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
|
|
&pci_dev->qdev, n->parent_obj.qdev.id);
|
|
|
|
nvme_init_state(n);
|
|
if (nvme_init_pci(n, pci_dev, errp)) {
|
|
return;
|
|
}
|
|
|
|
if (nvme_init_subsys(n, errp)) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
nvme_init_ctrl(n, pci_dev);
|
|
|
|
/* setup a namespace if the controller drive property was given */
|
|
if (n->namespace.blkconf.blk) {
|
|
ns = &n->namespace;
|
|
ns->params.nsid = 1;
|
|
|
|
if (nvme_ns_setup(ns, errp)) {
|
|
return;
|
|
}
|
|
|
|
if (nvme_register_namespace(n, ns, errp)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void nvme_exit(PCIDevice *pci_dev)
|
|
{
|
|
NvmeCtrl *n = NVME(pci_dev);
|
|
NvmeNamespace *ns;
|
|
int i;
|
|
|
|
nvme_ctrl_reset(n);
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ns_cleanup(ns);
|
|
}
|
|
|
|
g_free(n->cq);
|
|
g_free(n->sq);
|
|
g_free(n->aer_reqs);
|
|
|
|
if (n->params.cmb_size_mb) {
|
|
g_free(n->cmb.buf);
|
|
}
|
|
|
|
if (n->pmr.dev) {
|
|
host_memory_backend_set_mapped(n->pmr.dev, false);
|
|
}
|
|
msix_uninit_exclusive_bar(pci_dev);
|
|
}
|
|
|
|
static Property nvme_props[] = {
|
|
DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
|
|
DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
|
|
HostMemoryBackend *),
|
|
DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
|
|
NvmeSubsystem *),
|
|
DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
|
|
DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
|
|
DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
|
|
DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
|
|
DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
|
|
DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
|
|
DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
|
|
DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
|
|
DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
|
|
DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
|
|
DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
|
|
void *opaque, Error **errp)
|
|
{
|
|
NvmeCtrl *n = NVME(obj);
|
|
uint8_t value = n->smart_critical_warning;
|
|
|
|
visit_type_uint8(v, name, &value, errp);
|
|
}
|
|
|
|
static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
|
|
void *opaque, Error **errp)
|
|
{
|
|
NvmeCtrl *n = NVME(obj);
|
|
uint8_t value, old_value, cap = 0, index, event;
|
|
|
|
if (!visit_type_uint8(v, name, &value, errp)) {
|
|
return;
|
|
}
|
|
|
|
cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
|
|
| NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
|
|
if (NVME_CAP_PMRS(n->bar.cap)) {
|
|
cap |= NVME_SMART_PMR_UNRELIABLE;
|
|
}
|
|
|
|
if ((value & cap) != value) {
|
|
error_setg(errp, "unsupported smart critical warning bits: 0x%x",
|
|
value & ~cap);
|
|
return;
|
|
}
|
|
|
|
old_value = n->smart_critical_warning;
|
|
n->smart_critical_warning = value;
|
|
|
|
/* only inject new bits of smart critical warning */
|
|
for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
|
|
event = 1 << index;
|
|
if (value & ~old_value & event)
|
|
nvme_smart_event(n, event);
|
|
}
|
|
}
|
|
|
|
static const VMStateDescription nvme_vmstate = {
|
|
.name = "nvme",
|
|
.unmigratable = 1,
|
|
};
|
|
|
|
static void nvme_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(oc);
|
|
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
|
|
|
|
pc->realize = nvme_realize;
|
|
pc->exit = nvme_exit;
|
|
pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
|
|
pc->revision = 2;
|
|
|
|
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
|
|
dc->desc = "Non-Volatile Memory Express";
|
|
device_class_set_props(dc, nvme_props);
|
|
dc->vmsd = &nvme_vmstate;
|
|
}
|
|
|
|
static void nvme_instance_init(Object *obj)
|
|
{
|
|
NvmeCtrl *n = NVME(obj);
|
|
|
|
if (n->namespace.blkconf.blk) {
|
|
device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
|
|
"bootindex", "/namespace@1,0",
|
|
DEVICE(obj));
|
|
}
|
|
|
|
object_property_add(obj, "smart_critical_warning", "uint8",
|
|
nvme_get_smart_warning,
|
|
nvme_set_smart_warning, NULL, NULL);
|
|
}
|
|
|
|
static const TypeInfo nvme_info = {
|
|
.name = TYPE_NVME,
|
|
.parent = TYPE_PCI_DEVICE,
|
|
.instance_size = sizeof(NvmeCtrl),
|
|
.instance_init = nvme_instance_init,
|
|
.class_init = nvme_class_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ INTERFACE_PCIE_DEVICE },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
static const TypeInfo nvme_bus_info = {
|
|
.name = TYPE_NVME_BUS,
|
|
.parent = TYPE_BUS,
|
|
.instance_size = sizeof(NvmeBus),
|
|
};
|
|
|
|
static void nvme_register_types(void)
|
|
{
|
|
type_register_static(&nvme_info);
|
|
type_register_static(&nvme_bus_info);
|
|
}
|
|
|
|
type_init(nvme_register_types)
|