5b0c2742c8
Analyzing qemu-produced core dumps of multi-threaded apps runs into:
(gdb) info threads
[...]
21 Thread 0x3ff83cc0740 (LWP 9295) warning: Couldn't find general-purpose registers in core file.
<unavailable> in ?? ()
The reason is that all pr_pid values are the same, because the same
TaskState is used for all CPUs when generating NT_PRSTATUS notes.
Fix by using TaskStates associated with individual CPUs.
Cc: qemu-stable@nongnu.org
Fixes: 243c470662
("linux-user/elfload: Write corefile elf header in one block")
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20240801202340.21845-1-iii@linux.ibm.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
4461 lines
137 KiB
C
4461 lines
137 KiB
C
/* This is the Linux kernel elf-loading code, ported into user space */
|
|
#include "qemu/osdep.h"
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/prctl.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/shm.h>
|
|
|
|
#include "qemu.h"
|
|
#include "user/tswap-target.h"
|
|
#include "exec/page-protection.h"
|
|
#include "user/guest-base.h"
|
|
#include "user-internals.h"
|
|
#include "signal-common.h"
|
|
#include "loader.h"
|
|
#include "user-mmap.h"
|
|
#include "disas/disas.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/path.h"
|
|
#include "qemu/queue.h"
|
|
#include "qemu/guest-random.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/selfmap.h"
|
|
#include "qemu/lockable.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/error-report.h"
|
|
#include "target_signal.h"
|
|
#include "tcg/debuginfo.h"
|
|
|
|
#ifdef TARGET_ARM
|
|
#include "target/arm/cpu-features.h"
|
|
#endif
|
|
|
|
#ifdef _ARCH_PPC64
|
|
#undef ARCH_DLINFO
|
|
#undef ELF_PLATFORM
|
|
#undef ELF_HWCAP
|
|
#undef ELF_HWCAP2
|
|
#undef ELF_CLASS
|
|
#undef ELF_DATA
|
|
#undef ELF_ARCH
|
|
#endif
|
|
|
|
#ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
|
|
#define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
|
|
#endif
|
|
|
|
typedef struct {
|
|
const uint8_t *image;
|
|
const uint32_t *relocs;
|
|
unsigned image_size;
|
|
unsigned reloc_count;
|
|
unsigned sigreturn_ofs;
|
|
unsigned rt_sigreturn_ofs;
|
|
} VdsoImageInfo;
|
|
|
|
#define ELF_OSABI ELFOSABI_SYSV
|
|
|
|
/* from personality.h */
|
|
|
|
/*
|
|
* Flags for bug emulation.
|
|
*
|
|
* These occupy the top three bytes.
|
|
*/
|
|
enum {
|
|
ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
|
|
FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
|
|
descriptors (signal handling) */
|
|
MMAP_PAGE_ZERO = 0x0100000,
|
|
ADDR_COMPAT_LAYOUT = 0x0200000,
|
|
READ_IMPLIES_EXEC = 0x0400000,
|
|
ADDR_LIMIT_32BIT = 0x0800000,
|
|
SHORT_INODE = 0x1000000,
|
|
WHOLE_SECONDS = 0x2000000,
|
|
STICKY_TIMEOUTS = 0x4000000,
|
|
ADDR_LIMIT_3GB = 0x8000000,
|
|
};
|
|
|
|
/*
|
|
* Personality types.
|
|
*
|
|
* These go in the low byte. Avoid using the top bit, it will
|
|
* conflict with error returns.
|
|
*/
|
|
enum {
|
|
PER_LINUX = 0x0000,
|
|
PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
|
|
PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
|
|
PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
|
|
PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
|
|
PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
|
|
PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
|
|
PER_BSD = 0x0006,
|
|
PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
|
|
PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_LINUX32 = 0x0008,
|
|
PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
|
|
PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
|
|
PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
|
|
PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
|
|
PER_RISCOS = 0x000c,
|
|
PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
|
|
PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
|
|
PER_OSF4 = 0x000f, /* OSF/1 v4 */
|
|
PER_HPUX = 0x0010,
|
|
PER_MASK = 0x00ff,
|
|
};
|
|
|
|
/*
|
|
* Return the base personality without flags.
|
|
*/
|
|
#define personality(pers) (pers & PER_MASK)
|
|
|
|
int info_is_fdpic(struct image_info *info)
|
|
{
|
|
return info->personality == PER_LINUX_FDPIC;
|
|
}
|
|
|
|
/* this flag is uneffective under linux too, should be deleted */
|
|
#ifndef MAP_DENYWRITE
|
|
#define MAP_DENYWRITE 0
|
|
#endif
|
|
|
|
/* should probably go in elf.h */
|
|
#ifndef ELIBBAD
|
|
#define ELIBBAD 80
|
|
#endif
|
|
|
|
#if TARGET_BIG_ENDIAN
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#else
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI_MIPSN32
|
|
typedef abi_ullong target_elf_greg_t;
|
|
#define tswapreg(ptr) tswap64(ptr)
|
|
#else
|
|
typedef abi_ulong target_elf_greg_t;
|
|
#define tswapreg(ptr) tswapal(ptr)
|
|
#endif
|
|
|
|
#ifdef USE_UID16
|
|
typedef abi_ushort target_uid_t;
|
|
typedef abi_ushort target_gid_t;
|
|
#else
|
|
typedef abi_uint target_uid_t;
|
|
typedef abi_uint target_gid_t;
|
|
#endif
|
|
typedef abi_int target_pid_t;
|
|
|
|
#ifdef TARGET_I386
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
X86CPU *cpu = X86_CPU(thread_cpu);
|
|
|
|
return cpu->env.features[FEAT_1_EDX];
|
|
}
|
|
|
|
#ifdef TARGET_X86_64
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_X86_64
|
|
|
|
#define ELF_PLATFORM "x86_64"
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->rax = 0;
|
|
regs->rsp = infop->start_stack;
|
|
regs->rip = infop->entry;
|
|
}
|
|
|
|
#define ELF_NREG 27
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/*
|
|
* Note that ELF_NREG should be 29 as there should be place for
|
|
* TRAPNO and ERR "registers" as well but linux doesn't dump
|
|
* those.
|
|
*
|
|
* See linux kernel: arch/x86/include/asm/elf.h
|
|
*/
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->regs[15]);
|
|
(*regs)[1] = tswapreg(env->regs[14]);
|
|
(*regs)[2] = tswapreg(env->regs[13]);
|
|
(*regs)[3] = tswapreg(env->regs[12]);
|
|
(*regs)[4] = tswapreg(env->regs[R_EBP]);
|
|
(*regs)[5] = tswapreg(env->regs[R_EBX]);
|
|
(*regs)[6] = tswapreg(env->regs[11]);
|
|
(*regs)[7] = tswapreg(env->regs[10]);
|
|
(*regs)[8] = tswapreg(env->regs[9]);
|
|
(*regs)[9] = tswapreg(env->regs[8]);
|
|
(*regs)[10] = tswapreg(env->regs[R_EAX]);
|
|
(*regs)[11] = tswapreg(env->regs[R_ECX]);
|
|
(*regs)[12] = tswapreg(env->regs[R_EDX]);
|
|
(*regs)[13] = tswapreg(env->regs[R_ESI]);
|
|
(*regs)[14] = tswapreg(env->regs[R_EDI]);
|
|
(*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
|
|
(*regs)[16] = tswapreg(env->eip);
|
|
(*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
|
|
(*regs)[18] = tswapreg(env->eflags);
|
|
(*regs)[19] = tswapreg(env->regs[R_ESP]);
|
|
(*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
|
|
(*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
|
|
(*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
|
|
(*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
|
|
(*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
|
|
(*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
|
|
(*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
|
|
}
|
|
|
|
#if ULONG_MAX > UINT32_MAX
|
|
#define INIT_GUEST_COMMPAGE
|
|
static bool init_guest_commpage(void)
|
|
{
|
|
/*
|
|
* The vsyscall page is at a high negative address aka kernel space,
|
|
* which means that we cannot actually allocate it with target_mmap.
|
|
* We still should be able to use page_set_flags, unless the user
|
|
* has specified -R reserved_va, which would trigger an assert().
|
|
*/
|
|
if (reserved_va != 0 &&
|
|
TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
|
|
error_report("Cannot allocate vsyscall page");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
page_set_flags(TARGET_VSYSCALL_PAGE,
|
|
TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
|
|
PAGE_EXEC | PAGE_VALID);
|
|
return true;
|
|
}
|
|
#endif
|
|
#else
|
|
|
|
/*
|
|
* This is used to ensure we don't load something for the wrong architecture.
|
|
*/
|
|
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
|
|
|
|
/*
|
|
* These are used to set parameters in the core dumps.
|
|
*/
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_386
|
|
|
|
#define ELF_PLATFORM get_elf_platform()
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
static const char *get_elf_platform(void)
|
|
{
|
|
static char elf_platform[] = "i386";
|
|
int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
|
|
if (family > 6) {
|
|
family = 6;
|
|
}
|
|
if (family >= 3) {
|
|
elf_platform[1] = '0' + family;
|
|
}
|
|
return elf_platform;
|
|
}
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->esp = infop->start_stack;
|
|
regs->eip = infop->entry;
|
|
|
|
/* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
|
|
starts %edx contains a pointer to a function which might be
|
|
registered using `atexit'. This provides a mean for the
|
|
dynamic linker to call DT_FINI functions for shared libraries
|
|
that have been loaded before the code runs.
|
|
|
|
A value of 0 tells we have no such handler. */
|
|
regs->edx = 0;
|
|
}
|
|
|
|
#define ELF_NREG 17
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/*
|
|
* Note that ELF_NREG should be 19 as there should be place for
|
|
* TRAPNO and ERR "registers" as well but linux doesn't dump
|
|
* those.
|
|
*
|
|
* See linux kernel: arch/x86/include/asm/elf.h
|
|
*/
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->regs[R_EBX]);
|
|
(*regs)[1] = tswapreg(env->regs[R_ECX]);
|
|
(*regs)[2] = tswapreg(env->regs[R_EDX]);
|
|
(*regs)[3] = tswapreg(env->regs[R_ESI]);
|
|
(*regs)[4] = tswapreg(env->regs[R_EDI]);
|
|
(*regs)[5] = tswapreg(env->regs[R_EBP]);
|
|
(*regs)[6] = tswapreg(env->regs[R_EAX]);
|
|
(*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
|
|
(*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
|
|
(*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
|
|
(*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
|
|
(*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
|
|
(*regs)[12] = tswapreg(env->eip);
|
|
(*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
|
|
(*regs)[14] = tswapreg(env->eflags);
|
|
(*regs)[15] = tswapreg(env->regs[R_ESP]);
|
|
(*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
|
|
}
|
|
|
|
/*
|
|
* i386 is the only target which supplies AT_SYSINFO for the vdso.
|
|
* All others only supply AT_SYSINFO_EHDR.
|
|
*/
|
|
#define DLINFO_ARCH_ITEMS (vdso_info != NULL)
|
|
#define ARCH_DLINFO \
|
|
do { \
|
|
if (vdso_info) { \
|
|
NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \
|
|
} \
|
|
} while (0)
|
|
|
|
#endif /* TARGET_X86_64 */
|
|
|
|
#define VDSO_HEADER "vdso.c.inc"
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_I386 */
|
|
|
|
#ifdef TARGET_ARM
|
|
|
|
#ifndef TARGET_AARCH64
|
|
/* 32 bit ARM definitions */
|
|
|
|
#define ELF_ARCH EM_ARM
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
abi_long stack = infop->start_stack;
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
regs->uregs[16] = ARM_CPU_MODE_USR;
|
|
if (infop->entry & 1) {
|
|
regs->uregs[16] |= CPSR_T;
|
|
}
|
|
regs->uregs[15] = infop->entry & 0xfffffffe;
|
|
regs->uregs[13] = infop->start_stack;
|
|
/* FIXME - what to for failure of get_user()? */
|
|
get_user_ual(regs->uregs[2], stack + 8); /* envp */
|
|
get_user_ual(regs->uregs[1], stack + 4); /* envp */
|
|
/* XXX: it seems that r0 is zeroed after ! */
|
|
regs->uregs[0] = 0;
|
|
/* For uClinux PIC binaries. */
|
|
/* XXX: Linux does this only on ARM with no MMU (do we care ?) */
|
|
regs->uregs[10] = infop->start_data;
|
|
|
|
/* Support ARM FDPIC. */
|
|
if (info_is_fdpic(infop)) {
|
|
/* As described in the ABI document, r7 points to the loadmap info
|
|
* prepared by the kernel. If an interpreter is needed, r8 points
|
|
* to the interpreter loadmap and r9 points to the interpreter
|
|
* PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
|
|
* r9 points to the main program PT_DYNAMIC info.
|
|
*/
|
|
regs->uregs[7] = infop->loadmap_addr;
|
|
if (infop->interpreter_loadmap_addr) {
|
|
/* Executable is dynamically loaded. */
|
|
regs->uregs[8] = infop->interpreter_loadmap_addr;
|
|
regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
|
|
} else {
|
|
regs->uregs[8] = 0;
|
|
regs->uregs[9] = infop->pt_dynamic_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define ELF_NREG 18
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->regs[0]);
|
|
(*regs)[1] = tswapreg(env->regs[1]);
|
|
(*regs)[2] = tswapreg(env->regs[2]);
|
|
(*regs)[3] = tswapreg(env->regs[3]);
|
|
(*regs)[4] = tswapreg(env->regs[4]);
|
|
(*regs)[5] = tswapreg(env->regs[5]);
|
|
(*regs)[6] = tswapreg(env->regs[6]);
|
|
(*regs)[7] = tswapreg(env->regs[7]);
|
|
(*regs)[8] = tswapreg(env->regs[8]);
|
|
(*regs)[9] = tswapreg(env->regs[9]);
|
|
(*regs)[10] = tswapreg(env->regs[10]);
|
|
(*regs)[11] = tswapreg(env->regs[11]);
|
|
(*regs)[12] = tswapreg(env->regs[12]);
|
|
(*regs)[13] = tswapreg(env->regs[13]);
|
|
(*regs)[14] = tswapreg(env->regs[14]);
|
|
(*regs)[15] = tswapreg(env->regs[15]);
|
|
|
|
(*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
|
|
(*regs)[17] = tswapreg(env->regs[0]); /* XXX */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum
|
|
{
|
|
ARM_HWCAP_ARM_SWP = 1 << 0,
|
|
ARM_HWCAP_ARM_HALF = 1 << 1,
|
|
ARM_HWCAP_ARM_THUMB = 1 << 2,
|
|
ARM_HWCAP_ARM_26BIT = 1 << 3,
|
|
ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
|
|
ARM_HWCAP_ARM_FPA = 1 << 5,
|
|
ARM_HWCAP_ARM_VFP = 1 << 6,
|
|
ARM_HWCAP_ARM_EDSP = 1 << 7,
|
|
ARM_HWCAP_ARM_JAVA = 1 << 8,
|
|
ARM_HWCAP_ARM_IWMMXT = 1 << 9,
|
|
ARM_HWCAP_ARM_CRUNCH = 1 << 10,
|
|
ARM_HWCAP_ARM_THUMBEE = 1 << 11,
|
|
ARM_HWCAP_ARM_NEON = 1 << 12,
|
|
ARM_HWCAP_ARM_VFPv3 = 1 << 13,
|
|
ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
|
|
ARM_HWCAP_ARM_TLS = 1 << 15,
|
|
ARM_HWCAP_ARM_VFPv4 = 1 << 16,
|
|
ARM_HWCAP_ARM_IDIVA = 1 << 17,
|
|
ARM_HWCAP_ARM_IDIVT = 1 << 18,
|
|
ARM_HWCAP_ARM_VFPD32 = 1 << 19,
|
|
ARM_HWCAP_ARM_LPAE = 1 << 20,
|
|
ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
|
|
ARM_HWCAP_ARM_FPHP = 1 << 22,
|
|
ARM_HWCAP_ARM_ASIMDHP = 1 << 23,
|
|
ARM_HWCAP_ARM_ASIMDDP = 1 << 24,
|
|
ARM_HWCAP_ARM_ASIMDFHM = 1 << 25,
|
|
ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
|
|
ARM_HWCAP_ARM_I8MM = 1 << 27,
|
|
};
|
|
|
|
enum {
|
|
ARM_HWCAP2_ARM_AES = 1 << 0,
|
|
ARM_HWCAP2_ARM_PMULL = 1 << 1,
|
|
ARM_HWCAP2_ARM_SHA1 = 1 << 2,
|
|
ARM_HWCAP2_ARM_SHA2 = 1 << 3,
|
|
ARM_HWCAP2_ARM_CRC32 = 1 << 4,
|
|
ARM_HWCAP2_ARM_SB = 1 << 5,
|
|
ARM_HWCAP2_ARM_SSBS = 1 << 6,
|
|
};
|
|
|
|
/* The commpage only exists for 32 bit kernels */
|
|
|
|
#define HI_COMMPAGE (intptr_t)0xffff0f00u
|
|
|
|
static bool init_guest_commpage(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
int host_page_size = qemu_real_host_page_size();
|
|
abi_ptr commpage;
|
|
void *want;
|
|
void *addr;
|
|
|
|
/*
|
|
* M-profile allocates maximum of 2GB address space, so can never
|
|
* allocate the commpage. Skip it.
