38be620c95
Fill in queue signal implementation, as well as routines allocate and delete elements of the signal queue. Signed-off-by: Stacey Son <sson@FreeBSD.org> Signed-off-by: Kyle Evans <kevans@freebsd.org> Signed-off-by: Warner Losh <imp@bsdimp.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
495 lines
15 KiB
C
495 lines
15 KiB
C
/*
|
|
* Emulation of BSD signals
|
|
*
|
|
* Copyright (c) 2003 - 2008 Fabrice Bellard
|
|
* Copyright (c) 2013 Stacey Son
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu.h"
|
|
#include "signal-common.h"
|
|
#include "trace.h"
|
|
#include "hw/core/tcg-cpu-ops.h"
|
|
#include "host-signal.h"
|
|
|
|
/*
|
|
* Stubbed out routines until we merge signal support from bsd-user
|
|
* fork.
|
|
*/
|
|
|
|
static struct target_sigaction sigact_table[TARGET_NSIG];
|
|
static void host_signal_handler(int host_sig, siginfo_t *info, void *puc);
|
|
|
|
/*
|
|
* The BSD ABIs use the same singal numbers across all the CPU architectures, so
|
|
* (unlike Linux) these functions are just the identity mapping. This might not
|
|
* be true for XyzBSD running on AbcBSD, which doesn't currently work.
|
|
*/
|
|
int host_to_target_signal(int sig)
|
|
{
|
|
return sig;
|
|
}
|
|
|
|
int target_to_host_signal(int sig)
|
|
{
|
|
return sig;
|
|
}
|
|
|
|
/* Adjust the signal context to rewind out of safe-syscall if we're in it */
|
|
static inline void rewind_if_in_safe_syscall(void *puc)
|
|
{
|
|
ucontext_t *uc = (ucontext_t *)puc;
|
|
uintptr_t pcreg = host_signal_pc(uc);
|
|
|
|
if (pcreg > (uintptr_t)safe_syscall_start
|
|
&& pcreg < (uintptr_t)safe_syscall_end) {
|
|
host_signal_set_pc(uc, (uintptr_t)safe_syscall_start);
|
|
}
|
|
}
|
|
|
|
static bool has_trapno(int tsig)
|
|
{
|
|
return tsig == TARGET_SIGILL ||
|
|
tsig == TARGET_SIGFPE ||
|
|
tsig == TARGET_SIGSEGV ||
|
|
tsig == TARGET_SIGBUS ||
|
|
tsig == TARGET_SIGTRAP;
|
|
}
|
|
|
|
/* Siginfo conversion. */
|
|
|
|
/*
|
|
* Populate tinfo w/o swapping based on guessing which fields are valid.
|
|
*/
|
|
static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
|
|
const siginfo_t *info)
|
|
{
|
|
int sig = host_to_target_signal(info->si_signo);
|
|
int si_code = info->si_code;
|
|
int si_type;
|
|
|
|
/*
|
|
* Make sure we that the variable portion of the target siginfo is zeroed
|
|
* out so we don't leak anything into that.
|
|
*/
|
|
memset(&tinfo->_reason, 0, sizeof(tinfo->_reason));
|
|
|
|
/*
|
|
* This is awkward, because we have to use a combination of the si_code and
|
|
* si_signo to figure out which of the union's members are valid.o We
|
|
* therefore make our best guess.
|
|
*
|
|
* Once we have made our guess, we record it in the top 16 bits of
|
|
* the si_code, so that tswap_siginfo() later can use it.
|
|
* tswap_siginfo() will strip these top bits out before writing
|
|
* si_code to the guest (sign-extending the lower bits).
|
|
*/
|
|
tinfo->si_signo = sig;
|
|
tinfo->si_errno = info->si_errno;
|
|
tinfo->si_code = info->si_code;
|
|
tinfo->si_pid = info->si_pid;
|
|
tinfo->si_uid = info->si_uid;
|
|
tinfo->si_status = info->si_status;
|
|
tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr;
|
|
/*
|
|
* si_value is opaque to kernel. On all FreeBSD platforms,
|
|
* sizeof(sival_ptr) >= sizeof(sival_int) so the following
|
|
* always will copy the larger element.
|
|
*/
|
|
tinfo->si_value.sival_ptr =
|
|
(abi_ulong)(unsigned long)info->si_value.sival_ptr;
|
|
|
|
switch (si_code) {
|
|
/*
|
|
* All the SI_xxx codes that are defined here are global to
|
|
* all the signals (they have values that none of the other,
|
|
* more specific signal info will set).
