qemu/target/s390x/tcg/vec_fpu_helper.c
Ilya Leoshkevich 13c59eb09b target/s390x: fix handling of zeroes in vfmin/vfmax
vfmin_res() / vfmax_res() are trying to check whether a and b are both
zeroes, but in reality they check that they are the same kind of zero.
This causes incorrect results when comparing positive and negative
zeroes.

Fixes: da4807527f ("s390x/tcg: Implement VECTOR FP (MAXIMUM|MINIMUM)")
Co-developed-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Message-Id: <20220713182612.3780050-2-iii@linux.ibm.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
2022-07-19 12:49:56 +02:00

1103 lines
37 KiB
C

/*
* QEMU TCG support -- s390x vector floating point instruction support
*
* Copyright (C) 2019 Red Hat Inc
*
* Authors:
* David Hildenbrand <david@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "vec.h"
#include "tcg_s390x.h"
#include "tcg/tcg-gvec-desc.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#define VIC_INVALID 0x1
#define VIC_DIVBYZERO 0x2
#define VIC_OVERFLOW 0x3
#define VIC_UNDERFLOW 0x4
#define VIC_INEXACT 0x5
/* returns the VEX. If the VEX is 0, there is no trap */
static uint8_t check_ieee_exc(CPUS390XState *env, uint8_t enr, bool XxC,
uint8_t *vec_exc)
{
uint8_t vece_exc = 0, trap_exc;
unsigned qemu_exc;
/* Retrieve and clear the softfloat exceptions */
qemu_exc = env->fpu_status.float_exception_flags;
if (qemu_exc == 0) {
return 0;
}
env->fpu_status.float_exception_flags = 0;
vece_exc = s390_softfloat_exc_to_ieee(qemu_exc);
/* Add them to the vector-wide s390x exception bits */
*vec_exc |= vece_exc;
/* Check for traps and construct the VXC */
trap_exc = vece_exc & env->fpc >> 24;
if (trap_exc) {
if (trap_exc & S390_IEEE_MASK_INVALID) {
return enr << 4 | VIC_INVALID;
} else if (trap_exc & S390_IEEE_MASK_DIVBYZERO) {
return enr << 4 | VIC_DIVBYZERO;
} else if (trap_exc & S390_IEEE_MASK_OVERFLOW) {
return enr << 4 | VIC_OVERFLOW;
} else if (trap_exc & S390_IEEE_MASK_UNDERFLOW) {
return enr << 4 | VIC_UNDERFLOW;
} else if (!XxC) {
g_assert(trap_exc & S390_IEEE_MASK_INEXACT);
/* inexact has lowest priority on traps */
return enr << 4 | VIC_INEXACT;
}
}
return 0;
}
static void handle_ieee_exc(CPUS390XState *env, uint8_t vxc, uint8_t vec_exc,
uintptr_t retaddr)
{
if (vxc) {
/* on traps, the fpc flags are not updated, instruction is suppressed */
tcg_s390_vector_exception(env, vxc, retaddr);
}
if (vec_exc) {
/* indicate exceptions for all elements combined */
env->fpc |= vec_exc << 16;
}
}
static float32 s390_vec_read_float32(const S390Vector *v, uint8_t enr)
{
return make_float32(s390_vec_read_element32(v, enr));
}
static float64 s390_vec_read_float64(const S390Vector *v, uint8_t enr)
{
return make_float64(s390_vec_read_element64(v, enr));
}
static float128 s390_vec_read_float128(const S390Vector *v)
{
return make_float128(s390_vec_read_element64(v, 0),
s390_vec_read_element64(v, 1));
}
static void s390_vec_write_float32(S390Vector *v, uint8_t enr, float32 data)
{
return s390_vec_write_element32(v, enr, data);
}
static void s390_vec_write_float64(S390Vector *v, uint8_t enr, float64 data)
{
return s390_vec_write_element64(v, enr, data);
}
static void s390_vec_write_float128(S390Vector *v, float128 data)
{
s390_vec_write_element64(v, 0, data.high);
s390_vec_write_element64(v, 1, data.low);
}
typedef float32 (*vop32_2_fn)(float32 a, float_status *s);
static void vop32_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
bool s, bool XxC, uint8_t erm, vop32_2_fn fn,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i, old_mode;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
for (i = 0; i < 4; i++) {
const float32 a = s390_vec_read_float32(v2, i);
s390_vec_write_float32(&tmp, i, fn(a, &env->fpu_status));
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
if (s || vxc) {
break;
}
}
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
