qemu/target/ppc/power8-pmu.c
Daniel Henrique Barboza 308b9fad2a target/ppc: PMU: update counters on PMCs r/w
Calling pmu_update_cycles() on every PMC read/write operation ensures
that the values being fetched are up to date with the current PMU state.

In theory we can get away by just trapping PMCs reads, but we're going
to trap PMC writes to deal with counter overflow logic later on.  Let's
put the required wiring for that and make our lives a bit easier in the
next patches.

Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-4-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
2021-12-17 17:57:18 +01:00

187 lines
4.5 KiB
C

/*
* PMU emulation helpers for TCG IBM POWER chips
*
* Copyright IBM Corp. 2021
*
* Authors:
* Daniel Henrique Barboza <danielhb413@gmail.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "power8-pmu.h"
#include "cpu.h"
#include "helper_regs.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "hw/ppc/ppc.h"
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
static bool pmc_is_inactive(CPUPPCState *env, int sprn)
{
if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) {
return true;
}
if (sprn < SPR_POWER_PMC5) {
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC14;
}
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56;
}
/*
* For PMCs 1-4, IBM POWER chips has support for an implementation
* dependent event, 0x1E, that enables cycle counting. The Linux kernel
* makes extensive use of 0x1E, so let's also support it.
*
* Likewise, event 0x2 is an implementation-dependent event that IBM
* POWER chips implement (at least since POWER8) that is equivalent to
* PM_INST_CMPL. Let's support this event on PMCs 1-4 as well.
*/
static PMUEventType pmc_get_event(CPUPPCState *env, int sprn)
{
uint8_t mmcr1_evt_extr[] = { MMCR1_PMC1EVT_EXTR, MMCR1_PMC2EVT_EXTR,
MMCR1_PMC3EVT_EXTR, MMCR1_PMC4EVT_EXTR };
PMUEventType evt_type = PMU_EVENT_INVALID;
uint8_t pmcsel;
int i;
if (pmc_is_inactive(env, sprn)) {
return PMU_EVENT_INACTIVE;
}
if (sprn == SPR_POWER_PMC5) {
return PMU_EVENT_INSTRUCTIONS;
}
if (sprn == SPR_POWER_PMC6) {
return PMU_EVENT_CYCLES;
}
i = sprn - SPR_POWER_PMC1;
pmcsel = extract64(env->spr[SPR_POWER_MMCR1], mmcr1_evt_extr[i],
MMCR1_EVT_SIZE);
switch (pmcsel) {
case 0x2:
evt_type = PMU_EVENT_INSTRUCTIONS;
break;
case 0x1E:
evt_type = PMU_EVENT_CYCLES;
break;
case 0xF0:
/*
* PMC1SEL = 0xF0 is the architected PowerISA v3.1
* event that counts cycles using PMC1.
*/
if (sprn == SPR_POWER_PMC1) {
evt_type = PMU_EVENT_CYCLES;
}
break;
case 0xFE:
/*
* PMC1SEL = 0xFE is the architected PowerISA v3.1
* event to sample instructions using PMC1.
*/
if (sprn == SPR_POWER_PMC1) {
evt_type = PMU_EVENT_INSTRUCTIONS;
}
break;
default:
break;
}
return evt_type;
}
static void pmu_update_cycles(CPUPPCState *env)
{
uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint64_t time_delta = now - env->pmu_base_time;
int sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES) {
continue;
}
/*
* The pseries and powernv clock runs at 1Ghz, meaning
* that 1 nanosec equals 1 cycle.
*/
env->spr[sprn] += time_delta;
}
/* Update base_time for future calculations */
env->pmu_base_time = now;
}
void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
{
pmu_update_cycles(env);
env->spr[SPR_POWER_MMCR0] = value;
/* MMCR0 writes can change HFLAGS_PMCCCLEAR */
hreg_compute_hflags(env);
}
target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
{
pmu_update_cycles(env);
return env->spr[sprn];
}
void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
{
pmu_update_cycles(env);
env->spr[sprn] = value;
}
static void fire_PMC_interrupt(PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
if (!(env->spr[SPR_POWER_MMCR0] & MMCR0_EBE)) {
return;
}
/* PMC interrupt not implemented yet */
return;
}
static void cpu_ppc_pmu_timer_cb(void *opaque)
{
PowerPCCPU *cpu = opaque;
fire_PMC_interrupt(cpu);
}
void cpu_ppc_pmu_init(CPUPPCState *env)
{
PowerPCCPU *cpu = env_archcpu(env);
int i, sprn;
for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
if (sprn == SPR_POWER_PMC5) {
continue;
}
i = sprn - SPR_POWER_PMC1;
env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
&cpu_ppc_pmu_timer_cb,
cpu);
}
}
#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */