qemu/hw/ppc/spapr.c
Greg Kurz 3725ef1a94 spapr: Don't migrate the hpt_maxpagesize cap to older machine types
Commit 0b8c89be7f7b added the hpt_maxpagesize capability to the migration
stream. This is okay for new machine types but it breaks backward migration
to older QEMUs, which don't expect the extra subsection.

Add a compatibility boolean flag to the sPAPR machine class and use it to
skip migration of the capability for machine types 4.0 and older. This
fixes migration to an older QEMU. Note that the destination will emit a
warning:

qemu-system-ppc64: warning: cap-hpt-max-page-size lower level (16) in incoming stream than on destination (24)

This is expected and harmless though. It is okay to migrate from a lower
HPT maximum page size (64k) to a greater one (16M).

Fixes: 0b8c89be7f7b "spapr: Add forgotten capability to migration stream"
Based-on: <20190522074016.10521-3-clg@kaod.org>
Signed-off-by: Greg Kurz <groug@kaod.org>
Message-Id: <155853262675.1158324.17301777846476373459.stgit@bahia.lan>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2019-05-29 11:39:47 +10:00

4759 lines
152 KiB
C

/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* Copyright (c) 2004-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
* Copyright (c) 2010 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/sysemu.h"
#include "sysemu/numa.h"
#include "sysemu/qtest.h"
#include "hw/hw.h"
#include "qemu/log.h"
#include "hw/fw-path-provider.h"
#include "elf.h"
#include "net/net.h"
#include "sysemu/device_tree.h"
#include "sysemu/cpus.h"
#include "sysemu/hw_accel.h"
#include "kvm_ppc.h"
#include "migration/misc.h"
#include "migration/global_state.h"
#include "migration/register.h"
#include "mmu-hash64.h"
#include "mmu-book3s-v3.h"
#include "cpu-models.h"
#include "qom/cpu.h"
#include "hw/boards.h"
#include "hw/ppc/ppc.h"
#include "hw/loader.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/pci/msi.h"
#include "hw/pci/pci.h"
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
#include "hw/virtio/vhost-scsi-common.h"
#include "exec/address-spaces.h"
#include "exec/ram_addr.h"
#include "hw/usb.h"
#include "qemu/config-file.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "hw/nmi.h"
#include "hw/intc/intc.h"
#include "qemu/cutils.h"
#include "hw/ppc/spapr_cpu_core.h"
#include "hw/mem/memory-device.h"
#include <libfdt.h>
/* SLOF memory layout:
*
* SLOF raw image loaded at 0, copies its romfs right below the flat
* device-tree, then position SLOF itself 31M below that
*
* So we set FW_OVERHEAD to 40MB which should account for all of that
* and more
*
* We load our kernel at 4M, leaving space for SLOF initial image
*/
#define FDT_MAX_SIZE 0x100000
#define RTAS_MAX_SIZE 0x10000
#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
#define FW_MAX_SIZE 0x400000
#define FW_FILE_NAME "slof.bin"
#define FW_OVERHEAD 0x2800000
#define KERNEL_LOAD_ADDR FW_MAX_SIZE
#define MIN_RMA_SLOF 128UL
#define PHANDLE_INTC 0x00001111
/* These two functions implement the VCPU id numbering: one to compute them
* all and one to identify thread 0 of a VCORE. Any change to the first one
* is likely to have an impact on the second one, so let's keep them close.
*/
static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
{
assert(spapr->vsmt);
return
(cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
}
static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
PowerPCCPU *cpu)
{
assert(spapr->vsmt);
return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
}
static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
{
/* Dummy entries correspond to unused ICPState objects in older QEMUs,
* and newer QEMUs don't even have them. In both cases, we don't want
* to send anything on the wire.
