1fde73bcd7
Commit71e6fae3a9
fixed an issue with FORM2 affinity guests with NUMA nodes in which the distance info is absent in machine_state->numa_state->nodes. This happens when QEMU adds a default NUMA node and when the user adds NUMA nodes without specifying the distances. During the discussions of the forementioned patch [1] it was found that FORM1 guests were behaving in a strange way in the same scenario, with the kernel seeing the distances between the nodes as '160', as we can see in this example with 4 NUMA nodes without distance information: $ numactl -H available: 4 nodes (0-3) (...) node distances: node 0 1 2 3 0: 10 160 160 160 1: 160 10 160 160 2: 160 160 10 160 3: 160 160 160 10 Turns out that we have the same problem with FORM1 guests - we are calculating associativity domain using zeroed values. And as it also turns out, the solution from71e6fae3a9
applies to FORM1 as well. This patch creates a wrapper called 'get_numa_distance' that contains the logic used in FORM2 to define node distances when this information is absent. This helper is then used in all places where we need to read distance information from machine_state->numa_state->nodes. That way we'll guarantee that the NUMA node distance is always being curated before being used. After this patch, the FORM1 guest mentioned above will have the following topology: $ numactl -H available: 4 nodes (0-3) (...) node distances: node 0 1 2 3 0: 10 20 20 20 1: 20 10 20 20 2: 20 20 10 20 3: 20 20 20 10 This is compatible with what FORM2 guests and other archs do in this case. [1] https://lists.gnu.org/archive/html/qemu-devel/2021-11/msg01960.html Fixes:690fbe4295
("spapr_numa: consider user input when defining associativity") CC: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> CC: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com> Signed-off-by: Cédric Le Goater <clg@kaod.org>
698 lines
24 KiB
C
698 lines
24 KiB
C
/*
|
|
* QEMU PowerPC pSeries Logical Partition NUMA associativity handling
|
|
*
|
|
* Copyright IBM Corp. 2020
|
|
*
|
|
* Authors:
|
|
* Daniel Henrique Barboza <danielhb413@gmail.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "hw/ppc/spapr_numa.h"
|
|
#include "hw/pci-host/spapr.h"
|
|
#include "hw/ppc/fdt.h"
|
|
|
|
/* Moved from hw/ppc/spapr_pci_nvlink2.c */
|
|
#define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
|
|
|
|
/*
|
|
* Retrieves max_dist_ref_points of the current NUMA affinity.
|
|
*/
|
|
static int get_max_dist_ref_points(SpaprMachineState *spapr)
|
|
{
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
return FORM2_DIST_REF_POINTS;
|
|
}
|
|
|
|
return FORM1_DIST_REF_POINTS;
|
|
}
|
|
|
|
/*
|
|
* Retrieves numa_assoc_size of the current NUMA affinity.
|
|
*/
|
|
static int get_numa_assoc_size(SpaprMachineState *spapr)
|
|
{
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
return FORM2_NUMA_ASSOC_SIZE;
|
|
}
|
|
|
|
return FORM1_NUMA_ASSOC_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Retrieves vcpu_assoc_size of the current NUMA affinity.
|
|
*
|
|
* vcpu_assoc_size is the size of ibm,associativity array
|
|
* for CPUs, which has an extra element (vcpu_id) in the end.
|
|
*/
|
|
static int get_vcpu_assoc_size(SpaprMachineState *spapr)
|
|
{
|
|
return get_numa_assoc_size(spapr) + 1;
|
|
}
|
|
|
|
/*
|
|
* Retrieves the ibm,associativity array of NUMA node 'node_id'
|
|
* for the current NUMA affinity.
|
|
*/
|
|
static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id)
|
|
{
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
return spapr->FORM2_assoc_array[node_id];
|
|
}
|
|
return spapr->FORM1_assoc_array[node_id];
|
|
}
|
|
|
|
/*
|
|
* Wrapper that returns node distance from ms->numa_state->nodes
|
|
* after handling edge cases where the distance might be absent.
|
|
*/
|
|
static int get_numa_distance(MachineState *ms, int src, int dst)
|
|
{
|
|
NodeInfo *numa_info = ms->numa_state->nodes;
|
|
int ret = numa_info[src].distance[dst];
|
|
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* In case QEMU adds a default NUMA single node when the user
|
|
* did not add any, or where the user did not supply distances,
|
|
* the distance will be absent (zero). Return local/remote
|
|
* distance in this case.