typedef float64 (*vop64_2_fn)(float64 a, float_status *s);
static void vop64_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
bool s, bool XxC, uint8_t erm, vop64_2_fn fn,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i, old_mode;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
s390_vec_write_float64(&tmp, i, fn(a, &env->fpu_status));
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
if (s || vxc) {
break;
}
}
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
typedef float128 (*vop128_2_fn)(float128 a, float_status *s);
static void vop128_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
bool s, bool XxC, uint8_t erm, vop128_2_fn fn,
uintptr_t retaddr)
{
const float128 a = s390_vec_read_float128(v2);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int old_mode;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
s390_vec_write_float128(&tmp, fn(a, &env->fpu_status));
vxc = check_ieee_exc(env, 0, XxC, &vec_exc);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
static float32 vcdg32(float32 a, float_status *s)
{
return int32_to_float32(a, s);
}
static float32 vcdlg32(float32 a, float_status *s)
{
return uint32_to_float32(a, s);
}
static float32 vcgd32(float32 a, float_status *s)
{
const float32 tmp = float32_to_int32(a, s);
return float32_is_any_nan(a) ? INT32_MIN : tmp;
}
static float32 vclgd32(float32 a, float_status *s)
{
const float32 tmp = float32_to_uint32(a, s);
return float32_is_any_nan(a) ? 0 : tmp;
}
static float64 vcdg64(float64 a, float_status *s)
{
return int64_to_float64(a, s);
}
static float64 vcdlg64(float64 a, float_status *s)
{
return uint64_to_float64(a, s);
}
static float64 vcgd64(float64 a, float_status *s)
{
const float64 tmp = float64_to_int64(a, s);
return float64_is_any_nan(a) ? INT64_MIN : tmp;
}
static float64 vclgd64(float64 a, float_status *s)
{
const float64 tmp = float64_to_uint64(a, s);
return float64_is_any_nan(a) ? 0 : tmp;
}
#define DEF_GVEC_VOP2_FN(NAME, FN, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, CPUS390XState *env, \
uint32_t desc) \
{ \
const uint8_t erm = extract32(simd_data(desc), 4, 4); \
const bool se = extract32(simd_data(desc), 3, 1); \
const bool XxC = extract32(simd_data(desc), 2, 1); \
\
vop##BITS##_2(v1, v2, env, se, XxC, erm, FN, GETPC()); \
}
#define DEF_GVEC_VOP2_32(NAME) \
DEF_GVEC_VOP2_FN(NAME, NAME##32, 32)
#define DEF_GVEC_VOP2_64(NAME) \
DEF_GVEC_VOP2_FN(NAME, NAME##64, 64)
#define DEF_GVEC_VOP2(NAME, OP) \
DEF_GVEC_VOP2_FN(NAME, float32_##OP, 32) \
DEF_GVEC_VOP2_FN(NAME, float64_##OP, 64) \
DEF_GVEC_VOP2_FN(NAME, float128_##OP, 128)
DEF_GVEC_VOP2_32(vcdg)
DEF_GVEC_VOP2_32(vcdlg)
DEF_GVEC_VOP2_32(vcgd)
DEF_GVEC_VOP2_32(vclgd)
DEF_GVEC_VOP2_64(vcdg)
DEF_GVEC_VOP2_64(vcdlg)
DEF_GVEC_VOP2_64(vcgd)
DEF_GVEC_VOP2_64(vclgd)
DEF_GVEC_VOP2(vfi, round_to_int)
DEF_GVEC_VOP2(vfsq, sqrt)
typedef float32 (*vop32_3_fn)(float32 a, float32 b, float_status *s);
static void vop32_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vop32_3_fn fn,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 4; i++) {
const float32 a = s390_vec_read_float32(v2, i);
const float32 b = s390_vec_read_float32(v3, i);
s390_vec_write_float32(&tmp, i, fn(a, b, &env->fpu_status));
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
typedef float64 (*vop64_3_fn)(float64 a, float64 b, float_status *s);
static void vop64_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vop64_3_fn fn,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
const float64 b = s390_vec_read_float64(v3, i);
s390_vec_write_float64(&tmp, i, fn(a, b, &env->fpu_status));
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
typedef float128 (*vop128_3_fn)(float128 a, float128 b, float_status *s);
static void vop128_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vop128_3_fn fn,
uintptr_t retaddr)