*/
return false;
}
static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
.name = "icp/server",
.version_id = 1,
.minimum_version_id = 1,
.needed = pre_2_10_vmstate_dummy_icp_needed,
.fields = (VMStateField[]) {
VMSTATE_UNUSED(4), /* uint32_t xirr */
VMSTATE_UNUSED(1), /* uint8_t pending_priority */
VMSTATE_UNUSED(1), /* uint8_t mfrr */
VMSTATE_END_OF_LIST()
},
};
static void pre_2_10_vmstate_register_dummy_icp(int i)
{
vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
(void *)(uintptr_t) i);
}
static void pre_2_10_vmstate_unregister_dummy_icp(int i)
{
vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
(void *)(uintptr_t) i);
}
int spapr_max_server_number(SpaprMachineState *spapr)
{
assert(spapr->vsmt);
return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
}
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
int smt_threads)
{
int i, ret = 0;
uint32_t servers_prop[smt_threads];
uint32_t gservers_prop[smt_threads * 2];
int index = spapr_get_vcpu_id(cpu);
if (cpu->compat_pvr) {
ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
if (ret < 0) {
return ret;
}
}
/* Build interrupt servers and gservers properties */
for (i = 0; i < smt_threads; i++) {
servers_prop[i] = cpu_to_be32(index + i);
/* Hack, direct the group queues back to cpu 0 */
gservers_prop[i*2] = cpu_to_be32(index + i);
gservers_prop[i*2 + 1] = 0;
}
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
servers_prop, sizeof(servers_prop));
if (ret < 0) {
return ret;
}
ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
gservers_prop, sizeof(gservers_prop));
return ret;
}
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
{
int index = spapr_get_vcpu_id(cpu);
uint32_t associativity[] = {cpu_to_be32(0x5),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(cpu->node_id),
cpu_to_be32(index)};
/* Advertise NUMA via ibm,associativity */
return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
sizeof(associativity));
}
/* Populate the "ibm,pa-features" property */
static void spapr_populate_pa_features(SpaprMachineState *spapr,
PowerPCCPU *cpu,
void *fdt, int offset,
bool legacy_guest)
{
uint8_t pa_features_206[] = { 6, 0,
0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
uint8_t pa_features_207[] = { 24, 0,
0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
uint8_t pa_features_300[] = { 66, 0,
/* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
/* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
/* 6: DS207 */
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
/* 16: Vector */
0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
/* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
/* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
/* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
/* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
/* 42: PM, 44: PC RA, 46: SC vec'd */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
/* 48: SIMD, 50: QP BFP, 52: String */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
/* 54: DecFP, 56: DecI, 58: SHA */
0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
/* 60: NM atomic, 62: RNG */
0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
};
uint8_t *pa_features = NULL;
size_t pa_size;
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
pa_features = pa_features_206;
pa_size = sizeof(pa_features_206);
}
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
pa_features = pa_features_207;
pa_size = sizeof(pa_features_207);
}
if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
pa_features = pa_features_300;
pa_size = sizeof(pa_features_300);
}
if (!pa_features) {
return;
}
if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
/*
* Note: we keep CI large pages off by default because a 64K capable
* guest provisioned with large pages might otherwise try to map a qemu
* framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
* even if that qemu runs on a 4k host.
* We dd this bit back here if we are confident this is not an issue
*/
pa_features[3] |= 0x20;
}
if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
pa_features[24] |= 0x80; /* Transactional memory support */
}
if (legacy_guest && pa_size > 40) {
/* Workaround for broken kernels that attempt (guest) radix
* mode when they can't handle it, if they see the radix bit set
* in pa-features. So hide it from them. */
pa_features[40 + 2] &= ~0x80; /* Radix MMU */
}
_FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
}
static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
{
int ret = 0, offset, cpus_offset;
CPUState *cs;
char cpu_model[32];
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
DeviceClass *dc = DEVICE_GET_CLASS(cs);
int index = spapr_get_vcpu_id(cpu);
int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
continue;
}
snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
cpus_offset = fdt_path_offset(fdt, "/cpus");
if (cpus_offset < 0) {
cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
if (cpus_offset < 0) {
return cpus_offset;
}
}
offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
if (offset < 0) {
offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
if (offset < 0) {
return offset;
}
}
ret = fdt_setprop(fdt, offset, "ibm,pft-size",
pft_size_prop, sizeof(pft_size_prop));
if (ret < 0) {
return ret;
}
if (nb_numa_nodes > 1) {
ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
if (ret < 0) {
return ret;
}
}
ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
if (ret < 0) {
return ret;
}
spapr_populate_pa_features(spapr, cpu, fdt, offset,
spapr->cas_legacy_guest_workaround);
}
return ret;
}
static hwaddr spapr_node0_size(MachineState *machine)
{
if (nb_numa_nodes) {
int i;
for (i = 0; i < nb_numa_nodes; ++i) {
if (numa_info[i].node_mem) {
return MIN(pow2floor(numa_info[i].node_mem),
machine->ram_size);
}
}
}
return machine->ram_size;
}
static void add_str(GString *s, const gchar *s1)
{
g_string_append_len(s, s1, strlen(s1) + 1);
}
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
hwaddr size)
{
uint32_t associativity[] = {
cpu_to_be32(0x4), /* length */
cpu_to_be32(0x0), cpu_to_be32(0x0),
