qemu/hw/pci.h
Anthony PERARD 7aa8cbb921 pci.c: Add opaque argument to pci_for_each_device.
The purpose is to have a more generic pci_for_each_device by passing an extra
argument to the function called on every device.

This patch will be used in a next patch.

Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
2012-06-21 16:06:10 +00:00

647 lines
19 KiB
C

#ifndef QEMU_PCI_H
#define QEMU_PCI_H
#include "qemu-common.h"
#include "qdev.h"
#include "memory.h"
#include "dma.h"
/* PCI includes legacy ISA access. */
#include "isa.h"
#include "pcie.h"
/* PCI bus */
#define PCI_DEVFN(slot, func) ((((slot) & 0x1f) << 3) | ((func) & 0x07))
#define PCI_SLOT(devfn) (((devfn) >> 3) & 0x1f)
#define PCI_FUNC(devfn) ((devfn) & 0x07)
#define PCI_SLOT_MAX 32
#define PCI_FUNC_MAX 8
/* Class, Vendor and Device IDs from Linux's pci_ids.h */
#include "pci_ids.h"
/* QEMU-specific Vendor and Device ID definitions */
/* IBM (0x1014) */
#define PCI_DEVICE_ID_IBM_440GX 0x027f
#define PCI_DEVICE_ID_IBM_OPENPIC2 0xffff
/* Hitachi (0x1054) */
#define PCI_VENDOR_ID_HITACHI 0x1054
#define PCI_DEVICE_ID_HITACHI_SH7751R 0x350e
/* Apple (0x106b) */
#define PCI_DEVICE_ID_APPLE_343S1201 0x0010
#define PCI_DEVICE_ID_APPLE_UNI_N_I_PCI 0x001e
#define PCI_DEVICE_ID_APPLE_UNI_N_PCI 0x001f
#define PCI_DEVICE_ID_APPLE_UNI_N_KEYL 0x0022
#define PCI_DEVICE_ID_APPLE_IPID_USB 0x003f
/* Realtek (0x10ec) */
#define PCI_DEVICE_ID_REALTEK_8029 0x8029
/* Xilinx (0x10ee) */
#define PCI_DEVICE_ID_XILINX_XC2VP30 0x0300
/* Marvell (0x11ab) */
#define PCI_DEVICE_ID_MARVELL_GT6412X 0x4620
/* QEMU/Bochs VGA (0x1234) */
#define PCI_VENDOR_ID_QEMU 0x1234
#define PCI_DEVICE_ID_QEMU_VGA 0x1111
/* VMWare (0x15ad) */
#define PCI_VENDOR_ID_VMWARE 0x15ad
#define PCI_DEVICE_ID_VMWARE_SVGA2 0x0405
#define PCI_DEVICE_ID_VMWARE_SVGA 0x0710
#define PCI_DEVICE_ID_VMWARE_NET 0x0720
#define PCI_DEVICE_ID_VMWARE_SCSI 0x0730
#define PCI_DEVICE_ID_VMWARE_IDE 0x1729
/* Intel (0x8086) */
#define PCI_DEVICE_ID_INTEL_82551IT 0x1209
#define PCI_DEVICE_ID_INTEL_82557 0x1229
#define PCI_DEVICE_ID_INTEL_82801IR 0x2922
/* Red Hat / Qumranet (for QEMU) -- see pci-ids.txt */
#define PCI_VENDOR_ID_REDHAT_QUMRANET 0x1af4
#define PCI_SUBVENDOR_ID_REDHAT_QUMRANET 0x1af4
#define PCI_SUBDEVICE_ID_QEMU 0x1100
#define PCI_DEVICE_ID_VIRTIO_NET 0x1000
#define PCI_DEVICE_ID_VIRTIO_BLOCK 0x1001
#define PCI_DEVICE_ID_VIRTIO_BALLOON 0x1002
#define PCI_DEVICE_ID_VIRTIO_CONSOLE 0x1003