{
const float128 a = s390_vec_read_float128(v2);
const float128 b = s390_vec_read_float128(v3);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
s390_vec_write_float128(&tmp, fn(a, b, &env->fpu_status));
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
#define DEF_GVEC_VOP3_B(NAME, OP, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
CPUS390XState *env, uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
\
vop##BITS##_3(v1, v2, v3, env, se, float##BITS##_##OP, GETPC()); \
}
#define DEF_GVEC_VOP3(NAME, OP) \
DEF_GVEC_VOP3_B(NAME, OP, 32) \
DEF_GVEC_VOP3_B(NAME, OP, 64) \
DEF_GVEC_VOP3_B(NAME, OP, 128)
DEF_GVEC_VOP3(vfa, add)
DEF_GVEC_VOP3(vfs, sub)
DEF_GVEC_VOP3(vfd, div)
DEF_GVEC_VOP3(vfm, mul)
static int wfc32(const S390Vector *v1, const S390Vector *v2,
CPUS390XState *env, bool signal, uintptr_t retaddr)
{
/* only the zero-indexed elements are compared */
const float32 a = s390_vec_read_float32(v1, 0);
const float32 b = s390_vec_read_float32(v2, 0);
uint8_t vxc, vec_exc = 0;
int cmp;
if (signal) {
cmp = float32_compare(a, b, &env->fpu_status);
} else {
cmp = float32_compare_quiet(a, b, &env->fpu_status);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
return float_comp_to_cc(env, cmp);
}
static int wfc64(const S390Vector *v1, const S390Vector *v2,
CPUS390XState *env, bool signal, uintptr_t retaddr)
{
/* only the zero-indexed elements are compared */
const float64 a = s390_vec_read_float64(v1, 0);
const float64 b = s390_vec_read_float64(v2, 0);
uint8_t vxc, vec_exc = 0;
int cmp;
if (signal) {
cmp = float64_compare(a, b, &env->fpu_status);
} else {
cmp = float64_compare_quiet(a, b, &env->fpu_status);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
return float_comp_to_cc(env, cmp);
}
static int wfc128(const S390Vector *v1, const S390Vector *v2,
CPUS390XState *env, bool signal, uintptr_t retaddr)
{
/* only the zero-indexed elements are compared */
const float128 a = s390_vec_read_float128(v1);
const float128 b = s390_vec_read_float128(v2);
uint8_t vxc, vec_exc = 0;
int cmp;
if (signal) {
cmp = float128_compare(a, b, &env->fpu_status);
} else {
cmp = float128_compare_quiet(a, b, &env->fpu_status);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
return float_comp_to_cc(env, cmp);
}
#define DEF_GVEC_WFC_B(NAME, SIGNAL, BITS) \
void HELPER(gvec_##NAME##BITS)(const void *v1, const void *v2, \
CPUS390XState *env, uint32_t desc) \
{ \
env->cc_op = wfc##BITS(v1, v2, env, SIGNAL, GETPC()); \
}
#define DEF_GVEC_WFC(NAME, SIGNAL) \
DEF_GVEC_WFC_B(NAME, SIGNAL, 32) \
DEF_GVEC_WFC_B(NAME, SIGNAL, 64) \
DEF_GVEC_WFC_B(NAME, SIGNAL, 128)
DEF_GVEC_WFC(wfc, false)
DEF_GVEC_WFC(wfk, true)
typedef bool (*vfc32_fn)(float32 a, float32 b, float_status *status);
static int vfc32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vfc32_fn fn, uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int match = 0;
int i;
for (i = 0; i < 4; i++) {
const float32 a = s390_vec_read_float32(v2, i);
const float32 b = s390_vec_read_float32(v3, i);
/* swap the order of the parameters, so we can use existing functions */
if (fn(b, a, &env->fpu_status)) {
match++;
s390_vec_write_element32(&tmp, i, -1u);
}
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
if (match) {
return s || match == 4 ? 0 : 1;
}
return 3;
}
typedef bool (*vfc64_fn)(float64 a, float64 b, float_status *status);
static int vfc64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vfc64_fn fn, uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int match = 0;
int i;
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
const float64 b = s390_vec_read_float64(v3, i);
/* swap the order of the parameters, so we can use existing functions */
if (fn(b, a, &env->fpu_status)) {
match++;
s390_vec_write_element64(&tmp, i, -1ull);
}
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
if (match) {