|
|
*/
|
|
if (src == dst) {
|
|
return NUMA_DISTANCE_MIN;
|
|
}
|
|
|
|
return NUMA_DISTANCE_DEFAULT;
|
|
}
|
|
|
|
static bool spapr_numa_is_symmetrical(MachineState *ms)
|
|
{
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
int src, dst;
|
|
|
|
for (src = 0; src < nb_numa_nodes; src++) {
|
|
for (dst = src; dst < nb_numa_nodes; dst++) {
|
|
if (get_numa_distance(ms, src, dst) !=
|
|
get_numa_distance(ms, dst, src)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
|
|
* We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
|
|
* called from vPHB reset handler so we initialize the counter here.
|
|
* If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
|
|
* must be equally distant from any other node.
|
|
* The final value of spapr->gpu_numa_id is going to be written to
|
|
* max-associativity-domains in spapr_build_fdt().
|
|
*/
|
|
unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState *machine)
|
|
{
|
|
return MAX(1, machine->numa_state->num_nodes);
|
|
}
|
|
|
|
/*
|
|
* This function will translate the user distances into
|
|
* what the kernel understand as possible values: 10
|
|
* (local distance), 20, 40, 80 and 160, and return the equivalent
|
|
* NUMA level for each. Current heuristic is:
|
|
* - local distance (10) returns numa_level = 0x4, meaning there is
|
|
* no rounding for local distance
|
|
* - distances between 11 and 30 inclusive -> rounded to 20,
|
|
* numa_level = 0x3
|
|
* - distances between 31 and 60 inclusive -> rounded to 40,
|
|
* numa_level = 0x2
|
|
* - distances between 61 and 120 inclusive -> rounded to 80,
|
|
* numa_level = 0x1
|
|
* - everything above 120 returns numa_level = 0 to indicate that
|
|
* there is no match. This will be calculated as disntace = 160
|
|
* by the kernel (as of v5.9)
|
|
*/
|
|
static uint8_t spapr_numa_get_numa_level(uint8_t distance)
|
|
{
|
|
if (distance == 10) {
|
|
return 0x4;
|
|
} else if (distance > 11 && distance <= 30) {
|
|
return 0x3;
|
|
} else if (distance > 31 && distance <= 60) {
|
|
return 0x2;
|
|
} else if (distance > 61 && distance <= 120) {
|
|
return 0x1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
int src, dst, i, j;
|
|
|
|
/*
|
|
* Fill all associativity domains of non-zero NUMA nodes with
|
|
* node_id. This is required because the default value (0) is
|
|
* considered a match with associativity domains of node 0.
|
|
*/
|
|
for (i = 1; i < nb_numa_nodes; i++) {
|
|
for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
|
|
spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i);
|
|
}
|
|
}
|
|
|
|
for (src = 0; src < nb_numa_nodes; src++) {
|
|
for (dst = src; dst < nb_numa_nodes; dst++) {
|
|
/*
|
|
* This is how the associativity domain between A and B
|
|
* is calculated:
|
|
*
|
|
* - get the distance D between them
|
|
* - get the correspondent NUMA level 'n_level' for D
|
|
* - all associativity arrays were initialized with their own
|
|
* numa_ids, and we're calculating the distance in node_id
|
|
* ascending order, starting from node id 0 (the first node
|
|
* retrieved by numa_state). This will have a cascade effect in
|
|
* the algorithm because the associativity domains that node 0
|
|
* defines will be carried over to other nodes, and node 1
|
|
* associativities will be carried over after taking node 0
|
|
* associativities into account, and so on. This happens because
|
|
* we'll assign assoc_src as the associativity domain of dst
|
|
* as well, for all NUMA levels beyond and including n_level.
|
|
*
|
|
* The PPC kernel expects the associativity domains of node 0 to
|
|
* be always 0, and this algorithm will grant that by default.
|
|
*/
|
|
uint8_t distance = get_numa_distance(ms, src, dst);
|
|
uint8_t n_level = spapr_numa_get_numa_level(distance);
|
|
uint32_t assoc_src;
|
|
|
|
/*
|
|
* n_level = 0 means that the distance is greater than our last
|
|
* rounded value (120). In this case there is no NUMA level match
|
|
* between src and dst and we can skip the remaining of the loop.
