qemu/target/arm/translate-neon.inc.c
Peter Maydell 35a548edb6 target/arm: Convert Neon 3-reg-same logic ops to decodetree
Convert the Neon logic ops in the 3-reg-same grouping to decodetree.
Note that for the logic ops the 'size' field forms part of their
decode and the actual operations are always bitwise.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20200430181003.21682-16-peter.maydell@linaro.org
2020-05-04 12:57:56 +01:00

620 lines
17 KiB
C

/*
* ARM translation: AArch32 Neon instructions
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005-2007 CodeSourcery
* Copyright (c) 2007 OpenedHand, Ltd.
* Copyright (c) 2020 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This file is intended to be included from translate.c; it uses
* some macros and definitions provided by that file.
* It might be possible to convert it to a standalone .c file eventually.
*/
static inline int plus1(DisasContext *s, int x)
{
return x + 1;
}
/* Include the generated Neon decoder */
#include "decode-neon-dp.inc.c"
#include "decode-neon-ls.inc.c"
#include "decode-neon-shared.inc.c"
static bool trans_VCMLA(DisasContext *s, arg_VCMLA *a)
{
int opr_sz;
TCGv_ptr fpst;
gen_helper_gvec_3_ptr *fn_gvec_ptr;
if (!dc_isar_feature(aa32_vcma, s)
|| (!a->size && !dc_isar_feature(aa32_fp16_arith, s))) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
((a->vd | a->vn | a->vm) & 0x10)) {
return false;
}
if ((a->vn | a->vm | a->vd) & a->q) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
opr_sz = (1 + a->q) * 8;
fpst = get_fpstatus_ptr(1);
fn_gvec_ptr = a->size ? gen_helper_gvec_fcmlas : gen_helper_gvec_fcmlah;
tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd),
vfp_reg_offset(1, a->vn),
vfp_reg_offset(1, a->vm),
fpst, opr_sz, opr_sz, a->rot,
fn_gvec_ptr);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VCADD(DisasContext *s, arg_VCADD *a)
{
int opr_sz;
TCGv_ptr fpst;
gen_helper_gvec_3_ptr *fn_gvec_ptr;
if (!dc_isar_feature(aa32_vcma, s)
|| (!a->size && !dc_isar_feature(aa32_fp16_arith, s))) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
((a->vd | a->vn | a->vm) & 0x10)) {
return false;
}
if ((a->vn | a->vm | a->vd) & a->q) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
opr_sz = (1 + a->q) * 8;
fpst = get_fpstatus_ptr(1);
fn_gvec_ptr = a->size ? gen_helper_gvec_fcadds : gen_helper_gvec_fcaddh;
tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd),
vfp_reg_offset(1, a->vn),
vfp_reg_offset(1, a->vm),
fpst, opr_sz, opr_sz, a->rot,
fn_gvec_ptr);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VDOT(DisasContext *s, arg_VDOT *a)
{
int opr_sz;
gen_helper_gvec_3 *fn_gvec;
if (!dc_isar_feature(aa32_dp, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
((a->vd | a->vn | a->vm) & 0x10)) {
return false;
}
if ((a->vn | a->vm | a->vd) & a->q) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
opr_sz = (1 + a->q) * 8;
fn_gvec = a->u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b;
tcg_gen_gvec_3_ool(vfp_reg_offset(1, a->vd),
vfp_reg_offset(1, a->vn),
vfp_reg_offset(1, a->vm),
opr_sz, opr_sz, 0, fn_gvec);
return true;
}
static bool trans_VFML(DisasContext *s, arg_VFML *a)
{
int opr_sz;
if (!dc_isar_feature(aa32_fhm, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
(a->vd & 0x10)) {
return false;
}
if (a->vd & a->q) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
opr_sz = (1 + a->q) * 8;
tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd),
vfp_reg_offset(a->q, a->vn),
vfp_reg_offset(a->q, a->vm),
cpu_env, opr_sz, opr_sz, a->s, /* is_2 == 0 */
gen_helper_gvec_fmlal_a32);