return s || match == 2 ? 0 : 1;
}
return 3;
}
typedef bool (*vfc128_fn)(float128 a, float128 b, float_status *status);
static int vfc128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vfc128_fn fn, uintptr_t retaddr)
{
const float128 a = s390_vec_read_float128(v2);
const float128 b = s390_vec_read_float128(v3);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
bool match = false;
/* swap the order of the parameters, so we can use existing functions */
if (fn(b, a, &env->fpu_status)) {
match = true;
s390_vec_write_element64(&tmp, 0, -1ull);
s390_vec_write_element64(&tmp, 1, -1ull);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
return match ? 0 : 3;
}
#define DEF_GVEC_VFC_B(NAME, OP, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
CPUS390XState *env, uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
const bool sq = extract32(simd_data(desc), 2, 1); \
vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \
\
vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \
} \
\
void HELPER(gvec_##NAME##BITS##_cc)(void *v1, const void *v2, const void *v3, \
CPUS390XState *env, uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
const bool sq = extract32(simd_data(desc), 2, 1); \
vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \
\
env->cc_op = vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \
}
#define DEF_GVEC_VFC(NAME, OP) \
DEF_GVEC_VFC_B(NAME, OP, 32) \
DEF_GVEC_VFC_B(NAME, OP, 64) \
DEF_GVEC_VFC_B(NAME, OP, 128) \
DEF_GVEC_VFC(vfce, eq)
DEF_GVEC_VFC(vfch, lt)
DEF_GVEC_VFC(vfche, le)
void HELPER(gvec_vfll32)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const bool s = extract32(simd_data(desc), 3, 1);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 2; i++) {
/* load from even element */
const float32 a = s390_vec_read_element32(v2, i * 2);
const uint64_t ret = float32_to_float64(a, &env->fpu_status);
s390_vec_write_element64(&tmp, i, ret);
/* indicate the source element */
vxc = check_ieee_exc(env, i * 2, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, GETPC());
*(S390Vector *)v1 = tmp;
}
void HELPER(gvec_vfll64)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
/* load from even element */
const float128 ret = float64_to_float128(s390_vec_read_float64(v2, 0),
&env->fpu_status);
uint8_t vxc, vec_exc = 0;
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, GETPC());
s390_vec_write_float128(v1, ret);
}
void HELPER(gvec_vflr64)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const uint8_t erm = extract32(simd_data(desc), 4, 4);
const bool s = extract32(simd_data(desc), 3, 1);
const bool XxC = extract32(simd_data(desc), 2, 1);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i, old_mode;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
for (i = 0; i < 2; i++) {
float64 a = s390_vec_read_element64(v2, i);
uint32_t ret = float64_to_float32(a, &env->fpu_status);
/* place at even element */
s390_vec_write_element32(&tmp, i * 2, ret);
/* indicate the source element */
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
if (s || vxc) {
break;
}
}
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, GETPC());
*(S390Vector *)v1 = tmp;
}
void HELPER(gvec_vflr128)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const uint8_t erm = extract32(simd_data(desc), 4, 4);
const bool XxC = extract32(simd_data(desc), 2, 1);
uint8_t vxc, vec_exc = 0;
int old_mode;
float64 ret;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
ret = float128_to_float64(s390_vec_read_float128(v2), &env->fpu_status);
vxc = check_ieee_exc(env, 0, XxC, &vec_exc);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, GETPC());
/* place at even element, odd element is unpredictable */
s390_vec_write_float64(v1, 0, ret);
}
static void vfma32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