|
|
*
|
|
* The Linux kernel will assume that the distance between src and
|
|
* dst, in this case of no match, is 10 (local distance) doubled
|
|
* for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
|
|
* levels (4), so this gives us 10*2*2*2*2 = 160.
|
|
*
|
|
* This logic can be seen in the Linux kernel source code, as of
|
|
* v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
|
|
*/
|
|
if (n_level == 0) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* We must assign all assoc_src to dst, starting from n_level
|
|
* and going up to 0x1.
|
|
*/
|
|
for (i = n_level; i > 0; i--) {
|
|
assoc_src = spapr->FORM1_assoc_array[src][i];
|
|
spapr->FORM1_assoc_array[dst][i] = assoc_src;
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void spapr_numa_FORM1_affinity_check(MachineState *machine)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Check we don't have a memory-less/cpu-less NUMA node
|
|
* Firmware relies on the existing memory/cpu topology to provide the
|
|
* NUMA topology to the kernel.
|
|
* And the linux kernel needs to know the NUMA topology at start
|
|
* to be able to hotplug CPUs later.
|
|
*/
|
|
if (machine->numa_state->num_nodes) {
|
|
for (i = 0; i < machine->numa_state->num_nodes; ++i) {
|
|
/* check for memory-less node */
|
|
if (machine->numa_state->nodes[i].node_mem == 0) {
|
|
CPUState *cs;
|
|
int found = 0;
|
|
/* check for cpu-less node */
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
if (cpu->node_id == i) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
/* memory-less and cpu-less node */
|
|
if (!found) {
|
|
error_report(
|
|
"Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!spapr_numa_is_symmetrical(machine)) {
|
|
error_report(
|
|
"Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set NUMA machine state data based on FORM1 affinity semantics.
|
|
*/
|
|
static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr,
|
|
MachineState *machine)
|
|
{
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
int nb_numa_nodes = machine->numa_state->num_nodes;
|
|
int i, j, max_nodes_with_gpus;
|
|
|
|
/*
|
|
* For all associativity arrays: first position is the size,
|
|
* position FORM1_DIST_REF_POINTS is always the numa_id,
|
|
* represented by the index 'i'.
|
|
*
|
|
* This will break on sparse NUMA setups, when/if QEMU starts
|
|
* to support it, because there will be no more guarantee that
|
|
* 'i' will be a valid node_id set by the user.
|
|
*/
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
|
|
spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
|
|
}
|
|
|
|
/*
|
|
* Initialize NVLink GPU associativity arrays. We know that
|
|
* the first GPU will take the first available NUMA id, and
|
|
* we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
|
|
* At this point we're not sure if there are GPUs or not, but
|
|
* let's initialize the associativity arrays and allow NVLink
|
|
* GPUs to be handled like regular NUMA nodes later on.
|
|
*/
|
|
max_nodes_with_gpus = nb_numa_nodes + NVGPU_MAX_NUM;
|
|
|
|
for (i = nb_numa_nodes; i < max_nodes_with_gpus; i++) {
|
|
spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS);
|
|
|
|
for (j = 1; j < FORM1_DIST_REF_POINTS; j++) {
|
|
uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ?
|
|
SPAPR_GPU_NUMA_ID : cpu_to_be32(i);
|
|
spapr->FORM1_assoc_array[i][j] = gpu_assoc;
|
|
}
|
|
|
|
spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i);
|
|
}
|
|
|
|
/*
|
|
* Guests pseries-5.1 and older uses zeroed associativity domains,
|
|
* i.e. no domain definition based on NUMA distance input.
|
|
*
|
|
* Same thing with guests that have only one NUMA node.
|
|
*/
|
|
if (smc->pre_5_2_numa_associativity ||
|
|
machine->numa_state->num_nodes <= 1) {
|
|
return;
|
|
}
|
|
|
|
spapr_numa_define_FORM1_domains(spapr);
|
|
}
|
|
|
|
/*
|
|
* Init NUMA FORM2 machine state data
|
|
*/
|
|
static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* For all resources but CPUs, FORM2 associativity arrays will
|
|
* be a size 2 array with the following format:
|
|
*
|
|
* ibm,associativity = {1, numa_id}
|
|
*
|
|
* CPUs will write an additional 'vcpu_id' on top of the arrays
|
|
* being initialized here. 'numa_id' is represented by the
|
|
* index 'i' of the loop.