|
|
*/
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
|
|
return true;
|
|
}
|
|
|
|
commpage = HI_COMMPAGE & -host_page_size;
|
|
want = g2h_untagged(commpage);
|
|
addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE |
|
|
(commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
|
|
-1, 0);
|
|
|
|
if (addr == MAP_FAILED) {
|
|
perror("Allocating guest commpage");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (addr != want) {
|
|
return false;
|
|
}
|
|
|
|
/* Set kernel helper versions; rest of page is 0. */
|
|
__put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
|
|
|
|
if (mprotect(addr, host_page_size, PROT_READ)) {
|
|
perror("Protecting guest commpage");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
page_set_flags(commpage, commpage | (host_page_size - 1),
|
|
PAGE_READ | PAGE_EXEC | PAGE_VALID);
|
|
return true;
|
|
}
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
#define ELF_HWCAP2 get_elf_hwcap2()
|
|
|
|
uint32_t get_elf_hwcap(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
hwcaps |= ARM_HWCAP_ARM_SWP;
|
|
hwcaps |= ARM_HWCAP_ARM_HALF;
|
|
hwcaps |= ARM_HWCAP_ARM_THUMB;
|
|
hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
|
|
|
|
/* probe for the extra features */
|
|
#define GET_FEATURE(feat, hwcap) \
|
|
do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
|
|
|
|
#define GET_FEATURE_ID(feat, hwcap) \
|
|
do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
|
|
|
|
/* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
|
|
GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
|
|
GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
|
|
GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
|
|
GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
|
|
GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
|
|
GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
|
|
GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
|
|
GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
|
|
GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
|
|
|
|
if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
|
|
cpu_isar_feature(aa32_fpdp_v3, cpu)) {
|
|
hwcaps |= ARM_HWCAP_ARM_VFPv3;
|
|
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
|
|
hwcaps |= ARM_HWCAP_ARM_VFPD32;
|
|
} else {
|
|
hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
|
|
}
|
|
}
|
|
GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
|
|
/*
|
|
* MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
|
|
* isar_feature function for both. The kernel reports them as two hwcaps.
|
|
*/
|
|
GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
|
|
GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
|
|
GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
|
|
GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
|
|
GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
|
|
GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
uint64_t get_elf_hwcap2(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint64_t hwcaps = 0;
|
|
|
|
GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
|
|
GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
|
|
GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
|
|
GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
|
|
GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
|
|
GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
|
|
GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
|
|
return hwcaps;
|
|
}
|
|
|
|
const char *elf_hwcap_str(uint32_t bit)
|
|
{
|
|
static const char *hwcap_str[] = {
|
|
[__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
|
|
[__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm",
|
|
};
|
|
|
|
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
|
|
}
|
|
|
|
const char *elf_hwcap2_str(uint32_t bit)
|
|
{
|
|
static const char *hwcap_str[] = {
|
|
[__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes",
|
|
[__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
|
|
[__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
|
|
[__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
|
|
[__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
|
|
[__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb",
|
|
[__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
|
|
};
|
|
|
|
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
|
|
}
|
|
|
|
#undef GET_FEATURE
|
|
#undef GET_FEATURE_ID
|
|
|
|
#define ELF_PLATFORM get_elf_platform()
|
|
|
|
static const char *get_elf_platform(void)
|
|
{
|
|
CPUARMState *env = cpu_env(thread_cpu);
|
|
|
|
#if TARGET_BIG_ENDIAN
|
|
# define END "b"
|
|
#else
|
|
# define END "l"
|
|
#endif
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
return "v8" END;
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return "v7m" END;
|
|
} else {
|
|
return "v7" END;
|
|
}
|
|
} else if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
return "v6" END;
|
|
} else if (arm_feature(env, ARM_FEATURE_V5)) {
|
|
return "v5" END;
|
|
} else {
|
|
return "v4" END;
|
|
}
|
|
|
|
#undef END
|
|
}
|
|
|
|
#else
|
|
/* 64 bit ARM definitions */
|
|
|
|
#define ELF_ARCH EM_AARCH64
|
|
#define ELF_CLASS ELFCLASS64
|
|
#if TARGET_BIG_ENDIAN
|
|
# define ELF_PLATFORM "aarch64_be"
|
|
#else
|
|
# define ELF_PLATFORM "aarch64"
|
|
#endif
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
abi_long stack = infop->start_stack;
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
regs->pc = infop->entry & ~0x3ULL;
|
|
regs->sp = stack;
|
|
}
|
|
|
|
#define ELF_NREG 34
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUARMState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[i] = tswapreg(env->xregs[i]);
|
|
}
|
|
(*regs)[32] = tswapreg(env->pc);
|
|
(*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum {
|
|
ARM_HWCAP_A64_FP = 1 << 0,
|
|
ARM_HWCAP_A64_ASIMD = 1 << 1,
|
|
ARM_HWCAP_A64_EVTSTRM = 1 << 2,
|
|
ARM_HWCAP_A64_AES = 1 << 3,
|
|
ARM_HWCAP_A64_PMULL = 1 << 4,
|
|
ARM_HWCAP_A64_SHA1 = 1 << 5,
|
|
ARM_HWCAP_A64_SHA2 = 1 << 6,
|
|
ARM_HWCAP_A64_CRC32 = 1 << 7,
|
|
ARM_HWCAP_A64_ATOMICS = 1 << 8,
|
|
ARM_HWCAP_A64_FPHP = 1 << 9,
|
|
ARM_HWCAP_A64_ASIMDHP = 1 << 10,
|
|
ARM_HWCAP_A64_CPUID = 1 << 11,
|
|
ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
|
|
ARM_HWCAP_A64_JSCVT = 1 << 13,
|
|
ARM_HWCAP_A64_FCMA = 1 << 14,
|
|
ARM_HWCAP_A64_LRCPC = 1 << 15,
|
|
ARM_HWCAP_A64_DCPOP = 1 << 16,
|
|
ARM_HWCAP_A64_SHA3 = 1 << 17,
|
|
ARM_HWCAP_A64_SM3 = 1 << 18,
|
|
ARM_HWCAP_A64_SM4 = 1 << 19,
|
|
ARM_HWCAP_A64_ASIMDDP = 1 << 20,
|
|
ARM_HWCAP_A64_SHA512 = 1 << 21,
|
|
ARM_HWCAP_A64_SVE = 1 << 22,
|
|
ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
|
|
ARM_HWCAP_A64_DIT = 1 << 24,
|
|
ARM_HWCAP_A64_USCAT = 1 << 25,
|
|
ARM_HWCAP_A64_ILRCPC = 1 << 26,
|
|
ARM_HWCAP_A64_FLAGM = 1 << 27,
|
|
ARM_HWCAP_A64_SSBS = 1 << 28,
|
|
ARM_HWCAP_A64_SB = 1 << 29,
|
|
ARM_HWCAP_A64_PACA = 1 << 30,
|
|
ARM_HWCAP_A64_PACG = 1UL << 31,
|
|
|
|
ARM_HWCAP2_A64_DCPODP = 1 << 0,
|
|
ARM_HWCAP2_A64_SVE2 = 1 << 1,
|
|
ARM_HWCAP2_A64_SVEAES = 1 << 2,
|
|
ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
|
|
ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
|
|
ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
|
|
ARM_HWCAP2_A64_SVESM4 = 1 << 6,
|
|
ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
|
|
ARM_HWCAP2_A64_FRINT = 1 << 8,
|
|
ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
|
|
ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
|
|
ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
|
|
ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
|
|
ARM_HWCAP2_A64_I8MM = 1 << 13,
|
|
ARM_HWCAP2_A64_BF16 = 1 << 14,
|
|
ARM_HWCAP2_A64_DGH = 1 << 15,
|
|
ARM_HWCAP2_A64_RNG = 1 << 16,
|
|
ARM_HWCAP2_A64_BTI = 1 << 17,
|
|
ARM_HWCAP2_A64_MTE = 1 << 18,
|
|
ARM_HWCAP2_A64_ECV = 1 << 19,
|
|
ARM_HWCAP2_A64_AFP = 1 << 20,
|
|
ARM_HWCAP2_A64_RPRES = 1 << 21,
|
|
ARM_HWCAP2_A64_MTE3 = 1 << 22,
|
|
ARM_HWCAP2_A64_SME = 1 << 23,
|
|
ARM_HWCAP2_A64_SME_I16I64 = 1 << 24,
|
|
ARM_HWCAP2_A64_SME_F64F64 = 1 << 25,
|
|
ARM_HWCAP2_A64_SME_I8I32 = 1 << 26,
|
|
ARM_HWCAP2_A64_SME_F16F32 = 1 << 27,
|
|
ARM_HWCAP2_A64_SME_B16F32 = 1 << 28,
|
|
ARM_HWCAP2_A64_SME_F32F32 = 1 << 29,
|
|
ARM_HWCAP2_A64_SME_FA64 = 1 << 30,
|
|
ARM_HWCAP2_A64_WFXT = 1ULL << 31,
|
|
ARM_HWCAP2_A64_EBF16 = 1ULL << 32,
|
|
ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33,
|
|
ARM_HWCAP2_A64_CSSC = 1ULL << 34,
|
|
ARM_HWCAP2_A64_RPRFM = 1ULL << 35,
|
|
ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36,
|
|
ARM_HWCAP2_A64_SME2 = 1ULL << 37,
|
|
ARM_HWCAP2_A64_SME2P1 = 1ULL << 38,
|
|
ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39,
|
|
ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40,
|
|
ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41,
|
|
ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42,
|
|
ARM_HWCAP2_A64_MOPS = 1ULL << 43,
|
|
ARM_HWCAP2_A64_HBC = 1ULL << 44,
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
#define ELF_HWCAP2 get_elf_hwcap2()
|
|
|
|
#define GET_FEATURE_ID(feat, hwcap) \
|
|
do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
|
|
|
|
uint32_t get_elf_hwcap(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
hwcaps |= ARM_HWCAP_A64_FP;
|
|
hwcaps |= ARM_HWCAP_A64_ASIMD;
|
|
hwcaps |= ARM_HWCAP_A64_CPUID;
|
|
|
|
/* probe for the extra features */
|
|
|
|
GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
|
|
GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
|
|
GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
|
|
GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
|
|
GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
|
|
GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
|
|
GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
|
|
GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
|
|
GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
|
|
GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
|
|
GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
|
|
GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
|
|
GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
|
|
GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
|
|
GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
|
|
GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
|
|
GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
|
|
GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
|
|
GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
|
|
GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
|
|
GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
|
|
GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
|
|
GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
|
|
GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
|
|
GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
uint64_t get_elf_hwcap2(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(thread_cpu);
|
|
uint64_t hwcaps = 0;
|
|
|
|
GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
|
|
GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
|
|
GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
|
|
GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
|
|
GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
|
|
GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
|
|
GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
|
|
GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
|
|
GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
|
|
GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
|
|
GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
|
|
GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
|
|
GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
|
|
GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
|
|
GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
|
|
GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
|
|
GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
|
|
GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
|
|
GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
|
|
GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
|
|
ARM_HWCAP2_A64_SME_F32F32 |
|
|
ARM_HWCAP2_A64_SME_B16F32 |
|
|
ARM_HWCAP2_A64_SME_F16F32 |
|
|
ARM_HWCAP2_A64_SME_I8I32));
|
|
GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
|
|
GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
|
|
GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
|
|
GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
|
|
GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
const char *elf_hwcap_str(uint32_t bit)
|
|
{
|
|
static const char *hwcap_str[] = {
|
|
[__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp",
|
|
[__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd",
|
|
[__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
|
|
[__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes",
|
|
[__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2",
|
|
[__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32",
|
|
[__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
|
|
[__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp",
|
|
[__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
|
|
[__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid",
|
|
[__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
|
|
[__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt",
|
|
[__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma",
|
|
[__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc",
|
|
[__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4",
|
|
[__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve",
|
|
[__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
|
|
[__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit",
|
|
[__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat",
|
|
[__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc",
|
|
[__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs",
|
|
[__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb",
|
|
[__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca",
|
|
[__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg",
|
|
};
|
|
|
|
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
|
|
}
|
|
|
|
const char *elf_hwcap2_str(uint32_t bit)
|
|
{
|
|
static const char *hwcap_str[] = {
|
|
[__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64",
|
|
[__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops",
|
|
[__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc",
|
|
};
|
|
|
|
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
|
|
}
|
|
|
|
#undef GET_FEATURE_ID
|
|
|
|
#endif /* not TARGET_AARCH64 */
|
|
|
|
#if TARGET_BIG_ENDIAN
|
|
# define VDSO_HEADER "vdso-be.c.inc"
|
|
#else
|
|
# define VDSO_HEADER "vdso-le.c.inc"
|
|
#endif
|
|
|
|
#endif /* TARGET_ARM */
|
|
|
|
#ifdef TARGET_SPARC
|
|
|
|
#ifndef TARGET_SPARC64
|
|
# define ELF_CLASS ELFCLASS32
|
|
# define ELF_ARCH EM_SPARC
|
|
#elif defined(TARGET_ABI32)
|
|
# define ELF_CLASS ELFCLASS32
|
|
# define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
|
|
#else
|
|
# define ELF_CLASS ELFCLASS64
|
|
# define ELF_ARCH EM_SPARCV9
|
|
#endif
|
|
|
|
#include "elf.h"
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
/* There are not many sparc32 hwcap bits -- we have all of them. */
|
|
uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
|
|
HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
|
|
|
|
#ifdef TARGET_SPARC64
|
|
CPUSPARCState *env = cpu_env(thread_cpu);
|
|
uint32_t features = env->def.features;
|
|
|
|
r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
|
|
/* 32x32 multiply and divide are efficient. */
|
|
r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
|
|
/* We don't have an internal feature bit for this. */
|
|
r |= HWCAP_SPARC_POPC;
|
|
r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
|
|
r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
|
|
r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
|
|
r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
|
|
r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
|
|
r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0;
|
|
#endif
|
|
|
|
return r;
|
|
}
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
/* Note that target_cpu_copy_regs does not read psr/tstate. */
|
|
regs->pc = infop->entry;
|
|
regs->npc = regs->pc + 4;
|
|
regs->y = 0;
|
|
regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
|
|
- TARGET_STACK_BIAS);
|
|
}
|
|
#endif /* TARGET_SPARC */
|
|
|
|
#ifdef TARGET_PPC
|
|
|
|
#define ELF_MACHINE PPC_ELF_MACHINE
|
|
|
|
#if defined(TARGET_PPC64)
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_PPC64 )
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
|
|
#else
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
#endif
|
|
|
|
#define ELF_ARCH EM_PPC
|
|
|
|
/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
|
|
See arch/powerpc/include/asm/cputable.h. */
|
|
enum {
|
|
QEMU_PPC_FEATURE_32 = 0x80000000,
|
|
QEMU_PPC_FEATURE_64 = 0x40000000,
|
|
QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
|
|
QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
|
|
QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
|
|
QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
|
|
QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
|
|
QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
|
|
QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
|
|
QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
|
|
QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
|
|
QEMU_PPC_FEATURE_NO_TB = 0x00100000,
|
|
QEMU_PPC_FEATURE_POWER4 = 0x00080000,
|
|
QEMU_PPC_FEATURE_POWER5 = 0x00040000,
|
|
QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
|
|
QEMU_PPC_FEATURE_CELL = 0x00010000,
|
|
QEMU_PPC_FEATURE_BOOKE = 0x00008000,
|
|
QEMU_PPC_FEATURE_SMT = 0x00004000,
|
|
QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
|
|
QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
|
|
QEMU_PPC_FEATURE_PA6T = 0x00000800,
|
|
QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
|
|
QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
|
|
QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
|
|
QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
|
|
QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
|
|
|
|
QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
|
|
QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
|
|
|
|
/* Feature definitions in AT_HWCAP2. */
|
|
QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
|
|
QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
|
|
QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
|
|
QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
|
|
QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
|
|
QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
|
|
QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
|
|
QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
|
|
QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
|
|
QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
|
|
QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
|
|
QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
|
|
QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
|
|
QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
|
|
QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
|
|
uint32_t features = 0;
|
|
|
|
/* We don't have to be terribly complete here; the high points are
|
|
Altivec/FP/SPE support. Anything else is just a bonus. */
|
|
#define GET_FEATURE(flag, feature) \
|
|
do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
|
|
#define GET_FEATURE2(flags, feature) \
|
|
do { \
|
|
if ((cpu->env.insns_flags2 & flags) == flags) { \
|
|
features |= feature; \
|
|
} \
|
|
} while (0)
|
|
GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
|
|
GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
|
|
GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
|
|
GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
|
|
GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
|
|
GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
|
|
GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
|
|
GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
|
|
GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
|
|
GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
|
|
GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
|
|
PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
|
|
QEMU_PPC_FEATURE_ARCH_2_06);
|
|
#undef GET_FEATURE
|
|
#undef GET_FEATURE2
|
|
|
|
return features;
|
|
}
|
|
|
|
#define ELF_HWCAP2 get_elf_hwcap2()
|
|
|
|
static uint32_t get_elf_hwcap2(void)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
|
|
uint32_t features = 0;
|
|
|
|
#define GET_FEATURE(flag, feature) \
|
|
do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
|
|
#define GET_FEATURE2(flag, feature) \
|
|
do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
|
|
|
|
GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
|
|
GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
|
|
GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
|
|
PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
|
|
QEMU_PPC_FEATURE2_VEC_CRYPTO);
|
|
GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
|
|
QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
|
|
GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
|
|
QEMU_PPC_FEATURE2_MMA);
|
|
|
|
#undef GET_FEATURE
|
|
#undef GET_FEATURE2
|
|
|
|
return features;
|
|
}
|
|
|
|
/*
|
|
* The requirements here are:
|
|
* - keep the final alignment of sp (sp & 0xf)
|
|
* - make sure the 32-bit value at the first 16 byte aligned position of
|
|
* AUXV is greater than 16 for glibc compatibility.