return true;
}
static bool trans_VCMLA_scalar(DisasContext *s, arg_VCMLA_scalar *a)
{
gen_helper_gvec_3_ptr *fn_gvec_ptr;
int opr_sz;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_vcma, s)) {
return false;
}
if (a->size == 0 && !dc_isar_feature(aa32_fp16_arith, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
((a->vd | a->vn | a->vm) & 0x10)) {
return false;
}
if ((a->vd | a->vn) & a->q) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fn_gvec_ptr = (a->size ? gen_helper_gvec_fcmlas_idx
: gen_helper_gvec_fcmlah_idx);
opr_sz = (1 + a->q) * 8;
fpst = get_fpstatus_ptr(1);
tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd),
vfp_reg_offset(1, a->vn),
vfp_reg_offset(1, a->vm),
fpst, opr_sz, opr_sz,
(a->index << 2) | a->rot, fn_gvec_ptr);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VDOT_scalar(DisasContext *s, arg_VDOT_scalar *a)
{
gen_helper_gvec_3 *fn_gvec;
int opr_sz;
TCGv_ptr fpst;
if (!dc_isar_feature(aa32_dp, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
((a->vd | a->vn) & 0x10)) {
return false;
}
if ((a->vd | a->vn) & a->q) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fn_gvec = a->u ? gen_helper_gvec_udot_idx_b : gen_helper_gvec_sdot_idx_b;
opr_sz = (1 + a->q) * 8;
fpst = get_fpstatus_ptr(1);
tcg_gen_gvec_3_ool(vfp_reg_offset(1, a->vd),
vfp_reg_offset(1, a->vn),
vfp_reg_offset(1, a->rm),
opr_sz, opr_sz, a->index, fn_gvec);
tcg_temp_free_ptr(fpst);
return true;
}
static bool trans_VFML_scalar(DisasContext *s, arg_VFML_scalar *a)
{
int opr_sz;
if (!dc_isar_feature(aa32_fhm, s)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
((a->vd & 0x10) || (a->q && (a->vn & 0x10)))) {
return false;
}
if (a->vd & a->q) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
opr_sz = (1 + a->q) * 8;
tcg_gen_gvec_3_ptr(vfp_reg_offset(1, a->vd),
vfp_reg_offset(a->q, a->vn),
vfp_reg_offset(a->q, a->rm),
cpu_env, opr_sz, opr_sz,
(a->index << 2) | a->s, /* is_2 == 0 */
gen_helper_gvec_fmlal_idx_a32);
return true;
}
static struct {
int nregs;
int interleave;
int spacing;
} const neon_ls_element_type[11] = {
{1, 4, 1},
{1, 4, 2},
{4, 1, 1},
{2, 2, 2},
{1, 3, 1},
{1, 3, 2},
{3, 1, 1},
{1, 1, 1},
{1, 2, 1},
{1, 2, 2},
{2, 1, 1}
};
static void gen_neon_ldst_base_update(DisasContext *s, int rm, int rn,
int stride)
{
if (rm != 15) {
TCGv_i32 base;
base = load_reg(s, rn);
if (rm == 13) {
tcg_gen_addi_i32(base, base, stride);
} else {
TCGv_i32 index;
index = load_reg(s, rm);
tcg_gen_add_i32(base, base, index);
tcg_temp_free_i32(index);
}
store_reg(s, rn, base);
}
}
static bool trans_VLDST_multiple(DisasContext *s, arg_VLDST_multiple *a)
{
/* Neon load/store multiple structures */
int nregs, interleave, spacing, reg, n;
MemOp endian = s->be_data;
int mmu_idx = get_mem_index(s);
int size = a->size;
TCGv_i64 tmp64;
TCGv_i32 addr, tmp;
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
return false;
}
if (a->itype > 10) {
return false;
}
/* Catch UNDEF cases for bad values of align field */
switch (a->itype & 0xc) {
case 4:
if (a->align >= 2) {
return false;
}
break;
case 8:
if (a->align == 3) {
return false;
}
break;
default:
break;
}
nregs = neon_ls_element_type[a->itype].nregs;
interleave = neon_ls_element_type[a->itype].interleave;
spacing = neon_ls_element_type[a->itype].spacing;
if (size == 3 && (interleave | spacing) != 1) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/* For our purposes, bytes are always little-endian. */
if (size == 0) {
endian = MO_LE;
}
/*
* Consecutive little-endian elements from a single register
* can be promoted to a larger little-endian operation.