#define PCI_DEVICE_ID_VIRTIO_SCSI 0x1004
#define FMT_PCIBUS PRIx64
typedef void PCIConfigWriteFunc(PCIDevice *pci_dev,
uint32_t address, uint32_t data, int len);
typedef uint32_t PCIConfigReadFunc(PCIDevice *pci_dev,
uint32_t address, int len);
typedef void PCIMapIORegionFunc(PCIDevice *pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type);
typedef int PCIUnregisterFunc(PCIDevice *pci_dev);
typedef struct PCIIORegion {
pcibus_t addr; /* current PCI mapping address. -1 means not mapped */
#define PCI_BAR_UNMAPPED (~(pcibus_t)0)
pcibus_t size;
uint8_t type;
MemoryRegion *memory;
MemoryRegion *address_space;
} PCIIORegion;
#define PCI_ROM_SLOT 6
#define PCI_NUM_REGIONS 7
#include "pci_regs.h"
/* PCI HEADER_TYPE */
#define PCI_HEADER_TYPE_MULTI_FUNCTION 0x80
/* Size of the standard PCI config header */
#define PCI_CONFIG_HEADER_SIZE 0x40
/* Size of the standard PCI config space */
#define PCI_CONFIG_SPACE_SIZE 0x100
/* Size of the standart PCIe config space: 4KB */
#define PCIE_CONFIG_SPACE_SIZE 0x1000
#define PCI_NUM_PINS 4 /* A-D */
/* Bits in cap_present field. */
enum {
QEMU_PCI_CAP_MSI = 0x1,
QEMU_PCI_CAP_MSIX = 0x2,
QEMU_PCI_CAP_EXPRESS = 0x4,
/* multifunction capable device */
#define QEMU_PCI_CAP_MULTIFUNCTION_BITNR 3
QEMU_PCI_CAP_MULTIFUNCTION = (1 << QEMU_PCI_CAP_MULTIFUNCTION_BITNR),
/* command register SERR bit enabled */
#define QEMU_PCI_CAP_SERR_BITNR 4
QEMU_PCI_CAP_SERR = (1 << QEMU_PCI_CAP_SERR_BITNR),
/* Standard hot plug controller. */
#define QEMU_PCI_SHPC_BITNR 5
QEMU_PCI_CAP_SHPC = (1 << QEMU_PCI_SHPC_BITNR),
#define QEMU_PCI_SLOTID_BITNR 6
QEMU_PCI_CAP_SLOTID = (1 << QEMU_PCI_SLOTID_BITNR),
};
#define TYPE_PCI_DEVICE "pci-device"
#define PCI_DEVICE(obj) \
OBJECT_CHECK(PCIDevice, (obj), TYPE_PCI_DEVICE)
#define PCI_DEVICE_CLASS(klass) \
OBJECT_CLASS_CHECK(PCIDeviceClass, (klass), TYPE_PCI_DEVICE)
#define PCI_DEVICE_GET_CLASS(obj) \
OBJECT_GET_CLASS(PCIDeviceClass, (obj), TYPE_PCI_DEVICE)
typedef struct PCIDeviceClass {
DeviceClass parent_class;
int (*init)(PCIDevice *dev);
PCIUnregisterFunc *exit;
PCIConfigReadFunc *config_read;
PCIConfigWriteFunc *config_write;
uint16_t vendor_id;
uint16_t device_id;
uint8_t revision;
uint16_t class_id;
uint16_t subsystem_vendor_id; /* only for header type = 0 */
uint16_t subsystem_id; /* only for header type = 0 */
/*
* pci-to-pci bridge or normal device.
* This doesn't mean pci host switch.
* When card bus bridge is supported, this would be enhanced.