|
|
*
|
|
* Given that this initialization is also valid for GPU associativity
|
|
* arrays, handle everything in one single step by populating the
|
|
* arrays up to NUMA_NODES_MAX_NUM.
|
|
*/
|
|
for (i = 0; i < NUMA_NODES_MAX_NUM; i++) {
|
|
spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1);
|
|
spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i);
|
|
}
|
|
}
|
|
|
|
void spapr_numa_associativity_init(SpaprMachineState *spapr,
|
|
MachineState *machine)
|
|
{
|
|
spapr_numa_FORM1_affinity_init(spapr, machine);
|
|
spapr_numa_FORM2_affinity_init(spapr);
|
|
}
|
|
|
|
void spapr_numa_associativity_check(SpaprMachineState *spapr)
|
|
{
|
|
/*
|
|
* FORM2 does not have any restrictions we need to handle
|
|
* at CAS time, for now.
|
|
*/
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
return;
|
|
}
|
|
|
|
spapr_numa_FORM1_affinity_check(MACHINE(spapr));
|
|
}
|
|
|
|
void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt,
|
|
int offset, int nodeid)
|
|
{
|
|
const uint32_t *associativity = get_associativity(spapr, nodeid);
|
|
|
|
_FDT((fdt_setprop(fdt, offset, "ibm,associativity",
|
|
associativity,
|
|
get_numa_assoc_size(spapr) * sizeof(uint32_t))));
|
|
}
|
|
|
|
static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr,
|
|
PowerPCCPU *cpu)
|
|
{
|
|
const uint32_t *associativity = get_associativity(spapr, cpu->node_id);
|
|
int max_distance_ref_points = get_max_dist_ref_points(spapr);
|
|
int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
|
|
uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size);
|
|
int index = spapr_get_vcpu_id(cpu);
|
|
|
|
/*
|
|
* VCPUs have an extra 'cpu_id' value in ibm,associativity
|
|
* compared to other resources. Increment the size at index
|
|
* 0, put cpu_id last, then copy the remaining associativity
|
|
* domains.
|
|
*/
|
|
vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1);
|
|
vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index);
|
|
memcpy(vcpu_assoc + 1, associativity + 1,
|
|
(vcpu_assoc_size - 2) * sizeof(uint32_t));
|
|
|
|
return vcpu_assoc;
|
|
}
|
|
|
|
int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt,
|
|
int offset, PowerPCCPU *cpu)
|
|
{
|
|
g_autofree uint32_t *vcpu_assoc = NULL;
|
|
int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
|
|
|
|
vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu);
|
|
|
|
/* Advertise NUMA via ibm,associativity */
|
|
return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc,
|
|
vcpu_assoc_size * sizeof(uint32_t));
|
|
}
|
|
|
|
|
|
int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt,
|
|
int offset)
|
|
{
|
|
MachineState *machine = MACHINE(spapr);
|
|
int max_distance_ref_points = get_max_dist_ref_points(spapr);
|
|
int nb_numa_nodes = machine->numa_state->num_nodes;
|
|
int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
|
|
uint32_t *int_buf, *cur_index, buf_len;
|
|
int ret, i;
|
|
|
|
/* ibm,associativity-lookup-arrays */
|
|
buf_len = (nr_nodes * max_distance_ref_points + 2) * sizeof(uint32_t);
|
|
cur_index = int_buf = g_malloc0(buf_len);
|
|
int_buf[0] = cpu_to_be32(nr_nodes);
|
|
/* Number of entries per associativity list */
|
|
int_buf[1] = cpu_to_be32(max_distance_ref_points);
|
|
cur_index += 2;
|
|
for (i = 0; i < nr_nodes; i++) {
|
|
/*
|
|
* For the lookup-array we use the ibm,associativity array of the
|
|
* current NUMA affinity, without the first element (size).