cpu_to_be32(0x0), cpu_to_be32(nodeid)
};
char mem_name[32];
uint64_t mem_reg_property[2];
int off;
mem_reg_property[0] = cpu_to_be64(start);
mem_reg_property[1] = cpu_to_be64(size);
sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
off = fdt_add_subnode(fdt, 0, mem_name);
_FDT(off);
_FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
_FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
sizeof(mem_reg_property))));
_FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
sizeof(associativity))));
return off;
}
static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
{
MachineState *machine = MACHINE(spapr);
hwaddr mem_start, node_size;
int i, nb_nodes = nb_numa_nodes;
NodeInfo *nodes = numa_info;
NodeInfo ramnode;
/* No NUMA nodes, assume there is just one node with whole RAM */
if (!nb_numa_nodes) {
nb_nodes = 1;
ramnode.node_mem = machine->ram_size;
nodes = &ramnode;
}
for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
if (!nodes[i].node_mem) {
continue;
}
if (mem_start >= machine->ram_size) {
node_size = 0;
} else {
node_size = nodes[i].node_mem;
if (node_size > machine->ram_size - mem_start) {
node_size = machine->ram_size - mem_start;
}
}
if (!mem_start) {
/* spapr_machine_init() checks for rma_size <= node0_size
* already */
spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
mem_start += spapr->rma_size;
node_size -= spapr->rma_size;
}
for ( ; node_size; ) {
hwaddr sizetmp = pow2floor(node_size);
/* mem_start != 0 here */
if (ctzl(mem_start) < ctzl(sizetmp)) {
sizetmp = 1ULL << ctzl(mem_start);
}
spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
node_size -= sizetmp;
mem_start += sizetmp;
}
}
return 0;
}
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
SpaprMachineState *spapr)
{
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
int index = spapr_get_vcpu_id(cpu);
uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
0xffffffff, 0xffffffff};
uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
: SPAPR_TIMEBASE_FREQ;
uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
uint32_t page_sizes_prop[64];
size_t page_sizes_prop_size;
uint32_t vcpus_per_socket = smp_threads * smp_cores;
uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
SpaprDrc *drc;
int drc_index;
uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
int i;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
if (drc) {
drc_index = spapr_drc_index(drc);
_FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
}
_FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
_FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
_FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
env->dcache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
env->icache_line_size)));
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
env->icache_line_size)));
if (pcc->l1_dcache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
pcc->l1_dcache_size)));
} else {
warn_report("Unknown L1 dcache size for cpu");
}
if (pcc->l1_icache_size) {
_FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
pcc->l1_icache_size)));
} else {
warn_report("Unknown L1 icache size for cpu");
}
_FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
_FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
_FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
_FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
_FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
_FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
if (env->spr_cb[SPR_PURR].oea_read) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
}
if (env->spr_cb[SPR_SPURR].oea_read) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
}
if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
_FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
segs, sizeof(segs))));
}
/* Advertise VSX (vector extensions) if available
* 1 == VMX / Altivec available
* 2 == VSX available
*
* Only CPUs for which we create core types in spapr_cpu_core.c
* are possible, and all of those have VMX */
if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
} else {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
}
/* Advertise DFP (Decimal Floating Point) if available
* 0 / no property == no DFP
* 1 == DFP available */
if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
_FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
}
page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
sizeof(page_sizes_prop));
if (page_sizes_prop_size) {
_FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
page_sizes_prop, page_sizes_prop_size)));
}
spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
_FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
cs->cpu_index / vcpus_per_socket)));
_FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
pft_size_prop, sizeof(pft_size_prop))));
if (nb_numa_nodes > 1) {
_FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
}
_FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
if (pcc->radix_page_info) {
for (i = 0; i < pcc->radix_page_info->count; i++) {
radix_AP_encodings[i] =
cpu_to_be32(pcc->radix_page_info->entries[i]);
}
_FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
radix_AP_encodings,
pcc->radix_page_info->count *
sizeof(radix_AP_encodings[0]))));
}
/*
* We set this property to let the guest know that it can use the large
* decrementer and its width in bits.
*/
if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
_FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
pcc->lrg_decr_bits)));
}
static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
{
CPUState **rev;
CPUState *cs;
int n_cpus;
int cpus_offset;
char *nodename;
int i;
cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
_FDT(cpus_offset);
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
_FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
/*
* We walk the CPUs in reverse order to ensure that CPU DT nodes
* created by fdt_add_subnode() end up in the right order in FDT
* for the guest kernel the enumerate the CPUs correctly.
*
* The CPU list cannot be traversed in reverse order, so we need
* to do extra work.
