qemu/hw/m48t59.c
Jan Kiszka 8217606e6e Introduce reset notifier order
Add the parameter 'order' to qemu_register_reset and sort callbacks on
registration. On system reset, callbacks with lower order will be
invoked before those with higher order. Update all existing users to the
standard order 0.

Note: At least for x86, the existing users seem to assume that handlers
are called in their registration order. Therefore, the patch preserves
this property. If someone feels bored, (s)he could try to identify this
dependency and express it properly on callback registration.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-05-22 10:50:34 -05:00

650 lines
16 KiB
C

/*
* QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
*
* Copyright (c) 2003-2005, 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "nvram.h"
#include "isa.h"
#include "qemu-timer.h"
#include "sysemu.h"
//#define DEBUG_NVRAM
#if defined(DEBUG_NVRAM)
#define NVRAM_PRINTF(fmt, ...) do { printf(fmt , ## __VA_ARGS__); } while (0)
#else
#define NVRAM_PRINTF(fmt, ...) do { } while (0)
#endif
/*
* The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
* alarm and a watchdog timer and related control registers. In the
* PPC platform there is also a nvram lock function.
*/
struct m48t59_t {
/* Model parameters */
int type; // 2 = m48t02, 8 = m48t08, 59 = m48t59
/* Hardware parameters */
qemu_irq IRQ;
int mem_index;
uint32_t io_base;
uint16_t size;
/* RTC management */
time_t time_offset;
time_t stop_time;
/* Alarm & watchdog */
struct tm alarm;
struct QEMUTimer *alrm_timer;
struct QEMUTimer *wd_timer;
/* NVRAM storage */
uint8_t lock;
uint16_t addr;
uint8_t *buffer;
};
/* Fake timer functions */
/* Generic helpers for BCD */
static inline uint8_t toBCD (uint8_t value)
{
return (((value / 10) % 10) << 4) | (value % 10);
}
static inline uint8_t fromBCD (uint8_t BCD)
{
return ((BCD >> 4) * 10) + (BCD & 0x0F);
}
/* Alarm management */
static void alarm_cb (void *opaque)
{
struct tm tm;
uint64_t next_time;
m48t59_t *NVRAM = opaque;
qemu_set_irq(NVRAM->IRQ, 1);
if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a month */
qemu_get_timedate(&tm, NVRAM->time_offset);
tm.tm_mon++;
if (tm.tm_mon == 13) {
tm.tm_mon = 1;
tm.tm_year++;
}
next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a day */
next_time = 24 * 60 * 60;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once an hour */
next_time = 60 * 60;
} else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
(NVRAM->buffer[0x1FF2] & 0x80) == 0) {
/* Repeat once a minute */
next_time = 60;
} else {
/* Repeat once a second */
next_time = 1;
}
qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock(vm_clock) +
next_time * 1000);
qemu_set_irq(NVRAM->IRQ, 0);
}
static void set_alarm (m48t59_t *NVRAM)
{
int diff;
if (NVRAM->alrm_timer != NULL) {
qemu_del_timer(NVRAM->alrm_timer);
diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
if (diff > 0)
qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
}
}
/* RTC management helpers */
static inline void get_time (m48t59_t *NVRAM, struct tm *tm)
{
qemu_get_timedate(tm, NVRAM->time_offset);
}
static void set_time (m48t59_t *NVRAM, struct tm *tm)
{
NVRAM->time_offset = qemu_timedate_diff(tm);
set_alarm(NVRAM);
}
/* Watchdog management */
static void watchdog_cb (void *opaque)
{
m48t59_t *NVRAM = opaque;
NVRAM->buffer[0x1FF0] |= 0x80;
if (NVRAM->buffer[0x1FF7] & 0x80) {
NVRAM->buffer[0x1FF7] = 0x00;
NVRAM->buffer[0x1FFC] &= ~0x40;
/* May it be a hw CPU Reset instead ? */
qemu_system_reset_request();
} else {
qemu_set_irq(NVRAM->IRQ, 1);
qemu_set_irq(NVRAM->IRQ, 0);
}
}
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
{
uint64_t interval; /* in 1/16 seconds */
NVRAM->buffer[0x1FF0] &= ~0x80;
if (NVRAM->wd_timer != NULL) {
qemu_del_timer(NVRAM->wd_timer);
if (value != 0) {
interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
((interval * 1000) >> 4));
}
}
}
/* Direct access to NVRAM */
void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
{
m48t59_t *NVRAM = opaque;
struct tm tm;
int tmp;
if (addr > 0x1FF8 && addr < 0x2000)
NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
/* check for NVRAM access */
if ((NVRAM->type == 2 && addr < 0x7f8) ||
(NVRAM->type == 8 && addr < 0x1ff8) ||
(NVRAM->type == 59 && addr < 0x1ff0))