|
|
*/
|
|
case SI_USER:
|
|
case SI_LWP:
|
|
case SI_KERNEL:
|
|
case SI_QUEUE:
|
|
case SI_ASYNCIO:
|
|
/*
|
|
* Only the fixed parts are valid (though FreeBSD doesn't always
|
|
* set all the fields to non-zero values.
|
|
*/
|
|
si_type = QEMU_SI_NOINFO;
|
|
break;
|
|
case SI_TIMER:
|
|
tinfo->_reason._timer._timerid = info->_reason._timer._timerid;
|
|
tinfo->_reason._timer._overrun = info->_reason._timer._overrun;
|
|
si_type = QEMU_SI_TIMER;
|
|
break;
|
|
case SI_MESGQ:
|
|
tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd;
|
|
si_type = QEMU_SI_MESGQ;
|
|
break;
|
|
default:
|
|
/*
|
|
* We have to go based on the signal number now to figure out
|
|
* what's valid.
|
|
*/
|
|
if (has_trapno(sig)) {
|
|
tinfo->_reason._fault._trapno = info->_reason._fault._trapno;
|
|
si_type = QEMU_SI_FAULT;
|
|
}
|
|
#ifdef TARGET_SIGPOLL
|
|
/*
|
|
* FreeBSD never had SIGPOLL, but emulates it for Linux so there's
|
|
* a chance it may popup in the future.
|
|
*/
|
|
if (sig == TARGET_SIGPOLL) {
|
|
tinfo->_reason._poll._band = info->_reason._poll._band;
|
|
si_type = QEMU_SI_POLL;
|
|
}
|
|
#endif
|
|
/*
|
|
* Unsure that this can actually be generated, and our support for
|
|
* capsicum is somewhere between weak and non-existant, but if we get
|
|
* one, then we know what to save.
|
|
*/
|
|
if (sig == TARGET_SIGTRAP) {
|
|
tinfo->_reason._capsicum._syscall =
|
|
info->_reason._capsicum._syscall;
|
|
si_type = QEMU_SI_CAPSICUM;
|
|
}
|
|
break;
|
|
}
|
|
tinfo->si_code = deposit32(si_code, 24, 8, si_type);
|
|
}
|
|
|
|
/* Returns 1 if given signal should dump core if not handled. */
|
|
static int core_dump_signal(int sig)
|
|
{
|
|
switch (sig) {
|
|
case TARGET_SIGABRT:
|
|
case TARGET_SIGFPE:
|
|
case TARGET_SIGILL:
|
|
case TARGET_SIGQUIT:
|
|
case TARGET_SIGSEGV:
|
|
case TARGET_SIGTRAP:
|
|
case TARGET_SIGBUS:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Abort execution with signal. */
|
|
static void QEMU_NORETURN dump_core_and_abort(int target_sig)
|
|
{
|
|
CPUArchState *env = thread_cpu->env_ptr;
|
|
CPUState *cpu = env_cpu(env);
|
|
TaskState *ts = cpu->opaque;
|
|
int core_dumped = 0;
|
|
int host_sig;
|
|
struct sigaction act;
|
|
|
|
host_sig = target_to_host_signal(target_sig);
|
|
gdb_signalled(env, target_sig);
|
|
|
|
/* Dump core if supported by target binary format */
|
|
if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
|
|
stop_all_tasks();
|
|
core_dumped =
|
|
((*ts->bprm->core_dump)(target_sig, env) == 0);
|
|
}
|
|
if (core_dumped) {
|
|
struct rlimit nodump;
|
|
|
|
/*
|
|
* We already dumped the core of target process, we don't want
|
|
* a coredump of qemu itself.
|
|
*/
|
|
getrlimit(RLIMIT_CORE, &nodump);
|
|
nodump.rlim_cur = 0;
|
|
setrlimit(RLIMIT_CORE, &nodump);
|
|
(void) fprintf(stderr, "qemu: uncaught target signal %d (%s) "
|
|
"- %s\n", target_sig, strsignal(host_sig), "core dumped");
|
|
}
|
|
|
|
/*
|
|
* The proper exit code for dying from an uncaught signal is
|
|
* -<signal>. The kernel doesn't allow exit() or _exit() to pass
|
|
* a negative value. To get the proper exit code we need to
|
|
* actually die from an uncaught signal. Here the default signal
|
|
* handler is installed, we send ourself a signal and we wait for
|
|
* it to arrive.