*/
int is_bridge;
/* pcie stuff */
int is_express; /* is this device pci express? */
/* device isn't hot-pluggable */
int no_hotplug;
/* rom bar */
const char *romfile;
} PCIDeviceClass;
typedef int (*MSIVectorUseNotifier)(PCIDevice *dev, unsigned int vector,
MSIMessage msg);
typedef void (*MSIVectorReleaseNotifier)(PCIDevice *dev, unsigned int vector);
struct PCIDevice {
DeviceState qdev;
/* PCI config space */
uint8_t *config;
/* Used to enable config checks on load. Note that writable bits are
* never checked even if set in cmask. */
uint8_t *cmask;
/* Used to implement R/W bytes */
uint8_t *wmask;
/* Used to implement RW1C(Write 1 to Clear) bytes */
uint8_t *w1cmask;
/* Used to allocate config space for capabilities. */
uint8_t *used;
/* the following fields are read only */
PCIBus *bus;
int32_t devfn;
char name[64];
PCIIORegion io_regions[PCI_NUM_REGIONS];
/* do not access the following fields */
PCIConfigReadFunc *config_read;
PCIConfigWriteFunc *config_write;
/* IRQ objects for the INTA-INTD pins. */
qemu_irq *irq;
/* Current IRQ levels. Used internally by the generic PCI code. */
uint8_t irq_state;
/* Capability bits */
uint32_t cap_present;
/* Offset of MSI-X capability in config space */
uint8_t msix_cap;
/* MSI-X entries */
int msix_entries_nr;
/* Space to store MSIX table */
uint8_t *msix_table_page;
/* MMIO index used to map MSIX table and pending bit entries. */
MemoryRegion msix_mmio;
/* Reference-count for entries actually in use by driver. */
unsigned *msix_entry_used;
/* Region including the MSI-X table */
uint32_t msix_bar_size;
/* MSIX function mask set or MSIX disabled */
bool msix_function_masked;
/* Version id needed for VMState */
int32_t version_id;
/* Offset of MSI capability in config space */
uint8_t msi_cap;
/* PCI Express */
PCIExpressDevice exp;
/* SHPC */
SHPCDevice *shpc;
/* Location of option rom */
char *romfile;
bool has_rom;
MemoryRegion rom;
uint32_t rom_bar;
/* MSI-X notifiers */
MSIVectorUseNotifier msix_vector_use_notifier;
MSIVectorReleaseNotifier msix_vector_release_notifier;
};
void pci_register_bar(PCIDevice *pci_dev, int region_num,
uint8_t attr, MemoryRegion *memory);
pcibus_t pci_get_bar_addr(PCIDevice *pci_dev, int region_num);
int pci_add_capability(PCIDevice *pdev, uint8_t cap_id,
uint8_t offset, uint8_t size);
void pci_del_capability(PCIDevice *pci_dev, uint8_t cap_id, uint8_t cap_size);
uint8_t pci_find_capability(PCIDevice *pci_dev, uint8_t cap_id);
uint32_t pci_default_read_config(PCIDevice *d,
uint32_t address, int len);
void pci_default_write_config(PCIDevice *d,
uint32_t address, uint32_t val, int len);
void pci_device_save(PCIDevice *s, QEMUFile *f);
int pci_device_load(PCIDevice *s, QEMUFile *f);
MemoryRegion *pci_address_space(PCIDevice *dev);
MemoryRegion *pci_address_space_io(PCIDevice *dev);
typedef void (*pci_set_irq_fn)(void *opaque, int irq_num, int level);
typedef int (*pci_map_irq_fn)(PCIDevice *pci_dev, int irq_num);
typedef enum {
PCI_HOTPLUG_DISABLED,
PCI_HOTPLUG_ENABLED,
PCI_COLDPLUG_ENABLED,
} PCIHotplugState;
typedef int (*pci_hotplug_fn)(DeviceState *qdev, PCIDevice *pci_dev,
PCIHotplugState state);
void pci_bus_new_inplace(PCIBus *bus, DeviceState *parent,
const char *name,
MemoryRegion *address_space_mem,