goto do_write;
/* TOD access */
switch (addr) {
case 0x1FF0:
/* flags register : read-only */
break;
case 0x1FF1:
/* unused */
break;
case 0x1FF2:
/* alarm seconds */
tmp = fromBCD(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
NVRAM->alarm.tm_sec = tmp;
NVRAM->buffer[0x1FF2] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF3:
/* alarm minutes */
tmp = fromBCD(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
NVRAM->alarm.tm_min = tmp;
NVRAM->buffer[0x1FF3] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF4:
/* alarm hours */
tmp = fromBCD(val & 0x3F);
if (tmp >= 0 && tmp <= 23) {
NVRAM->alarm.tm_hour = tmp;
NVRAM->buffer[0x1FF4] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF5:
/* alarm date */
tmp = fromBCD(val & 0x1F);
if (tmp != 0) {
NVRAM->alarm.tm_mday = tmp;
NVRAM->buffer[0x1FF5] = val;
set_alarm(NVRAM);
}
break;
case 0x1FF6:
/* interrupts */
NVRAM->buffer[0x1FF6] = val;
break;
case 0x1FF7:
/* watchdog */
NVRAM->buffer[0x1FF7] = val;
set_up_watchdog(NVRAM, val);
break;
case 0x1FF8:
case 0x07F8:
/* control */
NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
break;
case 0x1FF9:
case 0x07F9:
/* seconds (BCD) */
tmp = fromBCD(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_time(NVRAM, &tm);
tm.tm_sec = tmp;
set_time(NVRAM, &tm);
}
if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
if (val & 0x80) {
NVRAM->stop_time = time(NULL);
} else {
NVRAM->time_offset += NVRAM->stop_time - time(NULL);
NVRAM->stop_time = 0;
}
}
NVRAM->buffer[addr] = val & 0x80;
break;
case 0x1FFA:
case 0x07FA:
/* minutes (BCD) */
tmp = fromBCD(val & 0x7F);
if (tmp >= 0 && tmp <= 59) {
get_time(NVRAM, &tm);
tm.tm_min = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFB:
case 0x07FB:
/* hours (BCD) */
tmp = fromBCD(val & 0x3F);
if (tmp >= 0 && tmp <= 23) {
get_time(NVRAM, &tm);
tm.tm_hour = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFC:
case 0x07FC:
/* day of the week / century */
tmp = fromBCD(val & 0x07);
get_time(NVRAM, &tm);
tm.tm_wday = tmp;
set_time(NVRAM, &tm);
NVRAM->buffer[addr] = val & 0x40;
break;
case 0x1FFD:
case 0x07FD:
/* date */
tmp = fromBCD(val & 0x1F);
if (tmp != 0) {
get_time(NVRAM, &tm);
tm.tm_mday = tmp;
set_time(NVRAM, &tm);
}
break;
case 0x1FFE:
case 0x07FE:
/* month */
tmp = fromBCD(val & 0x1F);
if (tmp >= 1 && tmp <= 12) {
get_time(NVRAM, &tm);
tm.tm_mon = tmp - 1;
set_time(NVRAM, &tm);
}
break;
case 0x1FFF:
case 0x07FF:
/* year */
tmp = fromBCD(val);
if (tmp >= 0 && tmp <= 99) {
get_time(NVRAM, &tm);
if (NVRAM->type == 8)
tm.tm_year = fromBCD(val) + 68; // Base year is 1968
else
tm.tm_year = fromBCD(val);
set_time(NVRAM, &tm);
}
break;
default:
/* Check lock registers state */
if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
break;
if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
break;
do_write:
if (addr < NVRAM->size) {
NVRAM->buffer[addr] = val & 0xFF;
}
break;
}
}
uint32_t m48t59_read (void *opaque, uint32_t addr)
{
m48t59_t *NVRAM = opaque;
struct tm tm;
uint32_t retval = 0xFF;
/* check for NVRAM access */
if ((NVRAM->type == 2 && addr < 0x078f) ||
(NVRAM->type == 8 && addr < 0x1ff8) ||
(NVRAM->type == 59 && addr < 0x1ff0))
goto do_read;
/* TOD access */
switch (addr) {
case 0x1FF0:
/* flags register */
goto do_read;
case 0x1FF1:
/* unused */
retval = 0;
break;
case 0x1FF2:
/* alarm seconds */
goto do_read;
case 0x1FF3:
/* alarm minutes */
goto do_read;
case 0x1FF4:
/* alarm hours */
goto do_read;
case 0x1FF5:
/* alarm date */
goto do_read;
case 0x1FF6:
/* interrupts */
goto do_read;
case 0x1FF7:
/* A read resets the watchdog */
set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
goto do_read;
case 0x1FF8:
case 0x07F8:
/* control */
goto do_read;
case 0x1FF9:
case 0x07F9:
/* seconds (BCD) */
get_time(NVRAM, &tm);
retval = (NVRAM->buffer[addr] & 0x80) | toBCD(tm.tm_sec);
break;
case 0x1FFA:
case 0x07FA:
/* minutes (BCD) */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_min);
break;
case 0x1FFB:
case 0x07FB:
/* hours (BCD) */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_hour);
break;
case 0x1FFC:
case 0x07FC:
/* day of the week / century */
get_time(NVRAM, &tm);
retval = NVRAM->buffer[addr] | tm.tm_wday;
break;
case 0x1FFD:
case 0x07FD:
/* date */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_mday);
break;