*/
n_cpus = 0;
rev = NULL;
CPU_FOREACH(cs) {
rev = g_renew(CPUState *, rev, n_cpus + 1);
rev[n_cpus++] = cs;
}
for (i = n_cpus - 1; i >= 0; i--) {
CPUState *cs = rev[i];
PowerPCCPU *cpu = POWERPC_CPU(cs);
int index = spapr_get_vcpu_id(cpu);
DeviceClass *dc = DEVICE_GET_CLASS(cs);
int offset;
if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
continue;
}
nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
offset = fdt_add_subnode(fdt, cpus_offset, nodename);
g_free(nodename);
_FDT(offset);
spapr_populate_cpu_dt(cs, fdt, offset, spapr);
}
g_free(rev);
}
static int spapr_rng_populate_dt(void *fdt)
{
int node;
int ret;
node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
if (node <= 0) {
return -1;
}
ret = fdt_setprop_string(fdt, node, "device_type",
"ibm,platform-facilities");
ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
node = fdt_add_subnode(fdt, node, "ibm,random-v1");
if (node <= 0) {
return -1;
}
ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
return ret ? -1 : 0;
}
static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
{
MemoryDeviceInfoList *info;
for (info = list; info; info = info->next) {
MemoryDeviceInfo *value = info->value;
if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
if (addr >= pcdimm_info->addr &&
addr < (pcdimm_info->addr + pcdimm_info->size)) {
return pcdimm_info->node;
}
}
}
return -1;
}
struct sPAPRDrconfCellV2 {
uint32_t seq_lmbs;
uint64_t base_addr;
uint32_t drc_index;
uint32_t aa_index;
uint32_t flags;
} QEMU_PACKED;
typedef struct DrconfCellQueue {
struct sPAPRDrconfCellV2 cell;
QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
} DrconfCellQueue;
static DrconfCellQueue *
spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
uint32_t drc_index, uint32_t aa_index,
uint32_t flags)
{
DrconfCellQueue *elem;
elem = g_malloc0(sizeof(*elem));
elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
elem->cell.base_addr = cpu_to_be64(base_addr);
elem->cell.drc_index = cpu_to_be32(drc_index);
elem->cell.aa_index = cpu_to_be32(aa_index);
elem->cell.flags = cpu_to_be32(flags);
return elem;
}
/* ibm,dynamic-memory-v2 */
static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
int offset, MemoryDeviceInfoList *dimms)
{
MachineState *machine = MACHINE(spapr);
uint8_t *int_buf, *cur_index;
int ret;
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint64_t addr, cur_addr, size;
uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
uint64_t mem_end = machine->device_memory->base +
memory_region_size(&machine->device_memory->mr);
uint32_t node, buf_len, nr_entries = 0;
SpaprDrc *drc;
DrconfCellQueue *elem, *next;
MemoryDeviceInfoList *info;
QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
= QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
/* Entry to cover RAM and the gap area */
elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
SPAPR_LMB_FLAGS_RESERVED |
SPAPR_LMB_FLAGS_DRC_INVALID);
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
nr_entries++;
cur_addr = machine->device_memory->base;
for (info = dimms; info; info = info->next) {
PCDIMMDeviceInfo *di = info->value->u.dimm.data;
addr = di->addr;
size = di->size;
node = di->node;
/* Entry for hot-pluggable area */
if (cur_addr < addr) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
g_assert(drc);
elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
cur_addr, spapr_drc_index(drc), -1, 0);
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
nr_entries++;
}
/* Entry for DIMM */
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
g_assert(drc);
elem = spapr_get_drconf_cell(size / lmb_size, addr,
spapr_drc_index(drc), node,
SPAPR_LMB_FLAGS_ASSIGNED);
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
nr_entries++;
cur_addr = addr + size;
}
/* Entry for remaining hotpluggable area */
if (cur_addr < mem_end) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
g_assert(drc);
elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
cur_addr, spapr_drc_index(drc), -1, 0);
QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
nr_entries++;
}
buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
int_buf = cur_index = g_malloc0(buf_len);
*(uint32_t *)int_buf = cpu_to_be32(nr_entries);
cur_index += sizeof(nr_entries);
QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
memcpy(cur_index, &elem->cell, sizeof(elem->cell));
cur_index += sizeof(elem->cell);
QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
g_free(elem);
}
ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
g_free(int_buf);
if (ret < 0) {
return -1;
}
return 0;
}
/* ibm,dynamic-memory */
static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
int offset, MemoryDeviceInfoList *dimms)
{
MachineState *machine = MACHINE(spapr);
int i, ret;
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
uint32_t nr_lmbs = (machine->device_memory->base +
memory_region_size(&machine->device_memory->mr)) /
lmb_size;
uint32_t *int_buf, *cur_index, buf_len;
/*
* Allocate enough buffer size to fit in ibm,dynamic-memory
*/
buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
cur_index = int_buf = g_malloc0(buf_len);
int_buf[0] = cpu_to_be32(nr_lmbs);
cur_index++;
for (i = 0; i < nr_lmbs; i++) {
uint64_t addr = i * lmb_size;
uint32_t *dynamic_memory = cur_index;
if (i >= device_lmb_start) {
SpaprDrc *drc;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
g_assert(drc);
dynamic_memory[0] = cpu_to_be32(addr >> 32);
dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
dynamic_memory[3] = cpu_to_be32(0); /* reserved */
dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
if (memory_region_present(get_system_memory(), addr)) {
dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
} else {
dynamic_memory[5] = cpu_to_be32(0);
}
} else {
/*
* LMB information for RMA, boot time RAM and gap b/n RAM and
* device memory region -- all these are marked as reserved
* and as having no valid DRC.
*/
dynamic_memory[0] = cpu_to_be32(addr >> 32);
dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
dynamic_memory[2] = cpu_to_be32(0);
dynamic_memory[3] = cpu_to_be32(0); /* reserved */
dynamic_memory[4] = cpu_to_be32(-1);
dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
SPAPR_LMB_FLAGS_DRC_INVALID);
}
cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
}
ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
g_free(int_buf);
if (ret < 0) {
return -1;
}
return 0;
}
/*
* Adds ibm,dynamic-reconfiguration-memory node.
* Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
* of this device tree node.