|
|
* AT_IGNOREPPC is used for that.
|
|
* - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
|
|
* even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
|
|
*/
|
|
#define DLINFO_ARCH_ITEMS 5
|
|
#define ARCH_DLINFO \
|
|
do { \
|
|
PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
|
|
/* \
|
|
* Handle glibc compatibility: these magic entries must \
|
|
* be at the lowest addresses in the final auxv. \
|
|
*/ \
|
|
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
|
|
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
|
|
NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
|
|
NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
|
|
NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
|
|
} while (0)
|
|
|
|
static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
|
|
{
|
|
_regs->gpr[1] = infop->start_stack;
|
|
#if defined(TARGET_PPC64)
|
|
if (get_ppc64_abi(infop) < 2) {
|
|
uint64_t val;
|
|
get_user_u64(val, infop->entry + 8);
|
|
_regs->gpr[2] = val + infop->load_bias;
|
|
get_user_u64(val, infop->entry);
|
|
infop->entry = val + infop->load_bias;
|
|
} else {
|
|
_regs->gpr[12] = infop->entry; /* r12 set to global entry address */
|
|
}
|
|
#endif
|
|
_regs->nip = infop->entry;
|
|
}
|
|
|
|
/* See linux kernel: arch/powerpc/include/asm/elf.h. */
|
|
#define ELF_NREG 48
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
|
|
{
|
|
int i;
|
|
target_ulong ccr = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
|
|
(*regs)[i] = tswapreg(env->gpr[i]);
|
|
}
|
|
|
|
(*regs)[32] = tswapreg(env->nip);
|
|
(*regs)[33] = tswapreg(env->msr);
|
|
(*regs)[35] = tswapreg(env->ctr);
|
|
(*regs)[36] = tswapreg(env->lr);
|
|
(*regs)[37] = tswapreg(cpu_read_xer(env));
|
|
|
|
ccr = ppc_get_cr(env);
|
|
(*regs)[38] = tswapreg(ccr);
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#ifndef TARGET_PPC64
|
|
# define VDSO_HEADER "vdso-32.c.inc"
|
|
#elif TARGET_BIG_ENDIAN
|
|
# define VDSO_HEADER "vdso-64.c.inc"
|
|
#else
|
|
# define VDSO_HEADER "vdso-64le.c.inc"
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_LOONGARCH64
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_LOONGARCH
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
#define elf_check_arch(x) ((x) == EM_LOONGARCH)
|
|
|
|
#define VDSO_HEADER "vdso.c.inc"
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
/*Set crmd PG,DA = 1,0 */
|
|
regs->csr.crmd = 2 << 3;
|
|
regs->csr.era = infop->entry;
|
|
regs->regs[3] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/loongarch/include/asm/elf.h */
|
|
#define ELF_NREG 45
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
enum {
|
|
TARGET_EF_R0 = 0,
|
|
TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
|
|
TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
|
|
};
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPULoongArchState *env)
|
|
{
|
|
int i;
|
|
|
|
(*regs)[TARGET_EF_R0] = 0;
|
|
|
|
for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
|
|
(*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
|
|
}
|
|
|
|
(*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
|
|
(*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
/* See arch/loongarch/include/uapi/asm/hwcap.h */
|
|
enum {
|
|
HWCAP_LOONGARCH_CPUCFG = (1 << 0),
|
|
HWCAP_LOONGARCH_LAM = (1 << 1),
|
|
HWCAP_LOONGARCH_UAL = (1 << 2),
|
|
HWCAP_LOONGARCH_FPU = (1 << 3),
|
|
HWCAP_LOONGARCH_LSX = (1 << 4),
|
|
HWCAP_LOONGARCH_LASX = (1 << 5),
|
|
HWCAP_LOONGARCH_CRC32 = (1 << 6),
|
|
HWCAP_LOONGARCH_COMPLEX = (1 << 7),
|
|
HWCAP_LOONGARCH_CRYPTO = (1 << 8),
|
|
HWCAP_LOONGARCH_LVZ = (1 << 9),
|
|
HWCAP_LOONGARCH_LBT_X86 = (1 << 10),
|
|
HWCAP_LOONGARCH_LBT_ARM = (1 << 11),
|
|
HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
|
|
};
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
hwcaps |= HWCAP_LOONGARCH_CRC32;
|
|
|
|
if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
|
|
hwcaps |= HWCAP_LOONGARCH_UAL;
|
|
}
|
|
|
|
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
|
|
hwcaps |= HWCAP_LOONGARCH_FPU;
|
|
}
|
|
|
|
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
|
|
hwcaps |= HWCAP_LOONGARCH_LAM;
|
|
}
|
|
|
|
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
|
|
hwcaps |= HWCAP_LOONGARCH_LSX;
|
|
}
|
|
|
|
if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
|
|
hwcaps |= HWCAP_LOONGARCH_LASX;
|
|
}
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
#define ELF_PLATFORM "loongarch"
|
|
|
|
#endif /* TARGET_LOONGARCH64 */
|
|
|
|
#ifdef TARGET_MIPS
|
|
|
|
#ifdef TARGET_MIPS64
|
|
#define ELF_CLASS ELFCLASS64
|
|
#else
|
|
#define ELF_CLASS ELFCLASS32
|
|
#endif
|
|
#define ELF_ARCH EM_MIPS
|
|
#define EXSTACK_DEFAULT true
|
|
|
|
#ifdef TARGET_ABI_MIPSN32
|
|
#define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
|
|
#else
|
|
#define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
|
|
#endif
|
|
|
|
#define ELF_BASE_PLATFORM get_elf_base_platform()
|
|
|
|
#define MATCH_PLATFORM_INSN(_flags, _base_platform) \
|
|
do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
|
|
{ return _base_platform; } } while (0)
|
|
|
|
static const char *get_elf_base_platform(void)
|
|
{
|
|
MIPSCPU *cpu = MIPS_CPU(thread_cpu);
|
|
|
|
/* 64 bit ISAs goes first */
|
|
MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
|
|
|
|
/* 32 bit ISAs */
|
|
MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
|
|
MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
|
|
|
|
/* Fallback */
|
|
return "mips";
|
|
}
|
|
#undef MATCH_PLATFORM_INSN
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->cp0_status = 2 << CP0St_KSU;
|
|
regs->cp0_epc = infop->entry;
|
|
regs->regs[29] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/mips/include/asm/elf.h. */
|
|
#define ELF_NREG 45
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/mips/include/asm/reg.h. */
|
|
enum {
|
|
#ifdef TARGET_MIPS64
|
|
TARGET_EF_R0 = 0,
|
|
#else
|
|
TARGET_EF_R0 = 6,
|
|
#endif
|
|
TARGET_EF_R26 = TARGET_EF_R0 + 26,
|
|
TARGET_EF_R27 = TARGET_EF_R0 + 27,
|
|
TARGET_EF_LO = TARGET_EF_R0 + 32,
|
|
TARGET_EF_HI = TARGET_EF_R0 + 33,
|
|
TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
|
|
TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
|
|
TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
|
|
TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
|
|
};
|
|
|
|
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < TARGET_EF_R0; i++) {
|
|
(*regs)[i] = 0;
|
|
}
|
|
(*regs)[TARGET_EF_R0] = 0;
|
|
|
|
for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
|
|
(*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
|
|
}
|
|
|
|
(*regs)[TARGET_EF_R26] = 0;
|
|
(*regs)[TARGET_EF_R27] = 0;
|
|
(*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
|
|
(*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
|
|
(*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
|
|
(*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
|
|
(*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
|
|
(*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
/* See arch/mips/include/uapi/asm/hwcap.h. */
|
|
enum {
|
|
HWCAP_MIPS_R6 = (1 << 0),
|
|
HWCAP_MIPS_MSA = (1 << 1),
|
|
HWCAP_MIPS_CRC32 = (1 << 2),
|
|
HWCAP_MIPS_MIPS16 = (1 << 3),
|
|
HWCAP_MIPS_MDMX = (1 << 4),
|
|
HWCAP_MIPS_MIPS3D = (1 << 5),
|
|
HWCAP_MIPS_SMARTMIPS = (1 << 6),
|
|
HWCAP_MIPS_DSP = (1 << 7),
|
|
HWCAP_MIPS_DSP2 = (1 << 8),
|
|
HWCAP_MIPS_DSP3 = (1 << 9),
|
|
HWCAP_MIPS_MIPS16E2 = (1 << 10),
|
|
HWCAP_LOONGSON_MMI = (1 << 11),
|
|
HWCAP_LOONGSON_EXT = (1 << 12),
|
|
HWCAP_LOONGSON_EXT2 = (1 << 13),
|
|
HWCAP_LOONGSON_CPUCFG = (1 << 14),
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
#define GET_FEATURE_INSN(_flag, _hwcap) \
|
|
do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
|
|
|
|
#define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
|
|
do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
|
|
|
|
#define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
|
|
do { \
|
|
if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
|
|
hwcaps |= _hwcap; \
|
|
} \
|
|
} while (0)
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
MIPSCPU *cpu = MIPS_CPU(thread_cpu);
|
|
uint32_t hwcaps = 0;
|
|
|
|
GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
|
|
2, HWCAP_MIPS_R6);
|
|
GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
|
|
GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
|
|
GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
|
|
|
|
return hwcaps;
|
|
}
|
|
|
|
#undef GET_FEATURE_REG_EQU
|
|
#undef GET_FEATURE_REG_SET
|
|
#undef GET_FEATURE_INSN
|
|
|
|
#endif /* TARGET_MIPS */
|
|
|
|
#ifdef TARGET_MICROBLAZE
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_MICROBLAZE
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->r1 = infop->start_stack;
|
|
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_NREG 38
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
|
|
{
|
|
int i, pos = 0;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[pos++] = tswapreg(env->regs[i]);
|
|
}
|
|
|
|
(*regs)[pos++] = tswapreg(env->pc);
|
|
(*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
|
|
(*regs)[pos++] = 0;
|
|
(*regs)[pos++] = tswapreg(env->ear);
|
|
(*regs)[pos++] = 0;
|
|
(*regs)[pos++] = tswapreg(env->esr);
|
|
}
|
|
|
|
#endif /* TARGET_MICROBLAZE */
|
|
|
|
#ifdef TARGET_OPENRISC
|
|
|
|
#define ELF_ARCH EM_OPENRISC
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2MSB
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->gpr[1] = infop->start_stack;
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
/* See linux kernel arch/openrisc/include/asm/elf.h. */
|
|
#define ELF_NREG 34 /* gprs and pc, sr */
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUOpenRISCState *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
(*regs)[i] = tswapreg(cpu_get_gpr(env, i));
|
|
}
|
|
(*regs)[32] = tswapreg(env->pc);
|
|
(*regs)[33] = tswapreg(cpu_get_sr(env));
|
|
}
|
|
#define ELF_HWCAP 0
|
|
#define ELF_PLATFORM NULL
|
|
|
|
#endif /* TARGET_OPENRISC */
|
|
|
|
#ifdef TARGET_SH4
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_SH
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
/* Check other registers XXXXX */
|
|
regs->pc = infop->entry;
|
|
regs->regs[15] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/sh/include/asm/elf.h. */
|
|
#define ELF_NREG 23
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/* See linux kernel: arch/sh/include/asm/ptrace.h. */
|
|
enum {
|
|
TARGET_REG_PC = 16,
|
|
TARGET_REG_PR = 17,
|
|
TARGET_REG_SR = 18,
|
|
TARGET_REG_GBR = 19,
|
|
TARGET_REG_MACH = 20,
|
|
TARGET_REG_MACL = 21,
|
|
TARGET_REG_SYSCALL = 22
|
|
};
|
|
|
|
static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUSH4State *env)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
(*regs)[i] = tswapreg(env->gregs[i]);
|
|
}
|
|
|
|
(*regs)[TARGET_REG_PC] = tswapreg(env->pc);
|
|
(*regs)[TARGET_REG_PR] = tswapreg(env->pr);
|
|
(*regs)[TARGET_REG_SR] = tswapreg(env->sr);
|
|
(*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
|
|
(*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
|
|
(*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
|
|
(*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum {
|
|
SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
|
|
SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
|
|
SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
|
|
SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
|
|
SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
|
|
SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
|
|
SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
|
|
SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
|
|
SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
|
|
SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
|
|
uint32_t hwcap = 0;
|
|
|
|
hwcap |= SH_CPU_HAS_FPU;
|
|
|
|
if (cpu->env.features & SH_FEATURE_SH4A) {
|
|
hwcap |= SH_CPU_HAS_LLSC;
|
|
}
|
|
|
|
return hwcap;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_CRIS
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_CRIS
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->erp = infop->entry;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_M68K
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_68K
|
|
|
|
/* ??? Does this need to do anything?
|
|
#define ELF_PLAT_INIT(_r) */
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->usp = infop->start_stack;
|
|
regs->sr = 0;
|
|
regs->pc = infop->entry;
|
|
}
|
|
|
|
/* See linux kernel: arch/m68k/include/asm/elf.h. */
|
|
#define ELF_NREG 20
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
|
|
{
|
|
(*regs)[0] = tswapreg(env->dregs[1]);
|
|
(*regs)[1] = tswapreg(env->dregs[2]);
|
|
(*regs)[2] = tswapreg(env->dregs[3]);
|
|
(*regs)[3] = tswapreg(env->dregs[4]);
|
|
(*regs)[4] = tswapreg(env->dregs[5]);
|
|
(*regs)[5] = tswapreg(env->dregs[6]);
|
|
(*regs)[6] = tswapreg(env->dregs[7]);
|
|
(*regs)[7] = tswapreg(env->aregs[0]);
|
|
(*regs)[8] = tswapreg(env->aregs[1]);
|
|
(*regs)[9] = tswapreg(env->aregs[2]);
|
|
(*regs)[10] = tswapreg(env->aregs[3]);
|
|
(*regs)[11] = tswapreg(env->aregs[4]);
|
|
(*regs)[12] = tswapreg(env->aregs[5]);
|
|
(*regs)[13] = tswapreg(env->aregs[6]);
|
|
(*regs)[14] = tswapreg(env->dregs[0]);
|
|
(*regs)[15] = tswapreg(env->aregs[7]);
|
|
(*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
|
|
(*regs)[17] = tswapreg(env->sr);
|
|
(*regs)[18] = tswapreg(env->pc);
|
|
(*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_ALPHA
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_ARCH EM_ALPHA
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->ps = 8;
|
|
regs->usp = infop->start_stack;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif /* TARGET_ALPHA */
|
|
|
|
#ifdef TARGET_S390X
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#define ELF_ARCH EM_S390
|
|
|
|
#include "elf.h"
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
#define GET_FEATURE(_feat, _hwcap) \
|
|
do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
|
|
|
|
uint32_t get_elf_hwcap(void)
|
|
{
|
|
/*
|
|
* Let's assume we always have esan3 and zarch.
|
|
* 31-bit processes can use 64-bit registers (high gprs).