MemoryRegion *address_space_io,
uint8_t devfn_min);
PCIBus *pci_bus_new(DeviceState *parent, const char *name,
MemoryRegion *address_space_mem,
MemoryRegion *address_space_io,
uint8_t devfn_min);
void pci_bus_irqs(PCIBus *bus, pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
void *irq_opaque, int nirq);
int pci_bus_get_irq_level(PCIBus *bus, int irq_num);
void pci_bus_hotplug(PCIBus *bus, pci_hotplug_fn hotplug, DeviceState *dev);
PCIBus *pci_register_bus(DeviceState *parent, const char *name,
pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
void *irq_opaque,
MemoryRegion *address_space_mem,
MemoryRegion *address_space_io,
uint8_t devfn_min, int nirq);
void pci_device_reset(PCIDevice *dev);
void pci_bus_reset(PCIBus *bus);
PCIDevice *pci_nic_init(NICInfo *nd, const char *default_model,
const char *default_devaddr);
PCIDevice *pci_nic_init_nofail(NICInfo *nd, const char *default_model,
const char *default_devaddr);
int pci_bus_num(PCIBus *s);
void pci_for_each_device(PCIBus *bus, int bus_num,
void (*fn)(PCIBus *bus, PCIDevice *d, void *opaque),
void *opaque);
PCIBus *pci_find_root_bus(int domain);
int pci_find_domain(const PCIBus *bus);
PCIDevice *pci_find_device(PCIBus *bus, int bus_num, uint8_t devfn);
int pci_qdev_find_device(const char *id, PCIDevice **pdev);
PCIBus *pci_get_bus_devfn(int *devfnp, const char *devaddr);
int pci_read_devaddr(Monitor *mon, const char *addr, int *domp, int *busp,
unsigned *slotp);
void pci_device_deassert_intx(PCIDevice *dev);
static inline void
pci_set_byte(uint8_t *config, uint8_t val)
{
*config = val;
}
static inline uint8_t
pci_get_byte(const uint8_t *config)
{
return *config;
}
static inline void
pci_set_word(uint8_t *config, uint16_t val)
{
cpu_to_le16wu((uint16_t *)config, val);
}
static inline uint16_t
pci_get_word(const uint8_t *config)
{
return le16_to_cpupu((const uint16_t *)config);
}
static inline void
pci_set_long(uint8_t *config, uint32_t val)
{
cpu_to_le32wu((uint32_t *)config, val);
}
static inline uint32_t
pci_get_long(const uint8_t *config)
{
return le32_to_cpupu((const uint32_t *)config);
}
static inline void
pci_set_quad(uint8_t *config, uint64_t val)
{
cpu_to_le64w((uint64_t *)config, val);
}
static inline uint64_t
pci_get_quad(const uint8_t *config)
{
return le64_to_cpup((const uint64_t *)config);
}
static inline void
pci_config_set_vendor_id(uint8_t *pci_config, uint16_t val)
{
pci_set_word(&pci_config[PCI_VENDOR_ID], val);
}
static inline void
pci_config_set_device_id(uint8_t *pci_config, uint16_t val)
{
pci_set_word(&pci_config[PCI_DEVICE_ID], val);
}
static inline void
pci_config_set_revision(uint8_t *pci_config, uint8_t val)
{
pci_set_byte(&pci_config[PCI_REVISION_ID], val);
}
static inline void
pci_config_set_class(uint8_t *pci_config, uint16_t val)
{
pci_set_word(&pci_config[PCI_CLASS_DEVICE], val);
}
static inline void
pci_config_set_prog_interface(uint8_t *pci_config, uint8_t val)
{
pci_set_byte(&pci_config[PCI_CLASS_PROG], val);
}
static inline void
pci_config_set_interrupt_pin(uint8_t *pci_config, uint8_t val)
{
pci_set_byte(&pci_config[PCI_INTERRUPT_PIN], val);
}
/*
* helper functions to do bit mask operation on configuration space.
* Just to set bit, use test-and-set and discard returned value.