*/
static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
{
MachineState *machine = MACHINE(spapr);
int ret, i, offset;
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
uint32_t *int_buf, *cur_index, buf_len;
int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
MemoryDeviceInfoList *dimms = NULL;
/*
* Don't create the node if there is no device memory
*/
if (machine->ram_size == machine->maxram_size) {
return 0;
}
offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
sizeof(prop_lmb_size));
if (ret < 0) {
return ret;
}
ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
if (ret < 0) {
return ret;
}
ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
if (ret < 0) {
return ret;
}
/* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
dimms = qmp_memory_device_list();
if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
} else {
ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
}
qapi_free_MemoryDeviceInfoList(dimms);
if (ret < 0) {
return ret;
}
/* ibm,associativity-lookup-arrays */
buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
cur_index = int_buf = g_malloc0(buf_len);
int_buf[0] = cpu_to_be32(nr_nodes);
int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
cur_index += 2;
for (i = 0; i < nr_nodes; i++) {
uint32_t associativity[] = {
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(i)
};
memcpy(cur_index, associativity, sizeof(associativity));
cur_index += 4;
}
ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
(cur_index - int_buf) * sizeof(uint32_t));
g_free(int_buf);
return ret;
}
static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
SpaprOptionVector *ov5_updates)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
int ret = 0, offset;
/* Generate ibm,dynamic-reconfiguration-memory node if required */
if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
g_assert(smc->dr_lmb_enabled);
ret = spapr_populate_drconf_memory(spapr, fdt);
if (ret) {
goto out;
}
}
offset = fdt_path_offset(fdt, "/chosen");
if (offset < 0) {
offset = fdt_add_subnode(fdt, 0, "chosen");
if (offset < 0) {
return offset;
}
}
ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
"ibm,architecture-vec-5");
out:
return ret;
}
static bool spapr_hotplugged_dev_before_cas(void)
{
Object *drc_container, *obj;
ObjectProperty *prop;
ObjectPropertyIterator iter;
drc_container = container_get(object_get_root(), "/dr-connector");
object_property_iter_init(&iter, drc_container);
while ((prop = object_property_iter_next(&iter))) {
if (!strstart(prop->type, "link<", NULL)) {
continue;
}
obj = object_property_get_link(drc_container, prop->name, NULL);
if (spapr_drc_needed(obj)) {
return true;
}
}
return false;
}
int spapr_h_cas_compose_response(SpaprMachineState *spapr,
target_ulong addr, target_ulong size,
SpaprOptionVector *ov5_updates)
{
void *fdt, *fdt_skel;
SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
if (spapr_hotplugged_dev_before_cas()) {
return 1;
}
if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
error_report("SLOF provided an unexpected CAS buffer size "
TARGET_FMT_lu " (min: %zu, max: %u)",
size, sizeof(hdr), FW_MAX_SIZE);
exit(EXIT_FAILURE);
}
size -= sizeof(hdr);
/* Create skeleton */
fdt_skel = g_malloc0(size);
_FDT((fdt_create(fdt_skel, size)));
_FDT((fdt_finish_reservemap(fdt_skel)));
_FDT((fdt_begin_node(fdt_skel, "")));
_FDT((fdt_end_node(fdt_skel)));
_FDT((fdt_finish(fdt_skel)));
fdt = g_malloc0(size);
_FDT((fdt_open_into(fdt_skel, fdt, size)));
g_free(fdt_skel);
/* Fixup cpu nodes */
_FDT((spapr_fixup_cpu_dt(fdt, spapr)));
if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
return -1;
}
/* Pack resulting tree */
_FDT((fdt_pack(fdt)));
if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
trace_spapr_cas_failed(size);
return -1;
}
cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
g_free(fdt);
return 0;
}
static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
{
int rtas;
GString *hypertas = g_string_sized_new(256);
GString *qemu_hypertas = g_string_sized_new(256);
uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
memory_region_size(&MACHINE(spapr)->device_memory->mr);
uint32_t lrdr_capacity[] = {
cpu_to_be32(max_device_addr >> 32),
cpu_to_be32(max_device_addr & 0xffffffff),
0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
cpu_to_be32(max_cpus / smp_threads),
};
uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
uint32_t maxdomains[] = {
cpu_to_be32(4),
maxdomain,
maxdomain,
maxdomain,
cpu_to_be32(spapr->gpu_numa_id),
};
_FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
/* hypertas */
add_str(hypertas, "hcall-pft");
add_str(hypertas, "hcall-term");
add_str(hypertas, "hcall-dabr");
add_str(hypertas, "hcall-interrupt");
add_str(hypertas, "hcall-tce");
add_str(hypertas, "hcall-vio");
add_str(hypertas, "hcall-splpar");
add_str(hypertas, "hcall-bulk");
add_str(hypertas, "hcall-set-mode");
add_str(hypertas, "hcall-sprg0");
add_str(hypertas, "hcall-copy");
add_str(hypertas, "hcall-debug");
add_str(hypertas, "hcall-vphn");
add_str(qemu_hypertas, "hcall-memop1");
if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
add_str(hypertas, "hcall-multi-tce");
}
if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
add_str(hypertas, "hcall-hpt-resize");
}
_FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
hypertas->str, hypertas->len));
g_string_free(hypertas, TRUE);
_FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
qemu_hypertas->str, qemu_hypertas->len));
g_string_free(qemu_hypertas, TRUE);
_FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
refpoints, sizeof(refpoints)));
_FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
maxdomains, sizeof(maxdomains)));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
RTAS_ERROR_LOG_MAX));
_FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
RTAS_EVENT_SCAN_RATE));
g_assert(msi_nonbroken);
_FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
/*
* According to PAPR, rtas ibm,os-term does not guarantee a return
* back to the guest cpu.