|
|
*/
|
|
memset(&act, 0, sizeof(act));
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_handler = SIG_DFL;
|
|
sigaction(host_sig, &act, NULL);
|
|
|
|
kill(getpid(), host_sig);
|
|
|
|
/*
|
|
* Make sure the signal isn't masked (just reuse the mask inside
|
|
* of act).
|
|
*/
|
|
sigdelset(&act.sa_mask, host_sig);
|
|
sigsuspend(&act.sa_mask);
|
|
|
|
/* unreachable */
|
|
abort();
|
|
}
|
|
|
|
/*
|
|
* Queue a signal so that it will be send to the virtual CPU as soon as
|
|
* possible.
|
|
*/
|
|
void queue_signal(CPUArchState *env, int sig, int si_type,
|
|
target_siginfo_t *info)
|
|
{
|
|
CPUState *cpu = env_cpu(env);
|
|
TaskState *ts = cpu->opaque;
|
|
|
|
trace_user_queue_signal(env, sig);
|
|
|
|
info->si_code = deposit32(info->si_code, 24, 8, si_type);
|
|
|
|
ts->sync_signal.info = *info;
|
|
ts->sync_signal.pending = sig;
|
|
/* Signal that a new signal is pending. */
|
|
qatomic_set(&ts->signal_pending, 1);
|
|
return;
|
|
}
|
|
|
|
static int fatal_signal(int sig)
|
|
{
|
|
|
|
switch (sig) {
|
|
case TARGET_SIGCHLD:
|
|
case TARGET_SIGURG:
|
|
case TARGET_SIGWINCH:
|
|
case TARGET_SIGINFO:
|
|
/* Ignored by default. */
|
|
return 0;
|
|
case TARGET_SIGCONT:
|
|
case TARGET_SIGSTOP:
|
|
case TARGET_SIGTSTP:
|
|
case TARGET_SIGTTIN:
|
|
case TARGET_SIGTTOU:
|
|
/* Job control signals. */
|
|
return 0;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the
|
|
* 'force' part is handled in process_pending_signals().
|
|
*/
|
|
void force_sig_fault(int sig, int code, abi_ulong addr)
|
|
{
|
|
CPUState *cpu = thread_cpu;
|
|
CPUArchState *env = cpu->env_ptr;
|
|
target_siginfo_t info = {};
|
|
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = code;
|
|
info.si_addr = addr;
|
|
queue_signal(env, sig, QEMU_SI_FAULT, &info);
|
|
}
|
|
|
|
static void host_signal_handler(int host_sig, siginfo_t *info, void *puc)
|
|
{
|
|
CPUArchState *env = thread_cpu->env_ptr;
|
|
CPUState *cpu = env_cpu(env);
|
|
TaskState *ts = cpu->opaque;
|
|
target_siginfo_t tinfo;
|
|
ucontext_t *uc = puc;
|
|
struct emulated_sigtable *k;
|
|
int guest_sig;
|
|
uintptr_t pc = 0;
|
|
bool sync_sig = false;
|
|
|
|
/*
|
|
* Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special
|
|
* handling wrt signal blocking and unwinding.
|
|
*/
|
|
if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) {
|
|
MMUAccessType access_type;
|
|
uintptr_t host_addr;
|
|
abi_ptr guest_addr;
|
|
bool is_write;
|
|
|
|
host_addr = (uintptr_t)info->si_addr;
|
|
|
|
/*
|
|
* Convert forcefully to guest address space: addresses outside
|
|
* reserved_va are still valid to report via SEGV_MAPERR.
|
|
*/
|
|
guest_addr = h2g_nocheck(host_addr);
|
|
|
|
pc = host_signal_pc(uc);
|
|
is_write = host_signal_write(info, uc);
|
|
access_type = adjust_signal_pc(&pc, is_write);
|
|
|
|
if (host_sig == SIGSEGV) {
|
|
bool maperr = true;
|
|
|
|
if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) {
|
|
/* If this was a write to a TB protected page, restart. */
|
|
if (is_write &&
|
|
handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask,
|
|
pc, guest_addr)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* With reserved_va, the whole address space is PROT_NONE,
|
|
* which means that we may get ACCERR when we want MAPERR.