const S390Vector *v4, CPUS390XState *env, bool s, int flags,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 4; i++) {
const float32 a = s390_vec_read_float32(v2, i);
const float32 b = s390_vec_read_float32(v3, i);
const float32 c = s390_vec_read_float32(v4, i);
float32 ret = float32_muladd(a, b, c, flags, &env->fpu_status);
s390_vec_write_float32(&tmp, i, ret);
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
static void vfma64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
const S390Vector *v4, CPUS390XState *env, bool s, int flags,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
const float64 b = s390_vec_read_float64(v3, i);
const float64 c = s390_vec_read_float64(v4, i);
const float64 ret = float64_muladd(a, b, c, flags, &env->fpu_status);
s390_vec_write_float64(&tmp, i, ret);
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
static void vfma128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
const S390Vector *v4, CPUS390XState *env, bool s, int flags,
uintptr_t retaddr)
{
const float128 a = s390_vec_read_float128(v2);
const float128 b = s390_vec_read_float128(v3);
const float128 c = s390_vec_read_float128(v4);
uint8_t vxc, vec_exc = 0;
float128 ret;
ret = float128_muladd(a, b, c, flags, &env->fpu_status);
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
s390_vec_write_float128(v1, ret);
}
#define DEF_GVEC_VFMA_B(NAME, FLAGS, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
const void *v4, CPUS390XState *env, \
uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
\
vfma##BITS(v1, v2, v3, v4, env, se, FLAGS, GETPC()); \
}
#define DEF_GVEC_VFMA(NAME, FLAGS) \
DEF_GVEC_VFMA_B(NAME, FLAGS, 32) \
DEF_GVEC_VFMA_B(NAME, FLAGS, 64) \
DEF_GVEC_VFMA_B(NAME, FLAGS, 128)
DEF_GVEC_VFMA(vfma, 0)
DEF_GVEC_VFMA(vfms, float_muladd_negate_c)
DEF_GVEC_VFMA(vfnma, float_muladd_negate_result)
DEF_GVEC_VFMA(vfnms, float_muladd_negate_c | float_muladd_negate_result)
void HELPER(gvec_vftci32)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
uint16_t i3 = extract32(simd_data(desc), 4, 12);
bool s = extract32(simd_data(desc), 3, 1);
int i, match = 0;
for (i = 0; i < 4; i++) {
float32 a = s390_vec_read_float32(v2, i);
if (float32_dcmask(env, a) & i3) {
match++;
s390_vec_write_element32(v1, i, -1u);
} else {
s390_vec_write_element32(v1, i, 0);
}
if (s) {
break;
}
}
if (match == 4 || (s && match)) {
env->cc_op = 0;
} else if (match) {
env->cc_op = 1;
} else {
env->cc_op = 3;
}
}
void HELPER(gvec_vftci64)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const uint16_t i3 = extract32(simd_data(desc), 4, 12);
const bool s = extract32(simd_data(desc), 3, 1);
int i, match = 0;
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
if (float64_dcmask(env, a) & i3) {
match++;
s390_vec_write_element64(v1, i, -1ull);
} else {
s390_vec_write_element64(v1, i, 0);
}
if (s) {
break;
}
}
if (match == 2 || (s && match)) {
env->cc_op = 0;
} else if (match) {
env->cc_op = 1;
} else {
env->cc_op = 3;
}
}
void HELPER(gvec_vftci128)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const float128 a = s390_vec_read_float128(v2);
uint16_t i3 = extract32(simd_data(desc), 4, 12);
if (float128_dcmask(env, a) & i3) {
env->cc_op = 0;
s390_vec_write_element64(v1, 0, -1ull);
s390_vec_write_element64(v1, 1, -1ull);
} else {
env->cc_op = 3;
s390_vec_write_element64(v1, 0, 0);
s390_vec_write_element64(v1, 1, 0);
}
}
typedef enum S390MinMaxType {
S390_MINMAX_TYPE_IEEE = 0,
S390_MINMAX_TYPE_JAVA,
S390_MINMAX_TYPE_C_MACRO,
S390_MINMAX_TYPE_CPP,
S390_MINMAX_TYPE_F,
} S390MinMaxType;
typedef enum S390MinMaxRes {
S390_MINMAX_RES_MINMAX = 0,
S390_MINMAX_RES_A,
S390_MINMAX_RES_B,
S390_MINMAX_RES_SILENCE_A,
S390_MINMAX_RES_SILENCE_B,
} S390MinMaxRes;
static S390MinMaxRes vfmin_res(uint16_t dcmask_a, uint16_t dcmask_b,
S390MinMaxType type, float_status *s)
{
const bool neg_a = dcmask_a & DCMASK_NEGATIVE;
const bool nan_a = dcmask_a & DCMASK_NAN;