case 0x1FFE:
case 0x07FE:
/* month */
get_time(NVRAM, &tm);
retval = toBCD(tm.tm_mon + 1);
break;
case 0x1FFF:
case 0x07FF:
/* year */
get_time(NVRAM, &tm);
if (NVRAM->type == 8)
retval = toBCD(tm.tm_year - 68); // Base year is 1968
else
retval = toBCD(tm.tm_year);
break;
default:
/* Check lock registers state */
if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
break;
if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
break;
do_read:
if (addr < NVRAM->size) {
retval = NVRAM->buffer[addr];
}
break;
}
if (addr > 0x1FF9 && addr < 0x2000)
NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
return retval;
}
void m48t59_set_addr (void *opaque, uint32_t addr)
{
m48t59_t *NVRAM = opaque;
NVRAM->addr = addr;
}
void m48t59_toggle_lock (void *opaque, int lock)
{
m48t59_t *NVRAM = opaque;
NVRAM->lock ^= 1 << lock;
}
/* IO access to NVRAM */
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
{
m48t59_t *NVRAM = opaque;
addr -= NVRAM->io_base;
NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
switch (addr) {
case 0:
NVRAM->addr &= ~0x00FF;
NVRAM->addr |= val;
break;
case 1:
NVRAM->addr &= ~0xFF00;
NVRAM->addr |= val << 8;
break;
case 3:
m48t59_write(NVRAM, val, NVRAM->addr);
NVRAM->addr = 0x0000;
break;
default:
break;
}
}
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
{
m48t59_t *NVRAM = opaque;
uint32_t retval;
addr -= NVRAM->io_base;
switch (addr) {
case 3:
retval = m48t59_read(NVRAM, NVRAM->addr);
break;
default:
retval = -1;
break;
}
NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
return retval;
}
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
{
m48t59_t *NVRAM = opaque;
m48t59_write(NVRAM, addr, value & 0xff);
}
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
{
m48t59_t *NVRAM = opaque;
m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
m48t59_write(NVRAM, addr + 1, value & 0xff);
}
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
m48t59_t *NVRAM = opaque;
m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
m48t59_write(NVRAM, addr + 3, value & 0xff);
}
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
{
m48t59_t *NVRAM = opaque;
uint32_t retval;
retval = m48t59_read(NVRAM, addr);
return retval;
}
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
{
m48t59_t *NVRAM = opaque;
uint32_t retval;
retval = m48t59_read(NVRAM, addr) << 8;
retval |= m48t59_read(NVRAM, addr + 1);
return retval;
}
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
{
m48t59_t *NVRAM = opaque;
uint32_t retval;
retval = m48t59_read(NVRAM, addr) << 24;
retval |= m48t59_read(NVRAM, addr + 1) << 16;
retval |= m48t59_read(NVRAM, addr + 2) << 8;
retval |= m48t59_read(NVRAM, addr + 3);
return retval;
}
static CPUWriteMemoryFunc *nvram_write[] = {
&nvram_writeb,
&nvram_writew,
&nvram_writel,
};
static CPUReadMemoryFunc *nvram_read[] = {
&nvram_readb,
&nvram_readw,
&nvram_readl,
};
static void m48t59_save(QEMUFile *f, void *opaque)
{
m48t59_t *s = opaque;
qemu_put_8s(f, &s->lock);
qemu_put_be16s(f, &s->addr);
qemu_put_buffer(f, s->buffer, s->size);
}
static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
{
m48t59_t *s = opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_8s(f, &s->lock);
qemu_get_be16s(f, &s->addr);
qemu_get_buffer(f, s->buffer, s->size);
return 0;
}
static void m48t59_reset(void *opaque)
{
m48t59_t *NVRAM = opaque;
NVRAM->addr = 0;
NVRAM->lock = 0;
if (NVRAM->alrm_timer != NULL)
qemu_del_timer(NVRAM->alrm_timer);
if (NVRAM->wd_timer != NULL)
qemu_del_timer(NVRAM->wd_timer);
}
/* Initialisation routine */
m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
uint32_t io_base, uint16_t size,
int type)
{
m48t59_t *s;
target_phys_addr_t save_base;
s = qemu_mallocz(sizeof(m48t59_t));
s->buffer = qemu_mallocz(size);
s->IRQ = IRQ;
s->size = size;
s->io_base = io_base;
s->type = type;
if (io_base != 0) {
register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
}
if (mem_base != 0) {
s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
cpu_register_physical_memory(mem_base, size, s->mem_index);
}
if (type == 59) {
s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
}
qemu_get_timedate(&s->alarm, 0);
qemu_register_reset(m48t59_reset, 0, s);
save_base = mem_base ? mem_base : io_base;
register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
return s;
}