|
|
*/
|
|
const uint32_t *associativity = get_associativity(spapr, i);
|
|
memcpy(cur_index, ++associativity,
|
|
sizeof(uint32_t) * max_distance_ref_points);
|
|
cur_index += max_distance_ref_points;
|
|
}
|
|
ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
|
|
(cur_index - int_buf) * sizeof(uint32_t));
|
|
g_free(int_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr,
|
|
void *fdt, int rtas)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
|
|
uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
|
|
spapr_numa_initial_nvgpu_numa_id(ms);
|
|
uint32_t refpoints[] = {
|
|
cpu_to_be32(0x4),
|
|
cpu_to_be32(0x3),
|
|
cpu_to_be32(0x2),
|
|
cpu_to_be32(0x1),
|
|
};
|
|
uint32_t nr_refpoints = ARRAY_SIZE(refpoints);
|
|
uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
|
|
uint32_t maxdomains[] = {
|
|
cpu_to_be32(4),
|
|
cpu_to_be32(maxdomain),
|
|
cpu_to_be32(maxdomain),
|
|
cpu_to_be32(maxdomain),
|
|
cpu_to_be32(maxdomain)
|
|
};
|
|
|
|
if (smc->pre_5_2_numa_associativity ||
|
|
ms->numa_state->num_nodes <= 1) {
|
|
uint32_t legacy_refpoints[] = {
|
|
cpu_to_be32(0x4),
|
|
cpu_to_be32(0x4),
|
|
cpu_to_be32(0x2),
|
|
};
|
|
uint32_t legacy_maxdomain = spapr->gpu_numa_id > 1 ? 1 : 0;
|
|
uint32_t legacy_maxdomains[] = {
|
|
cpu_to_be32(4),
|
|
cpu_to_be32(legacy_maxdomain),
|
|
cpu_to_be32(legacy_maxdomain),
|
|
cpu_to_be32(legacy_maxdomain),
|
|
cpu_to_be32(spapr->gpu_numa_id),
|
|
};
|
|
|
|
G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints));
|
|
G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains));
|
|
|
|
nr_refpoints = 3;
|
|
|
|
memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints));
|
|
memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains));
|
|
|
|
/* pseries-5.0 and older reference-points array is {0x4, 0x4} */
|
|
if (smc->pre_5_1_assoc_refpoints) {
|
|
nr_refpoints = 2;
|
|
}
|
|
}
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
|
|
refpoints, nr_refpoints * sizeof(refpoints[0])));
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
|
|
maxdomains, sizeof(maxdomains)));
|
|
}
|
|
|
|
static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr,
|
|
void *fdt, int rtas)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
int distance_table_entries = nb_numa_nodes * nb_numa_nodes;
|
|
g_autofree uint32_t *lookup_index_table = NULL;
|
|
g_autofree uint8_t *distance_table = NULL;
|
|
int src, dst, i, distance_table_size;
|
|
|
|
/*
|
|
* ibm,numa-lookup-index-table: array with length and a
|
|
* list of NUMA ids present in the guest.
|
|
*/
|
|
lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1);
|
|
lookup_index_table[0] = cpu_to_be32(nb_numa_nodes);
|
|
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
lookup_index_table[i + 1] = cpu_to_be32(i);
|
|
}
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table",
|
|
lookup_index_table,
|
|
(nb_numa_nodes + 1) * sizeof(uint32_t)));
|
|
|
|
/*
|
|
* ibm,numa-distance-table: contains all node distances. First
|
|
* element is the size of the table as uint32, followed up
|
|
* by all the uint8 distances from the first NUMA node, then all
|
|
* distances from the second NUMA node and so on.
|
|
*
|
|
* ibm,numa-lookup-index-table is used by guest to navigate this
|
|
* array because NUMA ids can be sparse (node 0 is the first,
|
|
* node 8 is the second ...).
|
|
*/
|
|
distance_table_size = distance_table_entries * sizeof(uint8_t) +
|
|
sizeof(uint32_t);
|
|
distance_table = g_new0(uint8_t, distance_table_size);
|
|
stl_be_p(distance_table, distance_table_entries);
|
|
|
|
/* Skip the uint32_t array length at the start */
|
|
i = sizeof(uint32_t);
|
|
|
|
for (src = 0; src < nb_numa_nodes; src++) {
|
|
for (dst = 0; dst < nb_numa_nodes; dst++) {
|
|
distance_table[i++] = get_numa_distance(ms, src, dst);
|
|
}
|
|
}
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table",
|
|
distance_table, distance_table_size));
|
|
}
|
|
|
|
/*
|
|
* This helper could be compressed in a single function with
|
|
* FORM1 logic since we're setting the same DT values, with the
|
|
* difference being a call to spapr_numa_FORM2_write_rtas_tables()
|
|
* in the end. The separation was made to avoid clogging FORM1 code
|
|
* which already has to deal with compat modes from previous
|
|
* QEMU machine types.