|
|
*/
|
|
uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
|
|
|
|
GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
|
|
GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
|
|
GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
|
|
GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
|
|
if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
|
|
s390_has_feat(S390_FEAT_ETF3_ENH)) {
|
|
hwcap |= HWCAP_S390_ETF3EH;
|
|
}
|
|
GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
|
|
GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
|
|
GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
|
|
|
|
return hwcap;
|
|
}
|
|
|
|
const char *elf_hwcap_str(uint32_t bit)
|
|
{
|
|
static const char *hwcap_str[] = {
|
|
[HWCAP_S390_NR_ESAN3] = "esan3",
|
|
[HWCAP_S390_NR_ZARCH] = "zarch",
|
|
[HWCAP_S390_NR_STFLE] = "stfle",
|
|
[HWCAP_S390_NR_MSA] = "msa",
|
|
[HWCAP_S390_NR_LDISP] = "ldisp",
|
|
[HWCAP_S390_NR_EIMM] = "eimm",
|
|
[HWCAP_S390_NR_DFP] = "dfp",
|
|
[HWCAP_S390_NR_HPAGE] = "edat",
|
|
[HWCAP_S390_NR_ETF3EH] = "etf3eh",
|
|
[HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
|
|
[HWCAP_S390_NR_TE] = "te",
|
|
[HWCAP_S390_NR_VXRS] = "vx",
|
|
[HWCAP_S390_NR_VXRS_BCD] = "vxd",
|
|
[HWCAP_S390_NR_VXRS_EXT] = "vxe",
|
|
[HWCAP_S390_NR_GS] = "gs",
|
|
[HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
|
|
[HWCAP_S390_NR_VXRS_PDE] = "vxp",
|
|
[HWCAP_S390_NR_SORT] = "sort",
|
|
[HWCAP_S390_NR_DFLT] = "dflt",
|
|
[HWCAP_S390_NR_NNPA] = "nnpa",
|
|
[HWCAP_S390_NR_PCI_MIO] = "pcimio",
|
|
[HWCAP_S390_NR_SIE] = "sie",
|
|
};
|
|
|
|
return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
|
|
}
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->psw.addr = infop->entry;
|
|
regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
|
|
PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
|
|
PSW_MASK_32;
|
|
regs->gprs[15] = infop->start_stack;
|
|
}
|
|
|
|
/* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
|
|
#define ELF_NREG 27
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
enum {
|
|
TARGET_REG_PSWM = 0,
|
|
TARGET_REG_PSWA = 1,
|
|
TARGET_REG_GPRS = 2,
|
|
TARGET_REG_ARS = 18,
|
|
TARGET_REG_ORIG_R2 = 26,
|
|
};
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUS390XState *env)
|
|
{
|
|
int i;
|
|
uint32_t *aregs;
|
|
|
|
(*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
|
|
(*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
|
|
for (i = 0; i < 16; i++) {
|
|
(*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
|
|
}
|
|
aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
|
|
for (i = 0; i < 16; i++) {
|
|
aregs[i] = tswap32(env->aregs[i]);
|
|
}
|
|
(*regs)[TARGET_REG_ORIG_R2] = 0;
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#define VDSO_HEADER "vdso.c.inc"
|
|
|
|
#endif /* TARGET_S390X */
|
|
|
|
#ifdef TARGET_RISCV
|
|
|
|
#define ELF_ARCH EM_RISCV
|
|
|
|
#ifdef TARGET_RISCV32
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define VDSO_HEADER "vdso-32.c.inc"
|
|
#else
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define VDSO_HEADER "vdso-64.c.inc"
|
|
#endif
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
#define MISA_BIT(EXT) (1 << (EXT - 'A'))
|
|
RISCVCPU *cpu = RISCV_CPU(thread_cpu);
|
|
uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
|
|
| MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
|
|
| MISA_BIT('V');
|
|
|
|
return cpu->env.misa_ext & mask;
|
|
#undef MISA_BIT
|
|
}
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->sepc = infop->entry;
|
|
regs->sp = infop->start_stack;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_RISCV */
|
|
|
|
#ifdef TARGET_HPPA
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_PARISC
|
|
#define ELF_PLATFORM "PARISC"
|
|
#define STACK_GROWS_DOWN 0
|
|
#define STACK_ALIGNMENT 64
|
|
|
|
#define VDSO_HEADER "vdso.c.inc"
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->iaoq[0] = infop->entry | PRIV_USER;
|
|
regs->iaoq[1] = regs->iaoq[0] + 4;
|
|
regs->gr[23] = 0;
|
|
regs->gr[24] = infop->argv;
|
|
regs->gr[25] = infop->argc;
|
|
/* The top-of-stack contains a linkage buffer. */
|
|
regs->gr[30] = infop->start_stack + 64;
|
|
regs->gr[31] = infop->entry;
|
|
}
|
|
|
|
#define LO_COMMPAGE 0
|
|
|
|
static bool init_guest_commpage(void)
|
|
{
|
|
/* If reserved_va, then we have already mapped 0 page on the host. */
|
|
if (!reserved_va) {
|
|
void *want, *addr;
|
|
|
|
want = g2h_untagged(LO_COMMPAGE);
|
|
addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
|
|
if (addr == MAP_FAILED) {
|
|
perror("Allocating guest commpage");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (addr != want) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* On Linux, page zero is normally marked execute only + gateway.
|
|
* Normal read or write is supposed to fail (thus PROT_NONE above),
|
|
* but specific offsets have kernel code mapped to raise permissions
|
|
* and implement syscalls. Here, simply mark the page executable.
|
|
* Special case the entry points during translation (see do_page_zero).
|
|
*/
|
|
page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
|
|
PAGE_EXEC | PAGE_VALID);
|
|
return true;
|
|
}
|
|
|
|
#endif /* TARGET_HPPA */
|
|
|
|
#ifdef TARGET_XTENSA
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_XTENSA
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->windowbase = 0;
|
|
regs->windowstart = 1;
|
|
regs->areg[1] = infop->start_stack;
|
|
regs->pc = infop->entry;
|
|
if (info_is_fdpic(infop)) {
|
|
regs->areg[4] = infop->loadmap_addr;
|
|
regs->areg[5] = infop->interpreter_loadmap_addr;
|
|
if (infop->interpreter_loadmap_addr) {
|
|
regs->areg[6] = infop->interpreter_pt_dynamic_addr;
|
|
} else {
|
|
regs->areg[6] = infop->pt_dynamic_addr;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* See linux kernel: arch/xtensa/include/asm/elf.h. */
|
|
#define ELF_NREG 128
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
enum {
|
|
TARGET_REG_PC,
|
|
TARGET_REG_PS,
|
|
TARGET_REG_LBEG,
|
|
TARGET_REG_LEND,
|
|
TARGET_REG_LCOUNT,
|
|
TARGET_REG_SAR,
|
|
TARGET_REG_WINDOWSTART,
|
|
TARGET_REG_WINDOWBASE,
|
|
TARGET_REG_THREADPTR,
|
|
TARGET_REG_AR0 = 64,
|
|
};
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs,
|
|
const CPUXtensaState *env)
|
|
{
|
|
unsigned i;
|
|
|
|
(*regs)[TARGET_REG_PC] = tswapreg(env->pc);
|
|
(*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
|
|
(*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
|
|
(*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
|
|
(*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
|
|
(*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
|
|
(*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
|
|
(*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
|
|
(*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
|
|
xtensa_sync_phys_from_window((CPUXtensaState *)env);
|
|
for (i = 0; i < env->config->nareg; ++i) {
|
|
(*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
|
|
}
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_XTENSA */
|
|
|
|
#ifdef TARGET_HEXAGON
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_ARCH EM_HEXAGON
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs,
|
|
struct image_info *infop)
|
|
{
|
|
regs->sepc = infop->entry;
|
|
regs->sp = infop->start_stack;
|
|
}
|
|
|
|
#endif /* TARGET_HEXAGON */
|
|
|
|
#ifndef ELF_BASE_PLATFORM
|
|
#define ELF_BASE_PLATFORM (NULL)
|
|
#endif
|
|
|
|
#ifndef ELF_PLATFORM
|
|
#define ELF_PLATFORM (NULL)
|
|
#endif
|
|
|
|
#ifndef ELF_MACHINE
|
|
#define ELF_MACHINE ELF_ARCH
|
|
#endif
|
|
|
|
#ifndef elf_check_arch
|
|
#define elf_check_arch(x) ((x) == ELF_ARCH)
|
|
#endif
|
|
|
|
#ifndef elf_check_abi
|
|
#define elf_check_abi(x) (1)
|
|
#endif
|
|
|
|
#ifndef ELF_HWCAP
|
|
#define ELF_HWCAP 0
|
|
#endif
|
|
|
|
#ifndef STACK_GROWS_DOWN
|
|
#define STACK_GROWS_DOWN 1
|
|
#endif
|
|
|
|
#ifndef STACK_ALIGNMENT
|
|
#define STACK_ALIGNMENT 16
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI32
|
|
#undef ELF_CLASS
|
|
#define ELF_CLASS ELFCLASS32
|
|
#undef bswaptls
|
|
#define bswaptls(ptr) bswap32s(ptr)
|
|
#endif
|
|
|
|
#ifndef EXSTACK_DEFAULT
|
|
#define EXSTACK_DEFAULT false
|
|
#endif
|
|
|
|
#include "elf.h"
|
|
|
|
/* We must delay the following stanzas until after "elf.h". */
|
|
#if defined(TARGET_AARCH64)
|
|
|
|
static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
|
|
const uint32_t *data,
|
|
struct image_info *info,
|
|
Error **errp)
|
|
{
|
|
if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
|
|
if (pr_datasz != sizeof(uint32_t)) {
|
|
error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
|
|
return false;
|
|
}
|
|
/* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
|
|
info->note_flags = *data;
|
|
}
|
|
return true;
|
|
}
|
|
#define ARCH_USE_GNU_PROPERTY 1
|
|
|
|
#else
|
|
|
|
static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
|
|
const uint32_t *data,
|
|
struct image_info *info,
|
|
Error **errp)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
#define ARCH_USE_GNU_PROPERTY 0
|
|
|
|
#endif
|
|
|
|
struct exec
|
|
{
|
|
unsigned int a_info; /* Use macros N_MAGIC, etc for access */
|
|
unsigned int a_text; /* length of text, in bytes */
|
|
unsigned int a_data; /* length of data, in bytes */
|
|
unsigned int a_bss; /* length of uninitialized data area, in bytes */
|
|
unsigned int a_syms; /* length of symbol table data in file, in bytes */
|
|
unsigned int a_entry; /* start address */
|
|
unsigned int a_trsize; /* length of relocation info for text, in bytes */
|
|
unsigned int a_drsize; /* length of relocation info for data, in bytes */
|
|
};
|
|
|
|
|
|
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
|
|
#define OMAGIC 0407
|
|
#define NMAGIC 0410
|
|
#define ZMAGIC 0413
|
|
#define QMAGIC 0314
|
|
|
|
#define DLINFO_ITEMS 16
|
|
|
|
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
|
|
{
|
|
memcpy(to, from, n);
|
|
}
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_ehdr(struct elfhdr *ehdr)
|
|
{
|
|
bswap16s(&ehdr->e_type); /* Object file type */
|
|
bswap16s(&ehdr->e_machine); /* Architecture */
|
|
bswap32s(&ehdr->e_version); /* Object file version */
|
|
bswaptls(&ehdr->e_entry); /* Entry point virtual address */
|
|
bswaptls(&ehdr->e_phoff); /* Program header table file offset */
|
|
bswaptls(&ehdr->e_shoff); /* Section header table file offset */
|
|
bswap32s(&ehdr->e_flags); /* Processor-specific flags */
|
|
bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
|
|
bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
|
|
bswap16s(&ehdr->e_phnum); /* Program header table entry count */
|
|
bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
|
|
bswap16s(&ehdr->e_shnum); /* Section header table entry count */
|
|
bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
|
|
}
|
|
|
|
static void bswap_phdr(struct elf_phdr *phdr, int phnum)
|
|
{
|
|
int i;
|
|
for (i = 0; i < phnum; ++i, ++phdr) {
|
|
bswap32s(&phdr->p_type); /* Segment type */
|
|
bswap32s(&phdr->p_flags); /* Segment flags */
|
|
bswaptls(&phdr->p_offset); /* Segment file offset */
|
|
bswaptls(&phdr->p_vaddr); /* Segment virtual address */
|
|
bswaptls(&phdr->p_paddr); /* Segment physical address */
|
|
bswaptls(&phdr->p_filesz); /* Segment size in file */
|
|
bswaptls(&phdr->p_memsz); /* Segment size in memory */
|
|
bswaptls(&phdr->p_align); /* Segment alignment */
|
|
}
|
|
}
|
|
|
|
static void bswap_shdr(struct elf_shdr *shdr, int shnum)
|
|
{
|
|
int i;
|
|
for (i = 0; i < shnum; ++i, ++shdr) {
|
|
bswap32s(&shdr->sh_name);
|
|
bswap32s(&shdr->sh_type);
|
|
bswaptls(&shdr->sh_flags);
|
|
bswaptls(&shdr->sh_addr);
|
|
bswaptls(&shdr->sh_offset);
|
|
bswaptls(&shdr->sh_size);
|
|
bswap32s(&shdr->sh_link);
|
|
bswap32s(&shdr->sh_info);
|
|
bswaptls(&shdr->sh_addralign);
|
|
bswaptls(&shdr->sh_entsize);
|
|
}
|
|
}
|
|
|
|
static void bswap_sym(struct elf_sym *sym)
|
|
{
|
|
bswap32s(&sym->st_name);
|
|
bswaptls(&sym->st_value);
|
|
bswaptls(&sym->st_size);
|
|
bswap16s(&sym->st_shndx);
|
|
}
|
|
|
|
#ifdef TARGET_MIPS
|
|
static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
|
|
{
|
|
bswap16s(&abiflags->version);
|
|
bswap32s(&abiflags->ases);
|
|
bswap32s(&abiflags->isa_ext);
|
|
bswap32s(&abiflags->flags1);
|
|
bswap32s(&abiflags->flags2);
|
|
}
|
|
#endif
|
|
#else
|
|
static inline void bswap_ehdr(struct elfhdr *ehdr) { }
|
|
static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
|
|
static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
|
|
static inline void bswap_sym(struct elf_sym *sym) { }
|
|
#ifdef TARGET_MIPS
|
|
static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
static int elf_core_dump(int, const CPUArchState *);
|
|
#endif /* USE_ELF_CORE_DUMP */
|
|
static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
|
|
abi_ulong load_bias);
|
|
|
|
/* Verify the portions of EHDR within E_IDENT for the target.
|
|
This can be performed before bswapping the entire header. */
|
|
static bool elf_check_ident(struct elfhdr *ehdr)
|
|
{
|
|
return (ehdr->e_ident[EI_MAG0] == ELFMAG0
|
|
&& ehdr->e_ident[EI_MAG1] == ELFMAG1
|
|
&& ehdr->e_ident[EI_MAG2] == ELFMAG2
|
|
&& ehdr->e_ident[EI_MAG3] == ELFMAG3
|
|
&& ehdr->e_ident[EI_CLASS] == ELF_CLASS
|
|
&& ehdr->e_ident[EI_DATA] == ELF_DATA
|
|
&& ehdr->e_ident[EI_VERSION] == EV_CURRENT);
|
|
}
|
|
|
|
/* Verify the portions of EHDR outside of E_IDENT for the target.
|
|
This has to wait until after bswapping the header. */
|
|
static bool elf_check_ehdr(struct elfhdr *ehdr)
|
|
{
|
|
return (elf_check_arch(ehdr->e_machine)
|
|
&& elf_check_abi(ehdr->e_flags)
|
|
&& ehdr->e_ehsize == sizeof(struct elfhdr)
|
|
&& ehdr->e_phentsize == sizeof(struct elf_phdr)
|
|
&& (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
|
|
}
|
|
|
|
/*
|
|
* 'copy_elf_strings()' copies argument/envelope strings from user
|
|
* memory to free pages in kernel mem. These are in a format ready
|
|
* to be put directly into the top of new user memory.
|
|
*
|
|
*/
|
|
static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
|
|
abi_ulong p, abi_ulong stack_limit)
|
|
{
|
|
char *tmp;
|
|
int len, i;
|
|
abi_ulong top = p;
|
|
|
|
if (!p) {
|
|
return 0; /* bullet-proofing */
|
|
}
|
|
|
|
if (STACK_GROWS_DOWN) {
|
|
int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
|
|
for (i = argc - 1; i >= 0; --i) {
|
|
tmp = argv[i];
|
|
if (!tmp) {
|
|
fprintf(stderr, "VFS: argc is wrong");
|
|
exit(-1);
|
|
}
|
|
len = strlen(tmp) + 1;
|
|
tmp += len;
|
|
|
|
if (len > (p - stack_limit)) {
|
|
return 0;
|
|
}
|
|
while (len) {
|
|
int bytes_to_copy = (len > offset) ? offset : len;
|
|
tmp -= bytes_to_copy;
|
|
p -= bytes_to_copy;
|
|
offset -= bytes_to_copy;
|
|
len -= bytes_to_copy;
|
|
|
|
memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
|
|
|
|
if (offset == 0) {
|
|
memcpy_to_target(p, scratch, top - p);
|
|
top = p;
|
|
offset = TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
if (p != top) {
|
|
memcpy_to_target(p, scratch + offset, top - p);
|
|
}
|
|
} else {
|
|
int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
|
|
for (i = 0; i < argc; ++i) {
|
|
tmp = argv[i];
|
|
if (!tmp) {
|
|
fprintf(stderr, "VFS: argc is wrong");
|
|
exit(-1);
|
|
}
|
|
len = strlen(tmp) + 1;
|
|
if (len > (stack_limit - p)) {
|
|
return 0;
|
|
}
|
|
while (len) {
|
|
int bytes_to_copy = (len > remaining) ? remaining : len;
|
|
|
|
memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
|
|
|
|
tmp += bytes_to_copy;
|
|
remaining -= bytes_to_copy;
|
|
p += bytes_to_copy;
|
|
len -= bytes_to_copy;
|
|
|
|
if (remaining == 0) {
|
|
memcpy_to_target(top, scratch, p - top);
|
|
top = p;
|
|
remaining = TARGET_PAGE_SIZE;
|
|
}
|
|
}
|
|
}
|
|
if (p != top) {
|
|
memcpy_to_target(top, scratch, p - top);
|
|
}
|
|
}
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
|
|
* argument/environment space. Newer kernels (>2.6.33) allow more,
|
|
* dependent on stack size, but guarantee at least 32 pages for
|
|
* backwards compatibility.