*
* While an additional ibm,extended-os-term property indicates
* that rtas call return will always occur. Set this property.
*/
_FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
_FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
lrdr_capacity, sizeof(lrdr_capacity)));
spapr_dt_rtas_tokens(fdt, rtas);
}
/*
* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
* and the XIVE features that the guest may request and thus the valid
* values for bytes 23..26 of option vector 5:
*/
static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
int chosen)
{
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
char val[2 * 4] = {
23, spapr->irq->ov5, /* Xive mode. */
24, 0x00, /* Hash/Radix, filled in below. */
25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
26, 0x40, /* Radix options: GTSE == yes. */
};
if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
first_ppc_cpu->compat_pvr)) {
/*
* If we're in a pre POWER9 compat mode then the guest should
* do hash and use the legacy interrupt mode
*/
val[1] = 0x00; /* XICS */
val[3] = 0x00; /* Hash */
} else if (kvm_enabled()) {
if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
val[3] = 0x80; /* OV5_MMU_BOTH */
} else if (kvmppc_has_cap_mmu_radix()) {
val[3] = 0x40; /* OV5_MMU_RADIX_300 */
} else {
val[3] = 0x00; /* Hash */
}
} else {
/* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
val[3] = 0xC0;
}
_FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
val, sizeof(val)));
}
static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
{
MachineState *machine = MACHINE(spapr);
int chosen;
const char *boot_device = machine->boot_order;
char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
size_t cb = 0;
char *bootlist = get_boot_devices_list(&cb);
_FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
_FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
_FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
spapr->initrd_base));
_FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
spapr->initrd_base + spapr->initrd_size));
if (spapr->kernel_size) {
uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
cpu_to_be64(spapr->kernel_size) };
_FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
&kprop, sizeof(kprop)));
if (spapr->kernel_le) {
_FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
}
}
if (boot_menu) {
_FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
}
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
_FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
if (cb && bootlist) {
int i;
for (i = 0; i < cb; i++) {
if (bootlist[i] == '\n') {
bootlist[i] = ' ';
}
}
_FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
}
if (boot_device && strlen(boot_device)) {
_FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
}
if (!spapr->has_graphics && stdout_path) {
/*
* "linux,stdout-path" and "stdout" properties are deprecated by linux
* kernel. New platforms should only use the "stdout-path" property. Set
* the new property and continue using older property to remain
* compatible with the existing firmware.
*/
_FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
_FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
}
spapr_dt_ov5_platform_support(spapr, fdt, chosen);
g_free(stdout_path);
g_free(bootlist);
}
static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
{
/* The /hypervisor node isn't in PAPR - this is a hack to allow PR
* KVM to work under pHyp with some guest co-operation */
int hypervisor;
uint8_t hypercall[16];
_FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
/* indicate KVM hypercall interface */
_FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
if (kvmppc_has_cap_fixup_hcalls()) {
/*
* Older KVM versions with older guest kernels were broken
* with the magic page, don't allow the guest to map it.
*/
if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
sizeof(hypercall))) {
_FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
hypercall, sizeof(hypercall)));
}
}
}
static void *spapr_build_fdt(SpaprMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
MachineClass *mc = MACHINE_GET_CLASS(machine);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
int ret;
void *fdt;
SpaprPhbState *phb;
char *buf;
fdt = g_malloc0(FDT_MAX_SIZE);
_FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
/* Root node */
_FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
_FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
_FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
/* Guest UUID & Name*/
buf = qemu_uuid_unparse_strdup(&qemu_uuid);
_FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
if (qemu_uuid_set) {
_FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
}
g_free(buf);
if (qemu_get_vm_name()) {
_FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
qemu_get_vm_name()));
}
/* Host Model & Serial Number */
if (spapr->host_model) {
_FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
} else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
_FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
g_free(buf);
}
if (spapr->host_serial) {
_FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
} else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
_FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
g_free(buf);
}
_FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
_FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
/* /interrupt controller */
spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
PHANDLE_INTC);
ret = spapr_populate_memory(spapr, fdt);
if (ret < 0) {
error_report("couldn't setup memory nodes in fdt");
exit(1);
}
/* /vdevice */
spapr_dt_vdevice(spapr->vio_bus, fdt);