* Just to clear bit, use test-and-clear and discard returned value.
* NOTE: They aren't atomic.
*/
static inline uint8_t
pci_byte_test_and_clear_mask(uint8_t *config, uint8_t mask)
{
uint8_t val = pci_get_byte(config);
pci_set_byte(config, val & ~mask);
return val & mask;
}
static inline uint8_t
pci_byte_test_and_set_mask(uint8_t *config, uint8_t mask)
{
uint8_t val = pci_get_byte(config);
pci_set_byte(config, val | mask);
return val & mask;
}
static inline uint16_t
pci_word_test_and_clear_mask(uint8_t *config, uint16_t mask)
{
uint16_t val = pci_get_word(config);
pci_set_word(config, val & ~mask);
return val & mask;
}
static inline uint16_t
pci_word_test_and_set_mask(uint8_t *config, uint16_t mask)
{
uint16_t val = pci_get_word(config);
pci_set_word(config, val | mask);
return val & mask;
}
static inline uint32_t
pci_long_test_and_clear_mask(uint8_t *config, uint32_t mask)
{
uint32_t val = pci_get_long(config);
pci_set_long(config, val & ~mask);
return val & mask;
}
static inline uint32_t
pci_long_test_and_set_mask(uint8_t *config, uint32_t mask)
{
uint32_t val = pci_get_long(config);
pci_set_long(config, val | mask);
return val & mask;
}
static inline uint64_t
pci_quad_test_and_clear_mask(uint8_t *config, uint64_t mask)
{
uint64_t val = pci_get_quad(config);
pci_set_quad(config, val & ~mask);
return val & mask;
}
static inline uint64_t
pci_quad_test_and_set_mask(uint8_t *config, uint64_t mask)
{
uint64_t val = pci_get_quad(config);
pci_set_quad(config, val | mask);
return val & mask;
}
/* Access a register specified by a mask */
static inline void
pci_set_byte_by_mask(uint8_t *config, uint8_t mask, uint8_t reg)
{
uint8_t val = pci_get_byte(config);
uint8_t rval = reg << (ffs(mask) - 1);
pci_set_byte(config, (~mask & val) | (mask & rval));
}
static inline uint8_t
pci_get_byte_by_mask(uint8_t *config, uint8_t mask)
{
uint8_t val = pci_get_byte(config);
return (val & mask) >> (ffs(mask) - 1);
}
static inline void
pci_set_word_by_mask(uint8_t *config, uint16_t mask, uint16_t reg)
{
uint16_t val = pci_get_word(config);
uint16_t rval = reg << (ffs(mask) - 1);
pci_set_word(config, (~mask & val) | (mask & rval));
}
static inline uint16_t
pci_get_word_by_mask(uint8_t *config, uint16_t mask)
{
uint16_t val = pci_get_word(config);
return (val & mask) >> (ffs(mask) - 1);
}
static inline void
pci_set_long_by_mask(uint8_t *config, uint32_t mask, uint32_t reg)
{
uint32_t val = pci_get_long(config);
uint32_t rval = reg << (ffs(mask) - 1);
pci_set_long(config, (~mask & val) | (mask & rval));
}
static inline uint32_t
pci_get_long_by_mask(uint8_t *config, uint32_t mask)
{
uint32_t val = pci_get_long(config);
return (val & mask) >> (ffs(mask) - 1);
}
static inline void
pci_set_quad_by_mask(uint8_t *config, uint64_t mask, uint64_t reg)
{
uint64_t val = pci_get_quad(config);
uint64_t rval = reg << (ffs(mask) - 1);
pci_set_quad(config, (~mask & val) | (mask & rval));
}
static inline uint64_t