|
|
*/
|
|
#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
|
|
|
|
static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
|
|
struct image_info *info)
|
|
{
|
|
abi_ulong size, error, guard;
|
|
int prot;
|
|
|
|
size = guest_stack_size;
|
|
if (size < STACK_LOWER_LIMIT) {
|
|
size = STACK_LOWER_LIMIT;
|
|
}
|
|
|
|
if (STACK_GROWS_DOWN) {
|
|
guard = TARGET_PAGE_SIZE;
|
|
if (guard < qemu_real_host_page_size()) {
|
|
guard = qemu_real_host_page_size();
|
|
}
|
|
} else {
|
|
/* no guard page for hppa target where stack grows upwards. */
|
|
guard = 0;
|
|
}
|
|
|
|
prot = PROT_READ | PROT_WRITE;
|
|
if (info->exec_stack) {
|
|
prot |= PROT_EXEC;
|
|
}
|
|
error = target_mmap(0, size + guard, prot,
|
|
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
|
|
if (error == -1) {
|
|
perror("mmap stack");
|
|
exit(-1);
|
|
}
|
|
|
|
/* We reserve one extra page at the top of the stack as guard. */
|
|
if (STACK_GROWS_DOWN) {
|
|
target_mprotect(error, guard, PROT_NONE);
|
|
info->stack_limit = error + guard;
|
|
return info->stack_limit + size - sizeof(void *);
|
|
} else {
|
|
info->stack_limit = error + size;
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* zero_bss:
|
|
*
|
|
* Map and zero the bss. We need to explicitly zero any fractional pages
|
|
* after the data section (i.e. bss). Return false on mapping failure.
|
|
*/
|
|
static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
|
|
int prot, Error **errp)
|
|
{
|
|
abi_ulong align_bss;
|
|
|
|
/* We only expect writable bss; the code segment shouldn't need this. */
|
|
if (!(prot & PROT_WRITE)) {
|
|
error_setg(errp, "PT_LOAD with non-writable bss");
|
|
return false;
|
|
}
|
|
|
|
align_bss = TARGET_PAGE_ALIGN(start_bss);
|
|
end_bss = TARGET_PAGE_ALIGN(end_bss);
|
|
|
|
if (start_bss < align_bss) {
|
|
int flags = page_get_flags(start_bss);
|
|
|
|
if (!(flags & PAGE_RWX)) {
|
|
/*
|
|
* The whole address space of the executable was reserved
|
|
* at the start, therefore all pages will be VALID.
|
|
* But assuming there are no PROT_NONE PT_LOAD segments,
|
|
* a PROT_NONE page means no data all bss, and we can
|
|
* simply extend the new anon mapping back to the start
|
|
* of the page of bss.
|
|
*/
|
|
align_bss -= TARGET_PAGE_SIZE;
|
|
} else {
|
|
/*
|
|
* The start of the bss shares a page with something.
|
|
* The only thing that we expect is the data section,
|
|
* which would already be marked writable.
|
|
* Overlapping the RX code segment seems malformed.
|
|
*/
|
|
if (!(flags & PAGE_WRITE)) {
|
|
error_setg(errp, "PT_LOAD with bss overlapping "
|
|
"non-writable page");
|
|
return false;
|
|
}
|
|
|
|
/* The page is already mapped and writable. */
|
|
memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
|
|
}
|
|
}
|
|
|
|
if (align_bss < end_bss &&
|
|
target_mmap(align_bss, end_bss - align_bss, prot,
|
|
MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
|
|
error_setg_errno(errp, errno, "Error mapping bss");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#if defined(TARGET_ARM)
|
|
static int elf_is_fdpic(struct elfhdr *exec)
|
|
{
|
|
return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
|
|
}
|
|
#elif defined(TARGET_XTENSA)
|
|
static int elf_is_fdpic(struct elfhdr *exec)
|
|
{
|
|
return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
|
|
}
|
|
#else
|
|
/* Default implementation, always false. */
|
|
static int elf_is_fdpic(struct elfhdr *exec)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
|
|
{
|
|
uint16_t n;
|
|
struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
|
|
|
|
/* elf32_fdpic_loadseg */
|
|
n = info->nsegs;
|
|
while (n--) {
|
|
sp -= 12;
|
|
put_user_u32(loadsegs[n].addr, sp+0);
|
|
put_user_u32(loadsegs[n].p_vaddr, sp+4);
|
|
put_user_u32(loadsegs[n].p_memsz, sp+8);
|
|
}
|
|
|
|
/* elf32_fdpic_loadmap */
|
|
sp -= 4;
|
|
put_user_u16(0, sp+0); /* version */
|
|
put_user_u16(info->nsegs, sp+2); /* nsegs */
|
|
|
|
info->personality = PER_LINUX_FDPIC;
|
|
info->loadmap_addr = sp;
|
|
|
|
return sp;
|
|
}
|
|
|
|
static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
|
|
struct elfhdr *exec,
|
|
struct image_info *info,
|
|
struct image_info *interp_info,
|
|
struct image_info *vdso_info)
|
|
{
|
|
abi_ulong sp;
|
|
abi_ulong u_argc, u_argv, u_envp, u_auxv;
|
|
int size;
|
|
int i;
|
|
abi_ulong u_rand_bytes;
|
|
uint8_t k_rand_bytes[16];
|
|
abi_ulong u_platform, u_base_platform;
|
|
const char *k_platform, *k_base_platform;
|
|
const int n = sizeof(elf_addr_t);
|
|
|
|
sp = p;
|
|
|
|
/* Needs to be before we load the env/argc/... */
|
|
if (elf_is_fdpic(exec)) {
|
|
/* Need 4 byte alignment for these structs */
|
|
sp &= ~3;
|
|
sp = loader_build_fdpic_loadmap(info, sp);
|
|
info->other_info = interp_info;
|
|
if (interp_info) {
|
|
interp_info->other_info = info;
|
|
sp = loader_build_fdpic_loadmap(interp_info, sp);
|
|
info->interpreter_loadmap_addr = interp_info->loadmap_addr;
|
|
info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
|
|
} else {
|
|
info->interpreter_loadmap_addr = 0;
|
|
info->interpreter_pt_dynamic_addr = 0;
|
|
}
|
|
}
|
|
|
|
u_base_platform = 0;
|
|
k_base_platform = ELF_BASE_PLATFORM;
|
|
if (k_base_platform) {
|
|
size_t len = strlen(k_base_platform) + 1;
|
|
if (STACK_GROWS_DOWN) {
|
|
sp -= (len + n - 1) & ~(n - 1);
|
|
u_base_platform = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_base_platform, len);
|
|
} else {
|
|
memcpy_to_target(sp, k_base_platform, len);
|
|
u_base_platform = sp;
|
|
sp += len + 1;
|
|
}
|
|
}
|
|
|
|
u_platform = 0;
|
|
k_platform = ELF_PLATFORM;
|
|
if (k_platform) {
|
|
size_t len = strlen(k_platform) + 1;
|
|
if (STACK_GROWS_DOWN) {
|
|
sp -= (len + n - 1) & ~(n - 1);
|
|
u_platform = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_platform, len);
|
|
} else {
|
|
memcpy_to_target(sp, k_platform, len);
|
|
u_platform = sp;
|
|
sp += len + 1;
|
|
}
|
|
}
|
|
|
|
/* Provide 16 byte alignment for the PRNG, and basic alignment for
|
|
* the argv and envp pointers.
|
|
*/
|
|
if (STACK_GROWS_DOWN) {
|
|
sp = QEMU_ALIGN_DOWN(sp, 16);
|
|
} else {
|
|
sp = QEMU_ALIGN_UP(sp, 16);
|
|
}
|
|
|
|
/*
|
|
* Generate 16 random bytes for userspace PRNG seeding.
|
|
*/
|
|
qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
|
|
if (STACK_GROWS_DOWN) {
|
|
sp -= 16;
|
|
u_rand_bytes = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_rand_bytes, 16);
|
|
} else {
|
|
memcpy_to_target(sp, k_rand_bytes, 16);
|
|
u_rand_bytes = sp;
|
|
sp += 16;
|
|
}
|
|
|
|
size = (DLINFO_ITEMS + 1) * 2;
|
|
if (k_base_platform) {
|
|
size += 2;
|
|
}
|
|
if (k_platform) {
|
|
size += 2;
|
|
}
|
|
if (vdso_info) {
|
|
size += 2;
|
|
}
|
|
#ifdef DLINFO_ARCH_ITEMS
|
|
size += DLINFO_ARCH_ITEMS * 2;
|
|
#endif
|
|
#ifdef ELF_HWCAP2
|
|
size += 2;
|
|
#endif
|
|
info->auxv_len = size * n;
|
|
|
|
size += envc + argc + 2;
|
|
size += 1; /* argc itself */
|
|
size *= n;
|
|
|
|
/* Allocate space and finalize stack alignment for entry now. */
|
|
if (STACK_GROWS_DOWN) {
|
|
u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
|
|
sp = u_argc;
|
|
} else {
|
|
u_argc = sp;
|
|
sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
|
|
}
|
|
|
|
u_argv = u_argc + n;
|
|
u_envp = u_argv + (argc + 1) * n;
|
|
u_auxv = u_envp + (envc + 1) * n;
|
|
info->saved_auxv = u_auxv;
|
|
info->argc = argc;
|
|
info->envc = envc;
|
|
info->argv = u_argv;
|
|
info->envp = u_envp;
|
|
|
|
/* This is correct because Linux defines
|
|
* elf_addr_t as Elf32_Off / Elf64_Off
|
|
*/
|
|
#define NEW_AUX_ENT(id, val) do { \
|
|
put_user_ual(id, u_auxv); u_auxv += n; \
|
|
put_user_ual(val, u_auxv); u_auxv += n; \
|
|
} while(0)
|
|
|
|
#ifdef ARCH_DLINFO
|
|
/*
|
|
* ARCH_DLINFO must come first so platform specific code can enforce
|
|
* special alignment requirements on the AUXV if necessary (eg. PPC).
|
|
*/
|
|
ARCH_DLINFO;
|
|
#endif
|
|
/* There must be exactly DLINFO_ITEMS entries here, or the assert
|
|
* on info->auxv_len will trigger.
|
|
*/
|
|
NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
|
|
NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
|
|
NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
|
|
NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
|
|
NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
|
|
NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
|
|
NEW_AUX_ENT(AT_ENTRY, info->entry);
|
|
NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
|
|
NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
|
|
NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
|
|
NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
|
|
NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
|
|
NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
|
|
NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
|
|
NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
|
|
NEW_AUX_ENT(AT_EXECFN, info->file_string);
|
|
|
|
#ifdef ELF_HWCAP2
|
|
NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
|
|
#endif
|
|
|
|
if (u_base_platform) {
|
|
NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
|
|
}
|
|
if (u_platform) {
|
|
NEW_AUX_ENT(AT_PLATFORM, u_platform);
|
|
}
|
|
if (vdso_info) {
|
|
NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
|
|
}
|
|
NEW_AUX_ENT (AT_NULL, 0);
|
|
#undef NEW_AUX_ENT
|
|
|
|
/* Check that our initial calculation of the auxv length matches how much
|
|
* we actually put into it.
|
|
*/
|
|
assert(info->auxv_len == u_auxv - info->saved_auxv);
|
|
|
|
put_user_ual(argc, u_argc);
|
|
|
|
p = info->arg_strings;
|
|
for (i = 0; i < argc; ++i) {
|
|
put_user_ual(p, u_argv);
|
|
u_argv += n;
|
|
p += target_strlen(p) + 1;
|
|
}
|
|
put_user_ual(0, u_argv);
|
|
|
|
p = info->env_strings;
|
|
for (i = 0; i < envc; ++i) {
|
|
put_user_ual(p, u_envp);
|
|
u_envp += n;
|
|
p += target_strlen(p) + 1;
|
|
}
|
|
put_user_ual(0, u_envp);
|
|
|
|
return sp;
|
|
}
|
|
|
|
#if defined(HI_COMMPAGE)
|
|
#define LO_COMMPAGE -1
|
|
#elif defined(LO_COMMPAGE)
|
|
#define HI_COMMPAGE 0
|
|
#else
|
|
#define HI_COMMPAGE 0
|
|
#define LO_COMMPAGE -1
|
|
#ifndef INIT_GUEST_COMMPAGE
|
|
#define init_guest_commpage() true
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* pgb_try_mmap:
|
|
* @addr: host start address
|
|
* @addr_last: host last address
|
|
* @keep: do not unmap the probe region
|
|
*
|
|
* Return 1 if [@addr, @addr_last] is not mapped in the host,
|
|
* return 0 if it is not available to map, and -1 on mmap error.
|
|
* If @keep, the region is left mapped on success, otherwise unmapped.
|
|
*/
|
|
static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
|
|
{
|
|
size_t size = addr_last - addr + 1;
|
|
void *p = mmap((void *)addr, size, PROT_NONE,
|
|
MAP_ANONYMOUS | MAP_PRIVATE |
|
|
MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
|
|
int ret;
|
|
|
|
if (p == MAP_FAILED) {
|
|
return errno == EEXIST ? 0 : -1;
|
|
}
|
|
ret = p == (void *)addr;
|
|
if (!keep || !ret) {
|
|
munmap(p, size);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
|
|
* @addr: host address
|
|
* @addr_last: host last address
|
|
* @brk: host brk
|
|
*
|
|
* Like pgb_try_mmap, but additionally reserve some memory following brk.
|
|
*/
|
|
static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
|
|
uintptr_t brk, bool keep)
|
|
{
|
|
uintptr_t brk_last = brk + 16 * MiB - 1;
|
|
|
|
/* Do not map anything close to the host brk. */
|
|
if (addr <= brk_last && brk <= addr_last) {
|
|
return 0;
|
|
}
|
|
return pgb_try_mmap(addr, addr_last, keep);
|
|
}
|
|
|
|
/**
|
|
* pgb_try_mmap_set:
|
|
* @ga: set of guest addrs
|
|
* @base: guest_base
|
|
* @brk: host brk
|
|
*
|
|
* Return true if all @ga can be mapped by the host at @base.
|
|
* On success, retain the mapping at index 0 for reserved_va.
|
|
*/
|
|
|
|
typedef struct PGBAddrs {
|
|
uintptr_t bounds[3][2]; /* start/last pairs */
|
|
int nbounds;
|
|
} PGBAddrs;
|
|
|
|
static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
|
|
{
|
|
for (int i = ga->nbounds - 1; i >= 0; --i) {
|
|
if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
|
|
ga->bounds[i][1] + base,
|
|
brk, i == 0 && reserved_va) <= 0) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* pgb_addr_set:
|
|
* @ga: output set of guest addrs
|
|
* @guest_loaddr: guest image low address
|
|
* @guest_loaddr: guest image high address
|
|
* @identity: create for identity mapping
|
|
*
|
|
* Fill in @ga with the image, COMMPAGE and NULL page.
|
|
*/
|
|
static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
|
|
abi_ulong guest_hiaddr, bool try_identity)
|
|
{
|
|
int n;
|
|
|
|
/*
|
|
* With a low commpage, or a guest mapped very low,
|
|
* we may not be able to use the identity map.
|
|
*/
|
|
if (try_identity) {
|
|
if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
|
|
return false;
|
|
}
|
|
if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
memset(ga, 0, sizeof(*ga));
|
|
n = 0;
|
|
|
|
if (reserved_va) {
|
|
ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
|
|
ga->bounds[n][1] = reserved_va;
|
|
n++;
|
|
/* LO_COMMPAGE and NULL handled by reserving from 0. */
|
|
} else {
|
|
/* Add any LO_COMMPAGE or NULL page. */
|
|
if (LO_COMMPAGE != -1) {
|
|
ga->bounds[n][0] = 0;
|
|
ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
|
|
n++;
|
|
} else if (!try_identity) {
|
|
ga->bounds[n][0] = 0;
|
|
ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
|
|
n++;
|
|
}
|
|
|
|
/* Add the guest image for ET_EXEC. */
|
|
if (guest_loaddr) {
|
|
ga->bounds[n][0] = guest_loaddr;
|
|
ga->bounds[n][1] = guest_hiaddr;
|
|
n++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Temporarily disable
|
|
* "comparison is always false due to limited range of data type"
|
|
* due to comparison between unsigned and (possible) 0.
|
|
*/
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wtype-limits"
|
|
|
|
/* Add any HI_COMMPAGE not covered by reserved_va. */
|
|
if (reserved_va < HI_COMMPAGE) {
|
|
ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
|
|
ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
|
|
n++;
|
|
}
|
|
|
|
#pragma GCC diagnostic pop
|
|
|
|
ga->nbounds = n;
|
|
return true;
|
|
}
|
|
|
|
static void pgb_fail_in_use(const char *image_name)
|
|
{
|
|
error_report("%s: requires virtual address space that is in use "
|
|
"(omit the -B option or choose a different value)",
|
|
image_name);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
|
|
uintptr_t guest_hiaddr, uintptr_t align)
|
|
{
|
|
PGBAddrs ga;
|
|
uintptr_t brk = (uintptr_t)sbrk(0);
|
|
|
|
if (!QEMU_IS_ALIGNED(guest_base, align)) {
|
|
fprintf(stderr, "Requested guest base %p does not satisfy "
|
|
"host minimum alignment (0x%" PRIxPTR ")\n",
|
|
(void *)guest_base, align);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
|
|
|| !pgb_try_mmap_set(&ga, guest_base, brk)) {
|
|
pgb_fail_in_use(image_name);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* pgb_find_fallback:
|
|
*
|
|
* This is a fallback method for finding holes in the host address space
|
|
* if we don't have the benefit of being able to access /proc/self/map.
|
|
* It can potentially take a very long time as we can only dumbly iterate
|
|
* up the host address space seeing if the allocation would work.