if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
ret = spapr_rng_populate_dt(fdt);
if (ret < 0) {
error_report("could not set up rng device in the fdt");
exit(1);
}
}
QLIST_FOREACH(phb, &spapr->phbs, list) {
ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
spapr->irq->nr_msis, NULL);
if (ret < 0) {
error_report("couldn't setup PCI devices in fdt");
exit(1);
}
}
/* cpus */
spapr_populate_cpus_dt_node(fdt, spapr);
if (smc->dr_lmb_enabled) {
_FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
}
if (mc->has_hotpluggable_cpus) {
int offset = fdt_path_offset(fdt, "/cpus");
ret = spapr_drc_populate_dt(fdt, offset, NULL,
SPAPR_DR_CONNECTOR_TYPE_CPU);
if (ret < 0) {
error_report("Couldn't set up CPU DR device tree properties");
exit(1);
}
}
/* /event-sources */
spapr_dt_events(spapr, fdt);
/* /rtas */
spapr_dt_rtas(spapr, fdt);
/* /chosen */
spapr_dt_chosen(spapr, fdt);
/* /hypervisor */
if (kvm_enabled()) {
spapr_dt_hypervisor(spapr, fdt);
}
/* Build memory reserve map */
if (spapr->kernel_size) {
_FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
}
if (spapr->initrd_size) {
_FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
}
/* ibm,client-architecture-support updates */
ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
if (ret < 0) {
error_report("couldn't setup CAS properties fdt");
exit(1);
}
if (smc->dr_phb_enabled) {
ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
if (ret < 0) {
error_report("Couldn't set up PHB DR device tree properties");
exit(1);
}
}
return fdt;
}
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}
static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
PowerPCCPU *cpu)
{
CPUPPCState *env = &cpu->env;
/* The TCG path should also be holding the BQL at this point */
g_assert(qemu_mutex_iothread_locked());
if (msr_pr) {
hcall_dprintf("Hypercall made with MSR[PR]=1\n");
env->gpr[3] = H_PRIVILEGE;
} else {
env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
}
}
struct LPCRSyncState {
target_ulong value;
target_ulong mask;
};
static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
{
struct LPCRSyncState *s = arg.host_ptr;
PowerPCCPU *cpu = POWERPC_CPU(cs);
CPUPPCState *env = &cpu->env;
target_ulong lpcr;
cpu_synchronize_state(cs);
lpcr = env->spr[SPR_LPCR];
lpcr &= ~s->mask;
lpcr |= s->value;
ppc_store_lpcr(cpu, lpcr);
}
void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
{
CPUState *cs;
struct LPCRSyncState s = {
.value = value,
.mask = mask
};
CPU_FOREACH(cs) {
run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
}
}
static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
/* Copy PATE1:GR into PATE0:HR */
entry->dw0 = spapr->patb_entry & PATE0_HR;
entry->dw1 = spapr->patb_entry;
}
#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
/*
* Get the fd to access the kernel htab, re-opening it if necessary
*/
static int get_htab_fd(SpaprMachineState *spapr)
{
Error *local_err = NULL;
if (spapr->htab_fd >= 0) {
return spapr->htab_fd;
}
spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
if (spapr->htab_fd < 0) {
error_report_err(local_err);
}
return spapr->htab_fd;
}
void close_htab_fd(SpaprMachineState *spapr)
{
if (spapr->htab_fd >= 0) {
close(spapr->htab_fd);
}
spapr->htab_fd = -1;
}
static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
}
static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
assert(kvm_enabled());
if (!spapr->htab) {
return 0;
}
return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
}
static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
hwaddr ptex, int n)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
if (!spapr->htab) {
/*
* HTAB is controlled by KVM. Fetch into temporary buffer
*/
ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
kvmppc_read_hptes(hptes, ptex, n);
return hptes;
}
/*
* HTAB is controlled by QEMU. Just point to the internally
* accessible PTEG.
*/
return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
}
static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
const ppc_hash_pte64_t *hptes,
hwaddr ptex, int n)
{
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
if (!spapr->htab) {
g_free((void *)hptes);
}
/* Nothing to do for qemu managed HPT */
}
void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
uint64_t pte0, uint64_t pte1)
{
SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
hwaddr offset = ptex * HASH_PTE_SIZE_64;
if (!spapr->htab) {
kvmppc_write_hpte(ptex, pte0, pte1);
} else {
if (pte0 & HPTE64_V_VALID) {
stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
/*
* When setting valid, we write PTE1 first. This ensures
* proper synchronization with the reading code in
* ppc_hash64_pteg_search()
*/
smp_wmb();
stq_p(spapr->htab + offset, pte0);
} else {
stq_p(spapr->htab + offset, pte0);
/*
* When clearing it we set PTE0 first. This ensures proper
* synchronization with the reading code in
* ppc_hash64_pteg_search()
*/
smp_wmb();
stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
}
}
}
static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
uint64_t pte1)
{
hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
if (!spapr->htab) {
/* There should always be a hash table when this is called */
error_report("spapr_hpte_set_c called with no hash table !");
return;
}
/* The HW performs a non-atomic byte update */
stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
}
static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
uint64_t pte1)
{
hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
if (!spapr->htab) {
/* There should always be a hash table when this is called */
error_report("spapr_hpte_set_r called with no hash table !");
return;