*/
if (interleave == 1 && endian == MO_LE) {
size = 3;
}
tmp64 = tcg_temp_new_i64();
addr = tcg_temp_new_i32();
tmp = tcg_const_i32(1 << size);
load_reg_var(s, addr, a->rn);
for (reg = 0; reg < nregs; reg++) {
for (n = 0; n < 8 >> size; n++) {
int xs;
for (xs = 0; xs < interleave; xs++) {
int tt = a->vd + reg + spacing * xs;
if (a->l) {
gen_aa32_ld_i64(s, tmp64, addr, mmu_idx, endian | size);
neon_store_element64(tt, n, size, tmp64);
} else {
neon_load_element64(tmp64, tt, n, size);
gen_aa32_st_i64(s, tmp64, addr, mmu_idx, endian | size);
}
tcg_gen_add_i32(addr, addr, tmp);
}
}
}
tcg_temp_free_i32(addr);
tcg_temp_free_i32(tmp);
tcg_temp_free_i64(tmp64);
gen_neon_ldst_base_update(s, a->rm, a->rn, nregs * interleave * 8);
return true;
}
static bool trans_VLD_all_lanes(DisasContext *s, arg_VLD_all_lanes *a)
{
/* Neon load single structure to all lanes */
int reg, stride, vec_size;
int vd = a->vd;
int size = a->size;
int nregs = a->n + 1;
TCGv_i32 addr, tmp;
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
return false;
}
if (size == 3) {
if (nregs != 4 || a->a == 0) {
return false;
}
/* For VLD4 size == 3 a == 1 means 32 bits at 16 byte alignment */
size = 2;
}
if (nregs == 1 && a->a == 1 && size == 0) {
return false;
}
if (nregs == 3 && a->a == 1) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
/*
* VLD1 to all lanes: T bit indicates how many Dregs to write.
* VLD2/3/4 to all lanes: T bit indicates register stride.
*/
stride = a->t ? 2 : 1;
vec_size = nregs == 1 ? stride * 8 : 8;
tmp = tcg_temp_new_i32();
addr = tcg_temp_new_i32();
load_reg_var(s, addr, a->rn);
for (reg = 0; reg < nregs; reg++) {
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s),
s->be_data | size);
if ((vd & 1) && vec_size == 16) {
/*
* We cannot write 16 bytes at once because the
* destination is unaligned.
*/
tcg_gen_gvec_dup_i32(size, neon_reg_offset(vd, 0),
8, 8, tmp);
tcg_gen_gvec_mov(0, neon_reg_offset(vd + 1, 0),
neon_reg_offset(vd, 0), 8, 8);
} else {
tcg_gen_gvec_dup_i32(size, neon_reg_offset(vd, 0),
vec_size, vec_size, tmp);
}
tcg_gen_addi_i32(addr, addr, 1 << size);
vd += stride;
}
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(addr);
gen_neon_ldst_base_update(s, a->rm, a->rn, (1 << size) * nregs);
return true;
}
static bool trans_VLDST_single(DisasContext *s, arg_VLDST_single *a)
{
/* Neon load/store single structure to one lane */
int reg;
int nregs = a->n + 1;
int vd = a->vd;
TCGv_i32 addr, tmp;
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist */
if (!dc_isar_feature(aa32_simd_r32, s) && (a->vd & 0x10)) {
return false;
}
/* Catch the UNDEF cases. This is unavoidably a bit messy. */
switch (nregs) {
case 1:
if (((a->align & (1 << a->size)) != 0) ||
(a->size == 2 && ((a->align & 3) == 1 || (a->align & 3) == 2))) {
return false;
}
break;
case 3:
if ((a->align & 1) != 0) {
return false;
}
/* fall through */
case 2:
if (a->size == 2 && (a->align & 2) != 0) {
return false;
}
break;
case 4:
if ((a->size == 2) && ((a->align & 3) == 3)) {
return false;
}
break;
default:
abort();
}
if ((vd + a->stride * (nregs - 1)) > 31) {
/*
* Attempts to write off the end of the register file are
* UNPREDICTABLE; we choose to UNDEF because otherwise we would
* access off the end of the array that holds the register data.