|
|
*/
|
|
static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
|
|
uintptr_t brk)
|
|
{
|
|
/* TODO: come up with a better estimate of how much to skip. */
|
|
uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
|
|
|
|
for (uintptr_t base = skip; ; base += skip) {
|
|
base = ROUND_UP(base, align);
|
|
if (pgb_try_mmap_set(ga, base, brk)) {
|
|
return base;
|
|
}
|
|
if (base >= -skip) {
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
|
|
IntervalTreeRoot *root)
|
|
{
|
|
for (int i = ga->nbounds - 1; i >= 0; --i) {
|
|
uintptr_t s = base + ga->bounds[i][0];
|
|
uintptr_t l = base + ga->bounds[i][1];
|
|
IntervalTreeNode *n;
|
|
|
|
if (l < s) {
|
|
/* Wraparound. Skip to advance S to mmap_min_addr. */
|
|
return mmap_min_addr - s;
|
|
}
|
|
|
|
n = interval_tree_iter_first(root, s, l);
|
|
if (n != NULL) {
|
|
/* Conflict. Skip to advance S to LAST + 1. */
|
|
return n->last - s + 1;
|
|
}
|
|
}
|
|
return 0; /* success */
|
|
}
|
|
|
|
static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
|
|
uintptr_t align, uintptr_t brk)
|
|
{
|
|
uintptr_t last = mmap_min_addr;
|
|
uintptr_t base, skip;
|
|
|
|
while (true) {
|
|
base = ROUND_UP(last, align);
|
|
if (base < last) {
|
|
return -1;
|
|
}
|
|
|
|
skip = pgb_try_itree(ga, base, root);
|
|
if (skip == 0) {
|
|
break;
|
|
}
|
|
|
|
last = base + skip;
|
|
if (last < base) {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We've chosen 'base' based on holes in the interval tree,
|
|
* but we don't yet know if it is a valid host address.
|
|
* Because it is the first matching hole, if the host addresses
|
|
* are invalid we know there are no further matches.
|
|
*/
|
|
return pgb_try_mmap_set(ga, base, brk) ? base : -1;
|
|
}
|
|
|
|
static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
|
|
uintptr_t guest_hiaddr, uintptr_t align)
|
|
{
|
|
IntervalTreeRoot *root;
|
|
uintptr_t brk, ret;
|
|
PGBAddrs ga;
|
|
|
|
/* Try the identity map first. */
|
|
if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
|
|
brk = (uintptr_t)sbrk(0);
|
|
if (pgb_try_mmap_set(&ga, 0, brk)) {
|
|
guest_base = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rebuild the address set for non-identity map.
|
|
* This differs in the mapping of the guest NULL page.
|
|
*/
|
|
pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
|
|
|
|
root = read_self_maps();
|
|
|
|
/* Read brk after we've read the maps, which will malloc. */
|
|
brk = (uintptr_t)sbrk(0);
|
|
|
|
if (!root) {
|
|
ret = pgb_find_fallback(&ga, align, brk);
|
|
} else {
|
|
/*
|
|
* Reserve the area close to the host brk.
|
|
* This will be freed with the rest of the tree.
|
|
*/
|
|
IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
|
|
b->start = brk;
|
|
b->last = brk + 16 * MiB - 1;
|
|
interval_tree_insert(b, root);
|
|
|
|
ret = pgb_find_itree(&ga, root, align, brk);
|
|
free_self_maps(root);
|
|
}
|
|
|
|
if (ret == -1) {
|
|
int w = TARGET_LONG_BITS / 4;
|
|
|
|
error_report("%s: Unable to find a guest_base to satisfy all "
|
|
"guest address mapping requirements", image_name);
|
|
|
|
for (int i = 0; i < ga.nbounds; ++i) {
|
|
error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n",
|
|
w, (uint64_t)ga.bounds[i][0],
|
|
w, (uint64_t)ga.bounds[i][1]);
|
|
}
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
guest_base = ret;
|
|
}
|
|
|
|
void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
|
|
abi_ulong guest_hiaddr)
|
|
{
|
|
/* In order to use host shmat, we must be able to honor SHMLBA. */
|
|
uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
|
|
|
|
/* Sanity check the guest binary. */
|
|
if (reserved_va) {
|
|
if (guest_hiaddr > reserved_va) {
|
|
error_report("%s: requires more than reserved virtual "
|
|
"address space (0x%" PRIx64 " > 0x%lx)",
|
|
image_name, (uint64_t)guest_hiaddr, reserved_va);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
} else {
|
|
if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
|
|
error_report("%s: requires more virtual address space "
|
|
"than the host can provide (0x%" PRIx64 ")",
|
|
image_name, (uint64_t)guest_hiaddr + 1);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
if (have_guest_base) {
|
|
pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
|
|
} else {
|
|
pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
|
|
}
|
|
|
|
/* Reserve and initialize the commpage. */
|
|
if (!init_guest_commpage()) {
|
|
/* We have already probed for the commpage being free. */
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
assert(QEMU_IS_ALIGNED(guest_base, align));
|
|
qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
|
|
"@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
|
|
}
|
|
|
|
enum {
|
|
/* The string "GNU\0" as a magic number. */
|
|
GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
|
|
NOTE_DATA_SZ = 1 * KiB,
|
|
NOTE_NAME_SZ = 4,
|
|
ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
|
|
};
|
|
|
|
/*
|
|
* Process a single gnu_property entry.
|
|
* Return false for error.
|
|
*/
|
|
static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
|
|
struct image_info *info, bool have_prev_type,
|
|
uint32_t *prev_type, Error **errp)
|
|
{
|
|
uint32_t pr_type, pr_datasz, step;
|
|
|
|
if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
|
|
goto error_data;
|
|
}
|
|
datasz -= *off;
|
|
data += *off / sizeof(uint32_t);
|
|
|
|
if (datasz < 2 * sizeof(uint32_t)) {
|
|
goto error_data;
|
|
}
|
|
pr_type = data[0];
|
|
pr_datasz = data[1];
|
|
data += 2;
|
|
datasz -= 2 * sizeof(uint32_t);
|
|
step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
|
|
if (step > datasz) {
|
|
goto error_data;
|
|
}
|
|
|
|
/* Properties are supposed to be unique and sorted on pr_type. */
|
|
if (have_prev_type && pr_type <= *prev_type) {
|
|
if (pr_type == *prev_type) {
|
|
error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
|
|
} else {
|
|
error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
|
|
}
|
|
return false;
|
|
}
|
|
*prev_type = pr_type;
|
|
|
|
if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
|
|
return false;
|
|
}
|
|
|
|
*off += 2 * sizeof(uint32_t) + step;
|
|
return true;
|
|
|
|
error_data:
|
|
error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
|
|
return false;
|
|
}
|
|
|
|
/* Process NT_GNU_PROPERTY_TYPE_0. */
|
|
static bool parse_elf_properties(const ImageSource *src,
|
|
struct image_info *info,
|
|
const struct elf_phdr *phdr,
|
|
Error **errp)
|
|
{
|
|
union {
|
|
struct elf_note nhdr;
|
|
uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
|
|
} note;
|
|
|
|
int n, off, datasz;
|
|
bool have_prev_type;
|
|
uint32_t prev_type;
|
|
|
|
/* Unless the arch requires properties, ignore them. */
|
|
if (!ARCH_USE_GNU_PROPERTY) {
|
|
return true;
|
|
}
|
|
|
|
/* If the properties are crazy large, that's too bad. */
|
|
n = phdr->p_filesz;
|
|
if (n > sizeof(note)) {
|
|
error_setg(errp, "PT_GNU_PROPERTY too large");
|
|
return false;
|
|
}
|
|
if (n < sizeof(note.nhdr)) {
|
|
error_setg(errp, "PT_GNU_PROPERTY too small");
|
|
return false;
|
|
}
|
|
|
|
if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* The contents of a valid PT_GNU_PROPERTY is a sequence
|
|
* of uint32_t -- swap them all now.
|
|
*/
|
|
#ifdef BSWAP_NEEDED
|
|
for (int i = 0; i < n / 4; i++) {
|
|
bswap32s(note.data + i);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Note that nhdr is 3 words, and that the "name" described by namesz
|
|
* immediately follows nhdr and is thus at the 4th word. Further, all
|
|
* of the inputs to the kernel's round_up are multiples of 4.
|
|
*/
|
|
if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
|
|
note.nhdr.n_namesz != NOTE_NAME_SZ ||
|
|
note.data[3] != GNU0_MAGIC) {
|
|
error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
|
|
return false;
|
|
}
|
|
off = sizeof(note.nhdr) + NOTE_NAME_SZ;
|
|
|
|
datasz = note.nhdr.n_descsz + off;
|
|
if (datasz > n) {
|
|
error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
|
|
return false;
|
|
}
|
|
|
|
have_prev_type = false;
|
|
prev_type = 0;
|
|
while (1) {
|
|
if (off == datasz) {
|
|
return true; /* end, exit ok */
|
|
}
|
|
if (!parse_elf_property(note.data, &off, datasz, info,
|
|
have_prev_type, &prev_type, errp)) {
|
|
return false;
|
|
}
|
|
have_prev_type = true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* load_elf_image: Load an ELF image into the address space.
|
|
* @image_name: the filename of the image, to use in error messages.
|
|
* @src: the ImageSource from which to read.
|
|
* @info: info collected from the loaded image.
|
|
* @ehdr: the ELF header, not yet bswapped.
|
|
* @pinterp_name: record any PT_INTERP string found.
|
|
*
|
|
* On return: @info values will be filled in, as necessary or available.
|
|
*/
|
|
|
|
static void load_elf_image(const char *image_name, const ImageSource *src,
|
|
struct image_info *info, struct elfhdr *ehdr,
|
|
char **pinterp_name)
|
|
{
|
|
g_autofree struct elf_phdr *phdr = NULL;
|
|
abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
|
|
int i, prot_exec;
|
|
Error *err = NULL;
|
|
|
|
/*
|
|
* First of all, some simple consistency checks.
|
|
* Note that we rely on the bswapped ehdr staying in bprm_buf,
|
|
* for later use by load_elf_binary and create_elf_tables.
|
|
*/
|
|
if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
|
|
goto exit_errmsg;
|
|
}
|
|
if (!elf_check_ident(ehdr)) {
|
|
error_setg(&err, "Invalid ELF image for this architecture");
|
|
goto exit_errmsg;
|
|
}
|
|
bswap_ehdr(ehdr);
|
|
if (!elf_check_ehdr(ehdr)) {
|
|
error_setg(&err, "Invalid ELF image for this architecture");
|
|
goto exit_errmsg;
|
|
}
|
|
|
|
phdr = imgsrc_read_alloc(ehdr->e_phoff,
|
|
ehdr->e_phnum * sizeof(struct elf_phdr),
|
|
src, &err);
|
|
if (phdr == NULL) {
|
|
goto exit_errmsg;
|
|
}
|
|
bswap_phdr(phdr, ehdr->e_phnum);
|
|
|
|
info->nsegs = 0;
|
|
info->pt_dynamic_addr = 0;
|
|
|
|
mmap_lock();
|
|
|
|
/*
|
|
* Find the maximum size of the image and allocate an appropriate
|
|
* amount of memory to handle that. Locate the interpreter, if any.
|
|
*/
|
|
loaddr = -1, hiaddr = 0;
|
|
info->alignment = 0;
|
|
info->exec_stack = EXSTACK_DEFAULT;
|
|
for (i = 0; i < ehdr->e_phnum; ++i) {
|
|
struct elf_phdr *eppnt = phdr + i;
|
|
if (eppnt->p_type == PT_LOAD) {
|
|
abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
|
|
if (a < loaddr) {
|
|
loaddr = a;
|
|
}
|
|
a = eppnt->p_vaddr + eppnt->p_memsz - 1;
|
|
if (a > hiaddr) {
|
|
hiaddr = a;
|
|
}
|
|
++info->nsegs;
|
|
info->alignment |= eppnt->p_align;
|
|
} else if (eppnt->p_type == PT_INTERP && pinterp_name) {
|
|
g_autofree char *interp_name = NULL;
|
|
|
|
if (*pinterp_name) {
|
|
error_setg(&err, "Multiple PT_INTERP entries");
|
|
goto exit_errmsg;
|
|
}
|
|
|
|
interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
|
|
src, &err);
|
|
if (interp_name == NULL) {
|
|
goto exit_errmsg;
|
|
}
|
|
if (interp_name[eppnt->p_filesz - 1] != 0) {
|
|
error_setg(&err, "Invalid PT_INTERP entry");
|
|
goto exit_errmsg;
|
|
}
|
|
*pinterp_name = g_steal_pointer(&interp_name);
|
|
} else if (eppnt->p_type == PT_GNU_PROPERTY) {
|
|
if (!parse_elf_properties(src, info, eppnt, &err)) {
|
|
goto exit_errmsg;
|
|
}
|
|
} else if (eppnt->p_type == PT_GNU_STACK) {
|
|
info->exec_stack = eppnt->p_flags & PF_X;
|
|
}
|
|
}
|
|
|
|
load_addr = loaddr;
|
|
|
|
if (pinterp_name != NULL) {
|
|
if (ehdr->e_type == ET_EXEC) {
|
|
/*
|
|
* Make sure that the low address does not conflict with
|
|
* MMAP_MIN_ADDR or the QEMU application itself.
|
|
*/
|
|
probe_guest_base(image_name, loaddr, hiaddr);
|
|
} else {
|
|
abi_ulong align;
|
|
|
|
/*
|
|
* The binary is dynamic, but we still need to
|
|
* select guest_base. In this case we pass a size.
|
|
*/
|
|
probe_guest_base(image_name, 0, hiaddr - loaddr);
|
|
|
|
/*
|
|
* Avoid collision with the loader by providing a different
|
|
* default load address.
|
|
*/
|
|
load_addr += elf_et_dyn_base;
|
|
|
|
/*
|
|
* TODO: Better support for mmap alignment is desirable.
|
|
* Since we do not have complete control over the guest
|
|
* address space, we prefer the kernel to choose some address
|
|
* rather than force the use of LOAD_ADDR via MAP_FIXED.
|
|
* But without MAP_FIXED we cannot guarantee alignment,
|
|
* only suggest it.
|
|
*/
|
|
align = pow2ceil(info->alignment);
|
|
if (align) {
|
|
load_addr &= -align;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Reserve address space for all of this.
|
|
*
|
|
* In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
|
|
* exactly the address range that is required. Without reserved_va,
|
|
* the guest address space is not isolated. We have attempted to avoid
|
|
* conflict with the host program itself via probe_guest_base, but using
|
|
* MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
|
|
*
|
|
* Otherwise this is ET_DYN, and we are searching for a location
|
|
* that can hold the memory space required. If the image is
|
|
* pre-linked, LOAD_ADDR will be non-zero, and the kernel should
|
|
* honor that address if it happens to be free.
|
|
*
|
|
* In both cases, we will overwrite pages in this range with mappings
|
|
* from the executable.
|
|
*/
|
|
load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
|
|
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
|
|
(ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
|
|
-1, 0);
|
|
if (load_addr == -1) {
|
|
goto exit_mmap;
|
|
}
|
|
load_bias = load_addr - loaddr;
|
|
|
|
if (elf_is_fdpic(ehdr)) {
|
|
struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
|
|
g_malloc(sizeof(*loadsegs) * info->nsegs);
|
|
|
|
for (i = 0; i < ehdr->e_phnum; ++i) {
|
|
switch (phdr[i].p_type) {
|
|
case PT_DYNAMIC:
|
|
info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
|
|
break;
|
|
case PT_LOAD:
|
|
loadsegs->addr = phdr[i].p_vaddr + load_bias;
|
|
loadsegs->p_vaddr = phdr[i].p_vaddr;
|
|
loadsegs->p_memsz = phdr[i].p_memsz;
|
|
++loadsegs;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
info->load_bias = load_bias;
|
|
info->code_offset = load_bias;
|
|
info->data_offset = load_bias;
|
|
info->load_addr = load_addr;
|
|
info->entry = ehdr->e_entry + load_bias;
|
|
info->start_code = -1;
|
|
info->end_code = 0;
|
|
info->start_data = -1;
|
|
info->end_data = 0;
|
|
/* Usual start for brk is after all sections of the main executable. */
|
|
info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
|
|
info->elf_flags = ehdr->e_flags;
|
|
|
|
prot_exec = PROT_EXEC;
|
|
#ifdef TARGET_AARCH64
|
|
/*
|
|
* If the BTI feature is present, this indicates that the executable
|
|
* pages of the startup binary should be mapped with PROT_BTI, so that
|
|
* branch targets are enforced.
|
|
*
|
|
* The startup binary is either the interpreter or the static executable.
|
|
* The interpreter is responsible for all pages of a dynamic executable.
|
|
*
|
|
* Elf notes are backward compatible to older cpus.
|
|
* Do not enable BTI unless it is supported.
|
|
*/
|
|
if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
|
|
&& (pinterp_name == NULL || *pinterp_name == 0)
|
|
&& cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
|
|
prot_exec |= TARGET_PROT_BTI;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < ehdr->e_phnum; i++) {
|
|
struct elf_phdr *eppnt = phdr + i;
|
|
if (eppnt->p_type == PT_LOAD) {
|
|
abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
|
|
int elf_prot = 0;
|
|
|
|
if (eppnt->p_flags & PF_R) {
|
|
elf_prot |= PROT_READ;
|
|
}
|
|
if (eppnt->p_flags & PF_W) {
|
|
elf_prot |= PROT_WRITE;
|
|
}
|
|
if (eppnt->p_flags & PF_X) {
|
|
elf_prot |= prot_exec;
|
|
}
|
|
|
|
vaddr = load_bias + eppnt->p_vaddr;
|
|
vaddr_po = vaddr & ~TARGET_PAGE_MASK;
|
|
vaddr_ps = vaddr & TARGET_PAGE_MASK;
|
|
|
|
vaddr_ef = vaddr + eppnt->p_filesz;
|
|
vaddr_em = vaddr + eppnt->p_memsz;
|
|
|
|
/*
|
|
* Some segments may be completely empty, with a non-zero p_memsz
|
|
* but no backing file segment.