|
|
*/
|
|
static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr,
|
|
void *fdt, int rtas)
|
|
{
|
|
MachineState *ms = MACHINE(spapr);
|
|
uint32_t number_nvgpus_nodes = spapr->gpu_numa_id -
|
|
spapr_numa_initial_nvgpu_numa_id(ms);
|
|
|
|
/*
|
|
* In FORM2, ibm,associativity-reference-points will point to
|
|
* the element in the ibm,associativity array that contains the
|
|
* primary domain index (for FORM2, the first element).
|
|
*
|
|
* This value (in our case, the numa-id) is then used as an index
|
|
* to retrieve all other attributes of the node (distance,
|
|
* bandwidth, latency) via ibm,numa-lookup-index-table and other
|
|
* ibm,numa-*-table properties.
|
|
*/
|
|
uint32_t refpoints[] = { cpu_to_be32(1) };
|
|
|
|
uint32_t maxdomain = ms->numa_state->num_nodes + number_nvgpus_nodes;
|
|
uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) };
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
|
|
refpoints, sizeof(refpoints)));
|
|
|
|
_FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
|
|
maxdomains, sizeof(maxdomains)));
|
|
|
|
spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas);
|
|
}
|
|
|
|
/*
|
|
* Helper that writes ibm,associativity-reference-points and
|
|
* max-associativity-domains in the RTAS pointed by @rtas
|
|
* in the DT @fdt.
|
|
*/
|
|
void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas)
|
|
{
|
|
if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) {
|
|
spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas);
|
|
return;
|
|
}
|
|
|
|
spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas);
|
|
}
|
|
|
|
static target_ulong h_home_node_associativity(PowerPCCPU *cpu,
|
|
SpaprMachineState *spapr,
|
|
target_ulong opcode,
|
|
target_ulong *args)
|
|
{
|
|
g_autofree uint32_t *vcpu_assoc = NULL;
|
|
target_ulong flags = args[0];
|
|
target_ulong procno = args[1];
|
|
PowerPCCPU *tcpu;
|
|
int idx, assoc_idx;
|
|
int vcpu_assoc_size = get_vcpu_assoc_size(spapr);
|
|
|
|
/* only support procno from H_REGISTER_VPA */
|
|
if (flags != 0x1) {
|
|
return H_FUNCTION;
|
|
}
|
|
|
|
tcpu = spapr_find_cpu(procno);
|
|
if (tcpu == NULL) {
|
|
return H_P2;
|
|
}
|
|
|
|
/*
|
|
* Given that we want to be flexible with the sizes and indexes,
|
|
* we must consider that there is a hard limit of how many
|
|
* associativities domain we can fit in R4 up to R9, which would be
|
|
* 12 associativity domains for vcpus. Assert and bail if that's
|
|
* not the case.
|
|
*/
|
|
g_assert((vcpu_assoc_size - 1) <= 12);
|
|
|
|
vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu);
|
|
/* assoc_idx starts at 1 to skip associativity size */
|
|
assoc_idx = 1;
|
|
|
|
#define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
|
|
((uint64_t)(b) & 0xffffffff))
|
|
|
|
for (idx = 0; idx < 6; idx++) {
|
|
int32_t a, b;
|
|
|
|
/*
|
|
* vcpu_assoc[] will contain the associativity domains for tcpu,
|
|
* including tcpu->node_id and procno, meaning that we don't
|
|
* need to use these variables here.
|
|
*
|
|
* We'll read 2 values at a time to fill up the ASSOCIATIVITY()
|
|
* macro. The ternary will fill the remaining registers with -1
|
|
* after we went through vcpu_assoc[].
|
|
*/
|
|
a = assoc_idx < vcpu_assoc_size ?
|
|
be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
|
|
b = assoc_idx < vcpu_assoc_size ?
|
|
be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1;
|
|
|
|
args[idx] = ASSOCIATIVITY(a, b);
|
|
}
|
|
#undef ASSOCIATIVITY
|
|
|
|
return H_SUCCESS;
|
|
}
|
|
|
|
static void spapr_numa_register_types(void)
|
|
{
|
|
/* Virtual Processor Home Node */
|
|
spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY,
|
|
h_home_node_associativity);
|
|
}
|
|
|
|
type_init(spapr_numa_register_types)
|