const bool nan_b = dcmask_b & DCMASK_NAN;
g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F);
if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) {
const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN;
const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN;
if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) {
s->float_exception_flags |= float_flag_invalid;
}
switch (type) {
case S390_MINMAX_TYPE_JAVA:
if (sig_a) {
return S390_MINMAX_RES_SILENCE_A;
} else if (sig_b) {
return S390_MINMAX_RES_SILENCE_B;
}
return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_F:
return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_C_MACRO:
s->float_exception_flags |= float_flag_invalid;
return S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_CPP:
s->float_exception_flags |= float_flag_invalid;
return S390_MINMAX_RES_A;
default:
g_assert_not_reached();
}
} else if (unlikely((dcmask_a & DCMASK_ZERO) && (dcmask_b & DCMASK_ZERO))) {
switch (type) {
case S390_MINMAX_TYPE_JAVA:
return neg_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_C_MACRO:
return S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_F:
return !neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A;
case S390_MINMAX_TYPE_CPP:
return S390_MINMAX_RES_A;
default:
g_assert_not_reached();
}
}
return S390_MINMAX_RES_MINMAX;
}
static S390MinMaxRes vfmax_res(uint16_t dcmask_a, uint16_t dcmask_b,
S390MinMaxType type, float_status *s)
{
g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F);
if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) {
const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN;
const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN;
const bool nan_a = dcmask_a & DCMASK_NAN;
const bool nan_b = dcmask_b & DCMASK_NAN;
if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) {
s->float_exception_flags |= float_flag_invalid;
}
switch (type) {
case S390_MINMAX_TYPE_JAVA:
if (sig_a) {
return S390_MINMAX_RES_SILENCE_A;
} else if (sig_b) {
return S390_MINMAX_RES_SILENCE_B;
}
return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_F:
return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_C_MACRO:
s->float_exception_flags |= float_flag_invalid;
return S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_CPP:
s->float_exception_flags |= float_flag_invalid;
return S390_MINMAX_RES_A;
default:
g_assert_not_reached();
}
} else if (unlikely((dcmask_a & DCMASK_ZERO) && (dcmask_b & DCMASK_ZERO))) {
const bool neg_a = dcmask_a & DCMASK_NEGATIVE;
switch (type) {
case S390_MINMAX_TYPE_JAVA:
case S390_MINMAX_TYPE_F:
return neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A;
case S390_MINMAX_TYPE_C_MACRO:
return S390_MINMAX_RES_B;
case S390_MINMAX_TYPE_CPP:
return S390_MINMAX_RES_A;
default:
g_assert_not_reached();
}
}
return S390_MINMAX_RES_MINMAX;
}
static S390MinMaxRes vfminmax_res(uint16_t dcmask_a, uint16_t dcmask_b,
S390MinMaxType type, bool is_min,
float_status *s)
{
return is_min ? vfmin_res(dcmask_a, dcmask_b, type, s) :
vfmax_res(dcmask_a, dcmask_b, type, s);
}
static void vfminmax32(S390Vector *v1, const S390Vector *v2,
const S390Vector *v3, CPUS390XState *env,
S390MinMaxType type, bool is_min, bool is_abs, bool se,
uintptr_t retaddr)
{
float_status *s = &env->fpu_status;
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 4; i++) {
float32 a = s390_vec_read_float32(v2, i);
float32 b = s390_vec_read_float32(v3, i);
float32 result;
if (type != S390_MINMAX_TYPE_IEEE) {
S390MinMaxRes res;
if (is_abs) {
a = float32_abs(a);
b = float32_abs(b);
}
res = vfminmax_res(float32_dcmask(env, a), float32_dcmask(env, b),
type, is_min, s);
switch (res) {
case S390_MINMAX_RES_MINMAX:
result = is_min ? float32_min(a, b, s) : float32_max(a, b, s);
break;
case S390_MINMAX_RES_A:
result = a;
break;
case S390_MINMAX_RES_B:
result = b;