|
|
*/
|
|
if (eppnt->p_filesz != 0) {
|
|
error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
|
|
elf_prot, MAP_PRIVATE | MAP_FIXED,
|
|
src, eppnt->p_offset - vaddr_po);
|
|
if (error == -1) {
|
|
goto exit_mmap;
|
|
}
|
|
}
|
|
|
|
/* If the load segment requests extra zeros (e.g. bss), map it. */
|
|
if (vaddr_ef < vaddr_em &&
|
|
!zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
|
|
goto exit_errmsg;
|
|
}
|
|
|
|
/* Find the full program boundaries. */
|
|
if (elf_prot & PROT_EXEC) {
|
|
if (vaddr < info->start_code) {
|
|
info->start_code = vaddr;
|
|
}
|
|
if (vaddr_ef > info->end_code) {
|
|
info->end_code = vaddr_ef;
|
|
}
|
|
}
|
|
if (elf_prot & PROT_WRITE) {
|
|
if (vaddr < info->start_data) {
|
|
info->start_data = vaddr;
|
|
}
|
|
if (vaddr_ef > info->end_data) {
|
|
info->end_data = vaddr_ef;
|
|
}
|
|
}
|
|
#ifdef TARGET_MIPS
|
|
} else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
|
|
Mips_elf_abiflags_v0 abiflags;
|
|
|
|
if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
|
|
src, &err)) {
|
|
goto exit_errmsg;
|
|
}
|
|
bswap_mips_abiflags(&abiflags);
|
|
info->fp_abi = abiflags.fp_abi;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (info->end_data == 0) {
|
|
info->start_data = info->end_code;
|
|
info->end_data = info->end_code;
|
|
}
|
|
|
|
if (qemu_log_enabled()) {
|
|
load_symbols(ehdr, src, load_bias);
|
|
}
|
|
|
|
debuginfo_report_elf(image_name, src->fd, load_bias);
|
|
|
|
mmap_unlock();
|
|
|
|
close(src->fd);
|
|
return;
|
|
|
|
exit_mmap:
|
|
error_setg_errno(&err, errno, "Error mapping file");
|
|
goto exit_errmsg;
|
|
exit_errmsg:
|
|
error_reportf_err(err, "%s: ", image_name);
|
|
exit(-1);
|
|
}
|
|
|
|
static void load_elf_interp(const char *filename, struct image_info *info,
|
|
char bprm_buf[BPRM_BUF_SIZE])
|
|
{
|
|
struct elfhdr ehdr;
|
|
ImageSource src;
|
|
int fd, retval;
|
|
Error *err = NULL;
|
|
|
|
fd = open(path(filename), O_RDONLY);
|
|
if (fd < 0) {
|
|
error_setg_file_open(&err, errno, filename);
|
|
error_report_err(err);
|
|
exit(-1);
|
|
}
|
|
|
|
retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
|
|
if (retval < 0) {
|
|
error_setg_errno(&err, errno, "Error reading file header");
|
|
error_reportf_err(err, "%s: ", filename);
|
|
exit(-1);
|
|
}
|
|
|
|
src.fd = fd;
|
|
src.cache = bprm_buf;
|
|
src.cache_size = retval;
|
|
|
|
load_elf_image(filename, &src, info, &ehdr, NULL);
|
|
}
|
|
|
|
#ifdef VDSO_HEADER
|
|
#include VDSO_HEADER
|
|
#define vdso_image_info() &vdso_image_info
|
|
#else
|
|
#define vdso_image_info() NULL
|
|
#endif
|
|
|
|
static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
|
|
{
|
|
ImageSource src;
|
|
struct elfhdr ehdr;
|
|
abi_ulong load_bias, load_addr;
|
|
|
|
src.fd = -1;
|
|
src.cache = vdso->image;
|
|
src.cache_size = vdso->image_size;
|
|
|
|
load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
|
|
load_addr = info->load_addr;
|
|
load_bias = info->load_bias;
|
|
|
|
/*
|
|
* We need to relocate the VDSO image. The one built into the kernel
|
|
* is built for a fixed address. The one built for QEMU is not, since
|
|
* that requires close control of the guest address space.
|
|
* We pre-processed the image to locate all of the addresses that need
|
|
* to be updated.
|
|
*/
|
|
for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
|
|
abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
|
|
*addr = tswapal(tswapal(*addr) + load_bias);
|
|
}
|
|
|
|
/* Install signal trampolines, if present. */
|
|
if (vdso->sigreturn_ofs) {
|
|
default_sigreturn = load_addr + vdso->sigreturn_ofs;
|
|
}
|
|
if (vdso->rt_sigreturn_ofs) {
|
|
default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
|
|
}
|
|
|
|
/* Remove write from VDSO segment. */
|
|
target_mprotect(info->start_data, info->end_data - info->start_data,
|
|
PROT_READ | PROT_EXEC);
|
|
}
|
|
|
|
static int symfind(const void *s0, const void *s1)
|
|
{
|
|
struct elf_sym *sym = (struct elf_sym *)s1;
|
|
__typeof(sym->st_value) addr = *(uint64_t *)s0;
|
|
int result = 0;
|
|
|
|
if (addr < sym->st_value) {
|
|
result = -1;
|
|
} else if (addr >= sym->st_value + sym->st_size) {
|
|
result = 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
|
|
{
|
|
#if ELF_CLASS == ELFCLASS32
|
|
struct elf_sym *syms = s->disas_symtab.elf32;
|
|
#else
|
|
struct elf_sym *syms = s->disas_symtab.elf64;
|
|
#endif
|
|
|
|
// binary search
|
|
struct elf_sym *sym;
|
|
|
|
sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
|
|
if (sym != NULL) {
|
|
return s->disas_strtab + sym->st_name;
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
/* FIXME: This should use elf_ops.h.inc */
|
|
static int symcmp(const void *s0, const void *s1)
|
|
{
|
|
struct elf_sym *sym0 = (struct elf_sym *)s0;
|
|
struct elf_sym *sym1 = (struct elf_sym *)s1;
|
|
return (sym0->st_value < sym1->st_value)
|
|
? -1
|
|
: ((sym0->st_value > sym1->st_value) ? 1 : 0);
|
|
}
|
|
|
|
/* Best attempt to load symbols from this ELF object. */
|
|
static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
|
|
abi_ulong load_bias)
|
|
{
|
|
int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
|
|
g_autofree struct elf_shdr *shdr = NULL;
|
|
char *strings = NULL;
|
|
struct elf_sym *syms = NULL;
|
|
struct elf_sym *new_syms;
|
|
uint64_t segsz;
|
|
|
|
shnum = hdr->e_shnum;
|
|
shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
|
|
src, NULL);
|
|
if (shdr == NULL) {
|
|
return;
|
|
}
|
|
|
|
bswap_shdr(shdr, shnum);
|
|
for (i = 0; i < shnum; ++i) {
|
|
if (shdr[i].sh_type == SHT_SYMTAB) {
|
|
sym_idx = i;
|
|
str_idx = shdr[i].sh_link;
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
/* There will be no symbol table if the file was stripped. */
|
|
return;
|
|
|
|
found:
|
|
/* Now know where the strtab and symtab are. Snarf them. */
|
|
|
|
segsz = shdr[str_idx].sh_size;
|
|
strings = g_try_malloc(segsz);
|
|
if (!strings) {
|
|
goto give_up;
|
|
}
|
|
if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
|
|
goto give_up;
|
|
}
|
|
|
|
segsz = shdr[sym_idx].sh_size;
|
|
if (segsz / sizeof(struct elf_sym) > INT_MAX) {
|
|
/*
|
|
* Implausibly large symbol table: give up rather than ploughing
|
|
* on with the number of symbols calculation overflowing.
|
|
*/
|
|
goto give_up;
|
|
}
|
|
nsyms = segsz / sizeof(struct elf_sym);
|
|
syms = g_try_malloc(segsz);
|
|
if (!syms) {
|
|
goto give_up;
|
|
}
|
|
if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
|
|
goto give_up;
|
|
}
|
|
|
|
for (i = 0; i < nsyms; ) {
|
|
bswap_sym(syms + i);
|
|
/* Throw away entries which we do not need. */
|
|
if (syms[i].st_shndx == SHN_UNDEF
|
|
|| syms[i].st_shndx >= SHN_LORESERVE
|
|
|| ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
|
|
if (i < --nsyms) {
|
|
syms[i] = syms[nsyms];
|
|
}
|
|
} else {
|
|
#if defined(TARGET_ARM) || defined (TARGET_MIPS)
|
|
/* The bottom address bit marks a Thumb or MIPS16 symbol. */
|
|
syms[i].st_value &= ~(target_ulong)1;
|
|
#endif
|
|
syms[i].st_value += load_bias;
|
|
i++;
|
|
}
|
|
}
|
|
|
|
/* No "useful" symbol. */
|
|
if (nsyms == 0) {
|
|
goto give_up;
|
|
}
|
|
|
|
/*
|
|
* Attempt to free the storage associated with the local symbols
|
|
* that we threw away. Whether or not this has any effect on the
|
|
* memory allocation depends on the malloc implementation and how
|
|
* many symbols we managed to discard.
|
|
*/
|
|
new_syms = g_try_renew(struct elf_sym, syms, nsyms);
|
|
if (new_syms == NULL) {
|
|
goto give_up;
|
|
}
|
|
syms = new_syms;
|
|
|
|
qsort(syms, nsyms, sizeof(*syms), symcmp);
|
|
|
|
{
|
|
struct syminfo *s = g_new(struct syminfo, 1);
|
|
|
|
s->disas_strtab = strings;
|
|
s->disas_num_syms = nsyms;
|
|
#if ELF_CLASS == ELFCLASS32
|
|
s->disas_symtab.elf32 = syms;
|
|
#else
|
|
s->disas_symtab.elf64 = syms;
|
|
#endif
|
|
s->lookup_symbol = lookup_symbolxx;
|
|
s->next = syminfos;
|
|
syminfos = s;
|
|
}
|
|
return;
|
|
|
|
give_up:
|
|
g_free(strings);
|
|
g_free(syms);
|
|
}
|
|
|
|
uint32_t get_elf_eflags(int fd)
|
|
{
|
|
struct elfhdr ehdr;
|
|
off_t offset;
|
|
int ret;
|
|
|
|
/* Read ELF header */
|
|
offset = lseek(fd, 0, SEEK_SET);
|
|
if (offset == (off_t) -1) {
|
|
return 0;
|
|
}
|
|
ret = read(fd, &ehdr, sizeof(ehdr));
|
|
if (ret < sizeof(ehdr)) {
|
|
return 0;
|
|
}
|
|
offset = lseek(fd, offset, SEEK_SET);
|
|
if (offset == (off_t) -1) {
|
|
return 0;
|
|
}
|
|
|
|
/* Check ELF signature */
|
|
if (!elf_check_ident(&ehdr)) {
|
|
return 0;
|
|
}
|
|
|
|
/* check header */
|
|
bswap_ehdr(&ehdr);
|
|
if (!elf_check_ehdr(&ehdr)) {
|
|
return 0;
|
|
}
|
|
|
|
/* return architecture id */
|
|
return ehdr.e_flags;
|
|
}
|
|
|
|
int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
|
|
{
|
|
/*
|
|
* We need a copy of the elf header for passing to create_elf_tables.
|
|
* We will have overwritten the original when we re-use bprm->buf
|
|
* while loading the interpreter. Allocate the storage for this now
|
|
* and let elf_load_image do any swapping that may be required.
|
|
*/
|
|
struct elfhdr ehdr;
|
|
struct image_info interp_info, vdso_info;
|
|
char *elf_interpreter = NULL;
|
|
char *scratch;
|
|
|
|
memset(&interp_info, 0, sizeof(interp_info));
|
|
#ifdef TARGET_MIPS
|
|
interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
|
|
#endif
|
|
|
|
load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
|
|
|
|
/* Do this so that we can load the interpreter, if need be. We will
|
|
change some of these later */
|
|
bprm->p = setup_arg_pages(bprm, info);
|
|
|
|
scratch = g_new0(char, TARGET_PAGE_SIZE);
|
|
if (STACK_GROWS_DOWN) {
|
|
bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->file_string = bprm->p;
|
|
bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->env_strings = bprm->p;
|
|
bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->arg_strings = bprm->p;
|
|
} else {
|
|
info->arg_strings = bprm->p;
|
|
bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->env_strings = bprm->p;
|
|
bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
|
|
bprm->p, info->stack_limit);
|
|
info->file_string = bprm->p;
|
|
bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
|
|
bprm->p, info->stack_limit);
|
|
}
|
|
|
|
g_free(scratch);
|
|
|
|
if (!bprm->p) {
|
|
fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
|
|
exit(-1);
|
|
}
|
|
|
|
if (elf_interpreter) {
|
|
load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
|
|
|
|
/*
|
|
* While unusual because of ELF_ET_DYN_BASE, if we are unlucky
|
|
* with the mappings the interpreter can be loaded above but
|
|
* near the main executable, which can leave very little room
|
|
* for the heap.
|
|
* If the current brk has less than 16MB, use the end of the
|
|
* interpreter.
|
|
*/
|
|
if (interp_info.brk > info->brk &&
|
|
interp_info.load_bias - info->brk < 16 * MiB) {
|
|
info->brk = interp_info.brk;
|
|
}
|
|
|
|
/* If the program interpreter is one of these two, then assume
|
|
an iBCS2 image. Otherwise assume a native linux image. */
|
|
|
|
if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
|
|
|| strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
|
|
info->personality = PER_SVR4;
|
|
|
|
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
|
|
and some applications "depend" upon this behavior. Since
|
|
we do not have the power to recompile these, we emulate
|
|
the SVr4 behavior. Sigh. */
|
|
target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
|
|
MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1, 0);
|
|
}
|
|
#ifdef TARGET_MIPS
|
|
info->interp_fp_abi = interp_info.fp_abi;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Load a vdso if available, which will amongst other things contain the
|
|
* signal trampolines. Otherwise, allocate a separate page for them.
|
|
*/
|
|
const VdsoImageInfo *vdso = vdso_image_info();
|
|
if (vdso) {
|
|
load_elf_vdso(&vdso_info, vdso);
|
|
info->vdso = vdso_info.load_bias;
|
|
} else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
|
|
abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANON, -1, 0);
|
|
if (tramp_page == -1) {
|
|
return -errno;
|
|
}
|
|
|
|
setup_sigtramp(tramp_page);
|
|
target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
|
|
}
|
|
|
|
bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
|
|
elf_interpreter ? &interp_info : NULL,
|
|
vdso ? &vdso_info : NULL);
|
|
info->start_stack = bprm->p;
|
|
|
|
/* If we have an interpreter, set that as the program's entry point.
|
|
Copy the load_bias as well, to help PPC64 interpret the entry
|
|
point as a function descriptor. Do this after creating elf tables
|
|
so that we copy the original program entry point into the AUXV. */
|
|
if (elf_interpreter) {
|
|
info->load_bias = interp_info.load_bias;
|
|
info->entry = interp_info.entry;
|
|
g_free(elf_interpreter);
|
|
}
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
bprm->core_dump = &elf_core_dump;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
#include "exec/translate-all.h"
|
|
|
|
/*
|
|
* Definitions to generate Intel SVR4-like core files.
|
|
* These mostly have the same names as the SVR4 types with "target_elf_"
|
|
* tacked on the front to prevent clashes with linux definitions,
|
|
* and the typedef forms have been avoided. This is mostly like
|
|
* the SVR4 structure, but more Linuxy, with things that Linux does
|
|
* not support and which gdb doesn't really use excluded.
|
|
*
|
|
* Fields we don't dump (their contents is zero) in linux-user qemu
|
|
* are marked with XXX.
|
|
*
|
|
* Core dump code is copied from linux kernel (fs/binfmt_elf.c).
|
|
*
|
|
* Porting ELF coredump for target is (quite) simple process. First you
|
|
* define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
|
|
* the target resides):
|
|
*
|
|
* #define USE_ELF_CORE_DUMP
|
|
*
|
|
* Next you define type of register set used for dumping. ELF specification
|
|
* says that it needs to be array of elf_greg_t that has size of ELF_NREG.
|
|
*
|
|
* typedef <target_regtype> target_elf_greg_t;
|
|
* #define ELF_NREG <number of registers>
|
|
* typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
*
|
|
* Last step is to implement target specific function that copies registers
|
|
* from given cpu into just specified register set. Prototype is:
|
|
*
|
|
* static void elf_core_copy_regs(taret_elf_gregset_t *regs,
|
|
* const CPUArchState *env);
|
|
*
|
|
* Parameters:
|
|
* regs - copy register values into here (allocated and zeroed by caller)
|
|
* env - copy registers from here
|
|
*
|
|
* Example for ARM target is provided in this file.