*/
return false;
}
if (!vfp_access_check(s)) {
return true;
}
tmp = tcg_temp_new_i32();
addr = tcg_temp_new_i32();
load_reg_var(s, addr, a->rn);
/*
* TODO: if we implemented alignment exceptions, we should check
* addr against the alignment encoded in a->align here.
*/
for (reg = 0; reg < nregs; reg++) {
if (a->l) {
gen_aa32_ld_i32(s, tmp, addr, get_mem_index(s),
s->be_data | a->size);
neon_store_element(vd, a->reg_idx, a->size, tmp);
} else { /* Store */
neon_load_element(tmp, vd, a->reg_idx, a->size);
gen_aa32_st_i32(s, tmp, addr, get_mem_index(s),
s->be_data | a->size);
}
vd += a->stride;
tcg_gen_addi_i32(addr, addr, 1 << a->size);
}
tcg_temp_free_i32(addr);
tcg_temp_free_i32(tmp);
gen_neon_ldst_base_update(s, a->rm, a->rn, (1 << a->size) * nregs);
return true;
}
static bool do_3same(DisasContext *s, arg_3same *a, GVecGen3Fn fn)
{
int vec_size = a->q ? 16 : 8;
int rd_ofs = neon_reg_offset(a->vd, 0);
int rn_ofs = neon_reg_offset(a->vn, 0);
int rm_ofs = neon_reg_offset(a->vm, 0);
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
return false;
}
/* UNDEF accesses to D16-D31 if they don't exist. */
if (!dc_isar_feature(aa32_simd_r32, s) &&
((a->vd | a->vn | a->vm) & 0x10)) {
return false;
}
if ((a->vn | a->vm | a->vd) & a->q) {
return false;
}
if (!vfp_access_check(s)) {
return true;
}
fn(a->size, rd_ofs, rn_ofs, rm_ofs, vec_size, vec_size);
return true;
}
#define DO_3SAME(INSN, FUNC) \
static bool trans_##INSN##_3s(DisasContext *s, arg_3same *a) \
{ \
return do_3same(s, a, FUNC); \
}
DO_3SAME(VADD, tcg_gen_gvec_add)
DO_3SAME(VSUB, tcg_gen_gvec_sub)
DO_3SAME(VAND, tcg_gen_gvec_and)
DO_3SAME(VBIC, tcg_gen_gvec_andc)
DO_3SAME(VORR, tcg_gen_gvec_or)
DO_3SAME(VORN, tcg_gen_gvec_orc)
DO_3SAME(VEOR, tcg_gen_gvec_xor)
/* These insns are all gvec_bitsel but with the inputs in various orders. */
#define DO_3SAME_BITSEL(INSN, O1, O2, O3) \
static void gen_##INSN##_3s(unsigned vece, uint32_t rd_ofs, \
uint32_t rn_ofs, uint32_t rm_ofs, \
uint32_t oprsz, uint32_t maxsz) \
{ \
tcg_gen_gvec_bitsel(vece, rd_ofs, O1, O2, O3, oprsz, maxsz); \
} \
DO_3SAME(INSN, gen_##INSN##_3s)
DO_3SAME_BITSEL(VBSL, rd_ofs, rn_ofs, rm_ofs)
DO_3SAME_BITSEL(VBIT, rm_ofs, rn_ofs, rd_ofs)
DO_3SAME_BITSEL(VBIF, rm_ofs, rd_ofs, rn_ofs)