break;
case S390_MINMAX_RES_SILENCE_A:
result = float32_silence_nan(a, s);
break;
case S390_MINMAX_RES_SILENCE_B:
result = float32_silence_nan(b, s);
break;
default:
g_assert_not_reached();
}
} else if (!is_abs) {
result = is_min ? float32_minnum(a, b, &env->fpu_status) :
float32_maxnum(a, b, &env->fpu_status);
} else {
result = is_min ? float32_minnummag(a, b, &env->fpu_status) :
float32_maxnummag(a, b, &env->fpu_status);
}
s390_vec_write_float32(&tmp, i, result);
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (se || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
static void vfminmax64(S390Vector *v1, const S390Vector *v2,
const S390Vector *v3, CPUS390XState *env,
S390MinMaxType type, bool is_min, bool is_abs, bool se,
uintptr_t retaddr)
{
float_status *s = &env->fpu_status;
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 2; i++) {
float64 a = s390_vec_read_float64(v2, i);
float64 b = s390_vec_read_float64(v3, i);
float64 result;
if (type != S390_MINMAX_TYPE_IEEE) {
S390MinMaxRes res;
if (is_abs) {
a = float64_abs(a);
b = float64_abs(b);
}
res = vfminmax_res(float64_dcmask(env, a), float64_dcmask(env, b),
type, is_min, s);
switch (res) {
case S390_MINMAX_RES_MINMAX:
result = is_min ? float64_min(a, b, s) : float64_max(a, b, s);
break;
case S390_MINMAX_RES_A:
result = a;
break;
case S390_MINMAX_RES_B:
result = b;
break;
case S390_MINMAX_RES_SILENCE_A:
result = float64_silence_nan(a, s);
break;
case S390_MINMAX_RES_SILENCE_B:
result = float64_silence_nan(b, s);
break;
default:
g_assert_not_reached();
}
} else if (!is_abs) {
result = is_min ? float64_minnum(a, b, &env->fpu_status) :
float64_maxnum(a, b, &env->fpu_status);
} else {
result = is_min ? float64_minnummag(a, b, &env->fpu_status) :
float64_maxnummag(a, b, &env->fpu_status);
}
s390_vec_write_float64(&tmp, i, result);
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (se || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
static void vfminmax128(S390Vector *v1, const S390Vector *v2,
const S390Vector *v3, CPUS390XState *env,
S390MinMaxType type, bool is_min, bool is_abs, bool se,
uintptr_t retaddr)
{
float128 a = s390_vec_read_float128(v2);
float128 b = s390_vec_read_float128(v3);
float_status *s = &env->fpu_status;
uint8_t vxc, vec_exc = 0;
float128 result;
if (type != S390_MINMAX_TYPE_IEEE) {
S390MinMaxRes res;
if (is_abs) {
a = float128_abs(a);
b = float128_abs(b);
}
res = vfminmax_res(float128_dcmask(env, a), float128_dcmask(env, b),
type, is_min, s);
switch (res) {
case S390_MINMAX_RES_MINMAX:
result = is_min ? float128_min(a, b, s) : float128_max(a, b, s);
break;
case S390_MINMAX_RES_A:
result = a;
break;
case S390_MINMAX_RES_B:
result = b;
break;
case S390_MINMAX_RES_SILENCE_A:
result = float128_silence_nan(a, s);
break;
case S390_MINMAX_RES_SILENCE_B:
result = float128_silence_nan(b, s);
break;
default:
g_assert_not_reached();
}
} else if (!is_abs) {
result = is_min ? float128_minnum(a, b, &env->fpu_status) :
float128_maxnum(a, b, &env->fpu_status);
} else {
result = is_min ? float128_minnummag(a, b, &env->fpu_status) :
float128_maxnummag(a, b, &env->fpu_status);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
s390_vec_write_float128(v1, result);
}
#define DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
CPUS390XState *env, uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
uint8_t type = extract32(simd_data(desc), 4, 4); \
bool is_abs = false; \
\
if (type >= 8) { \
is_abs = true; \
type -= 8; \
} \
\
vfminmax##BITS(v1, v2, v3, env, type, IS_MIN, is_abs, se, GETPC()); \
}
#define DEF_GVEC_VFMINMAX(NAME, IS_MIN) \
DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 32) \
DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 64) \
DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 128)
DEF_GVEC_VFMINMAX(vfmax, false)
DEF_GVEC_VFMINMAX(vfmin, true)