|
|
*/
|
|
|
|
struct target_elf_siginfo {
|
|
abi_int si_signo; /* signal number */
|
|
abi_int si_code; /* extra code */
|
|
abi_int si_errno; /* errno */
|
|
};
|
|
|
|
struct target_elf_prstatus {
|
|
struct target_elf_siginfo pr_info; /* Info associated with signal */
|
|
abi_short pr_cursig; /* Current signal */
|
|
abi_ulong pr_sigpend; /* XXX */
|
|
abi_ulong pr_sighold; /* XXX */
|
|
target_pid_t pr_pid;
|
|
target_pid_t pr_ppid;
|
|
target_pid_t pr_pgrp;
|
|
target_pid_t pr_sid;
|
|
struct target_timeval pr_utime; /* XXX User time */
|
|
struct target_timeval pr_stime; /* XXX System time */
|
|
struct target_timeval pr_cutime; /* XXX Cumulative user time */
|
|
struct target_timeval pr_cstime; /* XXX Cumulative system time */
|
|
target_elf_gregset_t pr_reg; /* GP registers */
|
|
abi_int pr_fpvalid; /* XXX */
|
|
};
|
|
|
|
#define ELF_PRARGSZ (80) /* Number of chars for args */
|
|
|
|
struct target_elf_prpsinfo {
|
|
char pr_state; /* numeric process state */
|
|
char pr_sname; /* char for pr_state */
|
|
char pr_zomb; /* zombie */
|
|
char pr_nice; /* nice val */
|
|
abi_ulong pr_flag; /* flags */
|
|
target_uid_t pr_uid;
|
|
target_gid_t pr_gid;
|
|
target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
|
|
/* Lots missing */
|
|
char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
|
|
char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
|
|
};
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_prstatus(struct target_elf_prstatus *prstatus)
|
|
{
|
|
prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
|
|
prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
|
|
prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
|
|
prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
|
|
prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
|
|
prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
|
|
prstatus->pr_pid = tswap32(prstatus->pr_pid);
|
|
prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
|
|
prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
|
|
prstatus->pr_sid = tswap32(prstatus->pr_sid);
|
|
/* cpu times are not filled, so we skip them */
|
|
/* regs should be in correct format already */
|
|
prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
|
|
}
|
|
|
|
static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
|
|
{
|
|
psinfo->pr_flag = tswapal(psinfo->pr_flag);
|
|
psinfo->pr_uid = tswap16(psinfo->pr_uid);
|
|
psinfo->pr_gid = tswap16(psinfo->pr_gid);
|
|
psinfo->pr_pid = tswap32(psinfo->pr_pid);
|
|
psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
|
|
psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
|
|
psinfo->pr_sid = tswap32(psinfo->pr_sid);
|
|
}
|
|
|
|
static void bswap_note(struct elf_note *en)
|
|
{
|
|
bswap32s(&en->n_namesz);
|
|
bswap32s(&en->n_descsz);
|
|
bswap32s(&en->n_type);
|
|
}
|
|
#else
|
|
static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
|
|
static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
|
|
static inline void bswap_note(struct elf_note *en) { }
|
|
#endif /* BSWAP_NEEDED */
|
|
|
|
/*
|
|
* Calculate file (dump) size of given memory region.
|
|
*/
|
|
static size_t vma_dump_size(target_ulong start, target_ulong end,
|
|
unsigned long flags)
|
|
{
|
|
/* The area must be readable. */
|
|
if (!(flags & PAGE_READ)) {
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Usually we don't dump executable pages as they contain
|
|
* non-writable code that debugger can read directly from
|
|
* target library etc. If there is no elf header, we dump it.
|
|
*/
|
|
if (!(flags & PAGE_WRITE_ORG) &&
|
|
(flags & PAGE_EXEC) &&
|
|
memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
return end - start;
|
|
}
|
|
|
|
static size_t size_note(const char *name, size_t datasz)
|
|
{
|
|
size_t namesz = strlen(name) + 1;
|
|
|
|
namesz = ROUND_UP(namesz, 4);
|
|
datasz = ROUND_UP(datasz, 4);
|
|
|
|
return sizeof(struct elf_note) + namesz + datasz;
|
|
}
|
|
|
|
static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
|
|
{
|
|
void *ptr = *pptr;
|
|
struct elf_note *n = ptr;
|
|
size_t namesz = strlen(name) + 1;
|
|
|
|
n->n_namesz = namesz;
|
|
n->n_descsz = datasz;
|
|
n->n_type = type;
|
|
bswap_note(n);
|
|
|
|
ptr += sizeof(*n);
|
|
memcpy(ptr, name, namesz);
|
|
|
|
namesz = ROUND_UP(namesz, 4);
|
|
datasz = ROUND_UP(datasz, 4);
|
|
|
|
*pptr = ptr + namesz + datasz;
|
|
return ptr + namesz;
|
|
}
|
|
|
|
static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
|
|
uint32_t flags)
|
|
{
|
|
memcpy(elf->e_ident, ELFMAG, SELFMAG);
|
|
|
|
elf->e_ident[EI_CLASS] = ELF_CLASS;
|
|
elf->e_ident[EI_DATA] = ELF_DATA;
|
|
elf->e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf->e_ident[EI_OSABI] = ELF_OSABI;
|
|
|
|
elf->e_type = ET_CORE;
|
|
elf->e_machine = machine;
|
|
elf->e_version = EV_CURRENT;
|
|
elf->e_phoff = sizeof(struct elfhdr);
|
|
elf->e_flags = flags;
|
|
elf->e_ehsize = sizeof(struct elfhdr);
|
|
elf->e_phentsize = sizeof(struct elf_phdr);
|
|
elf->e_phnum = segs;
|
|
|
|
bswap_ehdr(elf);
|
|
}
|
|
|
|
static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
|
|
{
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_offset = offset;
|
|
phdr->p_filesz = sz;
|
|
|
|
bswap_phdr(phdr, 1);
|
|
}
|
|
|
|
static void fill_prstatus_note(void *data, CPUState *cpu, int signr)
|
|
{
|
|
/*
|
|
* Because note memory is only aligned to 4, and target_elf_prstatus
|
|
* may well have higher alignment requirements, fill locally and
|
|
* memcpy to the destination afterward.
|
|
*/
|
|
struct target_elf_prstatus prstatus = {
|
|
.pr_info.si_signo = signr,
|
|
.pr_cursig = signr,
|
|
.pr_pid = get_task_state(cpu)->ts_tid,
|
|
.pr_ppid = getppid(),
|
|
.pr_pgrp = getpgrp(),
|
|
.pr_sid = getsid(0),
|
|
};
|
|
|
|
elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
|
|
bswap_prstatus(&prstatus);
|
|
memcpy(data, &prstatus, sizeof(prstatus));
|
|
}
|
|
|
|
static void fill_prpsinfo_note(void *data, const TaskState *ts)
|
|
{
|
|
/*
|
|
* Because note memory is only aligned to 4, and target_elf_prpsinfo
|
|
* may well have higher alignment requirements, fill locally and
|
|
* memcpy to the destination afterward.
|
|
*/
|
|
struct target_elf_prpsinfo psinfo = {
|
|
.pr_pid = getpid(),
|
|
.pr_ppid = getppid(),
|
|
.pr_pgrp = getpgrp(),
|
|
.pr_sid = getsid(0),
|
|
.pr_uid = getuid(),
|
|
.pr_gid = getgid(),
|
|
};
|
|
char *base_filename;
|
|
size_t len;
|
|
|
|
len = ts->info->env_strings - ts->info->arg_strings;
|
|
len = MIN(len, ELF_PRARGSZ);
|
|
memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
|
|
for (size_t i = 0; i < len; i++) {
|
|
if (psinfo.pr_psargs[i] == 0) {
|
|
psinfo.pr_psargs[i] = ' ';
|
|
}
|
|
}
|
|
|
|
base_filename = g_path_get_basename(ts->bprm->filename);
|
|
/*
|
|
* Using strncpy here is fine: at max-length,
|
|
* this field is not NUL-terminated.
|
|
*/
|
|
strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
|
|
g_free(base_filename);
|
|
|
|
bswap_psinfo(&psinfo);
|
|
memcpy(data, &psinfo, sizeof(psinfo));
|
|
}
|
|
|
|
static void fill_auxv_note(void *data, const TaskState *ts)
|
|
{
|
|
memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
|
|
}
|
|
|
|
/*
|
|
* Constructs name of coredump file. We have following convention
|
|
* for the name:
|
|
* qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
|
|
*
|
|
* Returns the filename
|
|
*/
|
|
static char *core_dump_filename(const TaskState *ts)
|
|
{
|
|
g_autoptr(GDateTime) now = g_date_time_new_now_local();
|
|
g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
|
|
g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
|
|
|
|
return g_strdup_printf("qemu_%s_%s_%d.core",
|
|
base_filename, nowstr, (int)getpid());
|
|
}
|
|
|
|
static int dump_write(int fd, const void *ptr, size_t size)
|
|
{
|
|
const char *bufp = (const char *)ptr;
|
|
ssize_t bytes_written, bytes_left;
|
|
|
|
bytes_written = 0;
|
|
bytes_left = size;
|
|
|
|
/*
|
|
* In normal conditions, single write(2) should do but
|
|
* in case of socket etc. this mechanism is more portable.
|
|
*/
|
|
do {
|
|
bytes_written = write(fd, bufp, bytes_left);
|
|
if (bytes_written < 0) {
|
|
if (errno == EINTR)
|
|
continue;
|
|
return (-1);
|
|
} else if (bytes_written == 0) { /* eof */
|
|
return (-1);
|
|
}
|
|
bufp += bytes_written;
|
|
bytes_left -= bytes_written;
|
|
} while (bytes_left > 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
|
|
target_ulong end, unsigned long flags)
|
|
{
|
|
if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
|
|
size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
|
|
|
|
while (1) {
|
|
page_unprotect(start, 0);
|
|
if (end - start <= step) {
|
|
break;
|
|
}
|
|
start += step;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
typedef struct {
|
|
unsigned count;
|
|
size_t size;
|
|
} CountAndSizeRegions;
|
|
|
|
static int wmr_count_and_size_regions(void *opaque, target_ulong start,
|
|
target_ulong end, unsigned long flags)
|
|
{
|
|
CountAndSizeRegions *css = opaque;
|
|
|
|
css->count++;
|
|
css->size += vma_dump_size(start, end, flags);
|
|
return 0;
|
|
}
|
|
|
|
typedef struct {
|
|
struct elf_phdr *phdr;
|
|
off_t offset;
|
|
} FillRegionPhdr;
|
|
|
|
static int wmr_fill_region_phdr(void *opaque, target_ulong start,
|
|
target_ulong end, unsigned long flags)
|
|
{
|
|
FillRegionPhdr *d = opaque;
|
|
struct elf_phdr *phdr = d->phdr;
|
|
|
|
phdr->p_type = PT_LOAD;
|
|
phdr->p_vaddr = start;
|
|
phdr->p_paddr = 0;
|
|
phdr->p_filesz = vma_dump_size(start, end, flags);
|
|
phdr->p_offset = d->offset;
|
|
d->offset += phdr->p_filesz;
|
|
phdr->p_memsz = end - start;
|
|
phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
|
|
| (flags & PAGE_WRITE_ORG ? PF_W : 0)
|
|
| (flags & PAGE_EXEC ? PF_X : 0);
|
|
phdr->p_align = ELF_EXEC_PAGESIZE;
|
|
|
|
bswap_phdr(phdr, 1);
|
|
d->phdr = phdr + 1;
|
|
return 0;
|
|
}
|
|
|
|
static int wmr_write_region(void *opaque, target_ulong start,
|
|
target_ulong end, unsigned long flags)
|
|
{
|
|
int fd = *(int *)opaque;
|
|
size_t size = vma_dump_size(start, end, flags);
|
|
|
|
if (!size) {
|
|
return 0;
|
|
}
|
|
return dump_write(fd, g2h_untagged(start), size);
|
|
}
|
|
|
|
/*
|
|
* Write out ELF coredump.
|
|
*
|
|
* See documentation of ELF object file format in:
|
|
* http://www.caldera.com/developers/devspecs/gabi41.pdf
|
|
*
|
|
* Coredump format in linux is following:
|
|
*
|
|
* 0 +----------------------+ \
|
|
* | ELF header | ET_CORE |
|
|
* +----------------------+ |
|
|
* | ELF program headers | |--- headers
|
|
* | - NOTE section | |
|
|
* | - PT_LOAD sections | |
|
|
* +----------------------+ /
|
|
* | NOTEs: |
|
|
* | - NT_PRSTATUS |
|
|
* | - NT_PRSINFO |
|
|
* | - NT_AUXV |
|
|
* +----------------------+ <-- aligned to target page
|
|
* | Process memory dump |
|
|
* : :
|
|
* . .
|
|
* : :
|
|
* | |
|
|
* +----------------------+
|
|
*
|
|
* NT_PRSTATUS -> struct elf_prstatus (per thread)
|
|
* NT_PRSINFO -> struct elf_prpsinfo
|
|
* NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
|
|
*
|
|
* Format follows System V format as close as possible. Current
|
|
* version limitations are as follows:
|
|
* - no floating point registers are dumped
|
|
*
|
|
* Function returns 0 in case of success, negative errno otherwise.
|
|
*
|
|
* TODO: make this work also during runtime: it should be
|
|
* possible to force coredump from running process and then
|
|
* continue processing. For example qemu could set up SIGUSR2
|
|
* handler (provided that target process haven't registered
|
|
* handler for that) that does the dump when signal is received.
|
|
*/
|
|
static int elf_core_dump(int signr, const CPUArchState *env)
|
|
{
|
|
const CPUState *cpu = env_cpu((CPUArchState *)env);
|
|
const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
|
|
struct rlimit dumpsize;
|
|
CountAndSizeRegions css;
|
|
off_t offset, note_offset, data_offset;
|
|
size_t note_size;
|
|
int cpus, ret;
|
|
int fd = -1;
|
|
CPUState *cpu_iter;
|
|
|
|
if (prctl(PR_GET_DUMPABLE) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
|
|
return 0;
|
|
}
|
|
|
|
cpu_list_lock();
|
|
mmap_lock();
|
|
|
|
/* By unprotecting, we merge vmas that might be split. */
|
|
walk_memory_regions(NULL, wmr_page_unprotect_regions);
|
|
|
|
/*
|
|
* Walk through target process memory mappings and
|
|
* set up structure containing this information.
|
|
*/
|
|
memset(&css, 0, sizeof(css));
|
|
walk_memory_regions(&css, wmr_count_and_size_regions);
|
|
|
|
cpus = 0;
|
|
CPU_FOREACH(cpu_iter) {
|
|
cpus++;
|
|
}
|
|
|
|
offset = sizeof(struct elfhdr);
|
|
offset += (css.count + 1) * sizeof(struct elf_phdr);
|
|
note_offset = offset;
|
|
|
|
offset += size_note("CORE", ts->info->auxv_len);
|
|
offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
|
|
offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
|
|
note_size = offset - note_offset;
|
|
data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
|
|
|
|
/* Do not dump if the corefile size exceeds the limit. */
|
|
if (dumpsize.rlim_cur != RLIM_INFINITY
|
|
&& dumpsize.rlim_cur < data_offset + css.size) {
|
|
errno = 0;
|
|
goto out;
|
|
}
|
|
|
|
{
|
|
g_autofree char *corefile = core_dump_filename(ts);
|
|
fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
|
|
S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
|
|
}
|
|
if (fd < 0) {
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* There is a fair amount of alignment padding within the notes
|
|
* as well as preceeding the process memory. Allocate a zeroed
|
|
* block to hold it all. Write all of the headers directly into
|
|
* this buffer and then write it out as a block.
|
|
*/
|
|
{
|
|
g_autofree void *header = g_malloc0(data_offset);
|
|
FillRegionPhdr frp;
|
|
void *hptr, *dptr;
|
|
|
|
/* Create elf file header. */
|
|
hptr = header;
|
|
fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
|
|
hptr += sizeof(struct elfhdr);
|
|
|
|
/* Create elf program headers. */
|
|
fill_elf_note_phdr(hptr, note_size, note_offset);
|
|
hptr += sizeof(struct elf_phdr);
|
|
|
|
frp.phdr = hptr;
|
|
frp.offset = data_offset;
|
|
walk_memory_regions(&frp, wmr_fill_region_phdr);
|
|
hptr = frp.phdr;
|
|
|
|
/* Create the notes. */
|
|
dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
|
|
fill_auxv_note(dptr, ts);
|
|
|
|
dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
|
|
sizeof(struct target_elf_prpsinfo));
|
|
fill_prpsinfo_note(dptr, ts);
|
|
|
|
CPU_FOREACH(cpu_iter) {
|
|
dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
|
|
sizeof(struct target_elf_prstatus));
|
|
fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0);
|
|
}
|
|
|
|
if (dump_write(fd, header, data_offset) < 0) {
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally write process memory into the corefile as well.
|
|
*/
|
|
if (walk_memory_regions(&fd, wmr_write_region) < 0) {
|
|
goto out;
|
|
}
|
|
errno = 0;
|
|
|
|
out:
|
|
ret = -errno;
|
|
mmap_unlock();
|
|
cpu_list_unlock();
|
|
if (fd >= 0) {
|
|
close(fd);
|
|
}
|
|
return ret;
|
|
}
|
|
#endif /* USE_ELF_CORE_DUMP */
|
|
|
|
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
init_thread(regs, infop);
|
|
}
|