pci_get_quad_by_mask(uint8_t *config, uint64_t mask)
{
uint64_t val = pci_get_quad(config);
return (val & mask) >> (ffs(mask) - 1);
}
PCIDevice *pci_create_multifunction(PCIBus *bus, int devfn, bool multifunction,
const char *name);
PCIDevice *pci_create_simple_multifunction(PCIBus *bus, int devfn,
bool multifunction,
const char *name);
PCIDevice *pci_create(PCIBus *bus, int devfn, const char *name);
PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name);
static inline int pci_is_express(const PCIDevice *d)
{
return d->cap_present & QEMU_PCI_CAP_EXPRESS;
}
static inline uint32_t pci_config_size(const PCIDevice *d)
{
return pci_is_express(d) ? PCIE_CONFIG_SPACE_SIZE : PCI_CONFIG_SPACE_SIZE;
}
/* DMA access functions */
static inline int pci_dma_rw(PCIDevice *dev, dma_addr_t addr,
void *buf, dma_addr_t len, DMADirection dir)
{
cpu_physical_memory_rw(addr, buf, len, dir == DMA_DIRECTION_FROM_DEVICE);
return 0;
}
static inline int pci_dma_read(PCIDevice *dev, dma_addr_t addr,
void *buf, dma_addr_t len)
{
return pci_dma_rw(dev, addr, buf, len, DMA_DIRECTION_TO_DEVICE);
}
static inline int pci_dma_write(PCIDevice *dev, dma_addr_t addr,
const void *buf, dma_addr_t len)
{
return pci_dma_rw(dev, addr, (void *) buf, len, DMA_DIRECTION_FROM_DEVICE);
}
#define PCI_DMA_DEFINE_LDST(_l, _s, _bits) \
static inline uint##_bits##_t ld##_l##_pci_dma(PCIDevice *dev, \
dma_addr_t addr) \
{ \
return ld##_l##_phys(addr); \
} \
static inline void st##_s##_pci_dma(PCIDevice *dev, \
dma_addr_t addr, uint##_bits##_t val) \
{ \
st##_s##_phys(addr, val); \
}
PCI_DMA_DEFINE_LDST(ub, b, 8);
PCI_DMA_DEFINE_LDST(uw_le, w_le, 16)
PCI_DMA_DEFINE_LDST(l_le, l_le, 32);
PCI_DMA_DEFINE_LDST(q_le, q_le, 64);
PCI_DMA_DEFINE_LDST(uw_be, w_be, 16)
PCI_DMA_DEFINE_LDST(l_be, l_be, 32);
PCI_DMA_DEFINE_LDST(q_be, q_be, 64);
#undef PCI_DMA_DEFINE_LDST
static inline void *pci_dma_map(PCIDevice *dev, dma_addr_t addr,
dma_addr_t *plen, DMADirection dir)
{
target_phys_addr_t len = *plen;
void *buf;
buf = cpu_physical_memory_map(addr, &len, dir == DMA_DIRECTION_FROM_DEVICE);
*plen = len;
return buf;
}
static inline void pci_dma_unmap(PCIDevice *dev, void *buffer, dma_addr_t len,
DMADirection dir, dma_addr_t access_len)
{
cpu_physical_memory_unmap(buffer, len, dir == DMA_DIRECTION_FROM_DEVICE,
access_len);
}
static inline void pci_dma_sglist_init(QEMUSGList *qsg, PCIDevice *dev,
int alloc_hint)
{
qemu_sglist_init(qsg, alloc_hint);
}
extern const VMStateDescription vmstate_pci_device;
#define VMSTATE_PCI_DEVICE(_field, _state) { \
.name = (stringify(_field)), \
.size = sizeof(PCIDevice), \
.vmsd = &vmstate_pci_device, \
.flags = VMS_STRUCT, \
.offset = vmstate_offset_value(_state, _field, PCIDevice), \
}
#define VMSTATE_PCI_DEVICE_POINTER(_field, _state) { \
.name = (stringify(_field)), \
.size = sizeof(PCIDevice), \
.vmsd = &vmstate_pci_device, \
.flags = VMS_STRUCT|VMS_POINTER, \
.offset = vmstate_offset_pointer(_state, _field, PCIDevice), \
}
#endif