|
|
*/
|
|
if (page_get_flags(guest_addr) & PAGE_VALID) {
|
|
maperr = false;
|
|
} else {
|
|
info->si_code = SEGV_MAPERR;
|
|
}
|
|
}
|
|
|
|
sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
|
|
cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc);
|
|
} else {
|
|
sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
|
|
if (info->si_code == BUS_ADRALN) {
|
|
cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc);
|
|
}
|
|
}
|
|
|
|
sync_sig = true;
|
|
}
|
|
|
|
/* Get the target signal number. */
|
|
guest_sig = host_to_target_signal(host_sig);
|
|
if (guest_sig < 1 || guest_sig > TARGET_NSIG) {
|
|
return;
|
|
}
|
|
trace_user_host_signal(cpu, host_sig, guest_sig);
|
|
|
|
host_to_target_siginfo_noswap(&tinfo, info);
|
|
|
|
k = &ts->sigtab[guest_sig - 1];
|
|
k->info = tinfo;
|
|
k->pending = guest_sig;
|
|
ts->signal_pending = 1;
|
|
|
|
/*
|
|
* For synchronous signals, unwind the cpu state to the faulting
|
|
* insn and then exit back to the main loop so that the signal
|
|
* is delivered immediately.
|
|
*/
|
|
if (sync_sig) {
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit_restore(cpu, pc);
|
|
}
|
|
|
|
rewind_if_in_safe_syscall(puc);
|
|
|
|
/*
|
|
* Block host signals until target signal handler entered. We
|
|
* can't block SIGSEGV or SIGBUS while we're executing guest
|
|
* code in case the guest code provokes one in the window between
|
|
* now and it getting out to the main loop. Signals will be
|
|
* unblocked again in process_pending_signals().
|
|
*/
|
|
sigfillset(&uc->uc_sigmask);
|
|
sigdelset(&uc->uc_sigmask, SIGSEGV);
|
|
sigdelset(&uc->uc_sigmask, SIGBUS);
|
|
|
|
/* Interrupt the virtual CPU as soon as possible. */
|
|
cpu_exit(thread_cpu);
|
|
}
|
|
|
|
void signal_init(void)
|
|
{
|
|
TaskState *ts = (TaskState *)thread_cpu->opaque;
|
|
struct sigaction act;
|
|
struct sigaction oact;
|
|
int i;
|
|
int host_sig;
|
|
|
|
/* Set the signal mask from the host mask. */
|
|
sigprocmask(0, 0, &ts->signal_mask);
|
|
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_sigaction = host_signal_handler;
|
|
act.sa_flags = SA_SIGINFO;
|
|
|
|
for (i = 1; i <= TARGET_NSIG; i++) {
|
|
#ifdef CONFIG_GPROF
|
|
if (i == TARGET_SIGPROF) {
|
|
continue;
|
|
}
|
|
#endif
|
|
host_sig = target_to_host_signal(i);
|
|
sigaction(host_sig, NULL, &oact);
|
|
if (oact.sa_sigaction == (void *)SIG_IGN) {
|
|
sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
|
|
} else if (oact.sa_sigaction == (void *)SIG_DFL) {
|
|
sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
|
|
}
|
|
/*
|
|
* If there's already a handler installed then something has
|
|
* gone horribly wrong, so don't even try to handle that case.
|
|
* Install some handlers for our own use. We need at least
|
|
* SIGSEGV and SIGBUS, to detect exceptions. We can not just
|
|
* trap all signals because it affects syscall interrupt
|
|
* behavior. But do trap all default-fatal signals.
|
|
*/
|
|
if (fatal_signal(i)) {
|
|
sigaction(host_sig, &act, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
void process_pending_signals(CPUArchState *cpu_env)
|
|
{
|
|
}
|
|
|
|
void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr,
|
|
MMUAccessType access_type, bool maperr, uintptr_t ra)
|
|
{
|
|
const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
|
|
|
|
if (tcg_ops->record_sigsegv) {
|
|
tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra);
|
|
}
|
|
|
|
force_sig_fault(TARGET_SIGSEGV,
|
|
maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR,
|
|
addr);
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit_restore(cpu, ra);
|
|
}
|
|
|
|
void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr,
|
|
MMUAccessType access_type, uintptr_t ra)
|
|
{
|
|
const struct TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops;
|
|
|
|
if (tcg_ops->record_sigbus) {
|
|
tcg_ops->record_sigbus(cpu, addr, access_type, ra);
|
|
}
|
|
|
|
force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr);
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
cpu_loop_exit_restore(cpu, ra);
|
|
}
|