}
/* The HW performs a non-atomic byte update */
stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
}
int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
int shift;
/* We aim for a hash table of size 1/128 the size of RAM (rounded
* up). The PAPR recommendation is actually 1/64 of RAM size, but
* that's much more than is needed for Linux guests */
shift = ctz64(pow2ceil(ramsize)) - 7;
shift = MAX(shift, 18); /* Minimum architected size */
shift = MIN(shift, 46); /* Maximum architected size */
return shift;
}
void spapr_free_hpt(SpaprMachineState *spapr)
{
g_free(spapr->htab);
spapr->htab = NULL;
spapr->htab_shift = 0;
close_htab_fd(spapr);
}
void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
Error **errp)
{
long rc;
/* Clean up any HPT info from a previous boot */
spapr_free_hpt(spapr);
rc = kvmppc_reset_htab(shift);
if (rc < 0) {
/* kernel-side HPT needed, but couldn't allocate one */
error_setg_errno(errp, errno,
"Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
shift);
/* This is almost certainly fatal, but if the caller really
* wants to carry on with shift == 0, it's welcome to try */
} else if (rc > 0) {
/* kernel-side HPT allocated */
if (rc != shift) {
error_setg(errp,
"Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
shift, rc);
}
spapr->htab_shift = shift;
spapr->htab = NULL;
} else {
/* kernel-side HPT not needed, allocate in userspace instead */
size_t size = 1ULL << shift;
int i;
spapr->htab = qemu_memalign(size, size);
if (!spapr->htab) {
error_setg_errno(errp, errno,
"Could not allocate HPT of order %d", shift);
return;
}
memset(spapr->htab, 0, size);
spapr->htab_shift = shift;
for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
DIRTY_HPTE(HPTE(spapr->htab, i));
}
}
/* We're setting up a hash table, so that means we're not radix */
spapr->patb_entry = 0;
spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
}
void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
{
int hpt_shift;
if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
|| (spapr->cas_reboot
&& !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
} else {
uint64_t current_ram_size;
current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
}
spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
if (spapr->vrma_adjust) {
spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
spapr->htab_shift);
}
}
static int spapr_reset_drcs(Object *child, void *opaque)
{
SpaprDrc *drc =
(SpaprDrc *) object_dynamic_cast(child,
TYPE_SPAPR_DR_CONNECTOR);
if (drc) {
spapr_drc_reset(drc);
}
return 0;
}
static void spapr_machine_reset(void)
{
MachineState *machine = MACHINE(qdev_get_machine());
SpaprMachineState *spapr = SPAPR_MACHINE(machine);
PowerPCCPU *first_ppc_cpu;
uint32_t rtas_limit;
hwaddr rtas_addr, fdt_addr;
void *fdt;
int rc;
spapr_caps_apply(spapr);
first_ppc_cpu = POWERPC_CPU(first_cpu);
if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
spapr->max_compat_pvr)) {
/*
* If using KVM with radix mode available, VCPUs can be started
* without a HPT because KVM will start them in radix mode.
* Set the GR bit in PATE so that we know there is no HPT.
*/
spapr->patb_entry = PATE1_GR;
spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
} else {
spapr_setup_hpt_and_vrma(spapr);
}
/*
* If this reset wasn't generated by CAS, we should reset our
* negotiated options and start from scratch
*/
if (!spapr->cas_reboot) {
spapr_ovec_cleanup(spapr->ov5_cas);
spapr->ov5_cas = spapr_ovec_new();
ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
}
if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
spapr_irq_msi_reset(spapr);
}
/*
* NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
* We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
* called from vPHB reset handler so we initialize the counter here.
* If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
* must be equally distant from any other node.
* The final value of spapr->gpu_numa_id is going to be written to
* max-associativity-domains in spapr_build_fdt().
*/
spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
qemu_devices_reset();
/*
* This is fixing some of the default configuration of the XIVE
* devices. To be called after the reset of the machine devices.
*/
spapr_irq_reset(spapr, &error_fatal);
/*
* There is no CAS under qtest. Simulate one to please the code that
* depends on spapr->ov5_cas. This is especially needed to test device
* unplug, so we do that before resetting the DRCs.
*/
if (qtest_enabled()) {
spapr_ovec_cleanup(spapr->ov5_cas);
spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
}
/* DRC reset may cause a device to be unplugged. This will cause troubles
* if this device is used by another device (eg, a running vhost backend
* will crash QEMU if the DIMM holding the vring goes away). To avoid such
* situations, we reset DRCs after all devices have been reset.
*/
object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
spapr_clear_pending_events(spapr);
/*
* We place the device tree and RTAS just below either the top of the RMA,
* or just below 2GB, whichever is lower, so that it can be
* processed with 32-bit real mode code if necessary
*/
rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
rtas_addr = rtas_limit - RTAS_MAX_SIZE;
fdt_addr = rtas_addr - FDT_MAX_SIZE;
fdt = spapr_build_fdt(spapr);
spapr_load_rtas(spapr, fdt, rtas_addr);
rc = fdt_pack(fdt);
/* Should only fail if we've built a corrupted tree */
assert(rc == 0);
if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
fdt_totalsize(fdt), FDT_MAX_SIZE);
exit(1);
}
/* Load the fdt */
qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
g_free(spapr->fdt_blob);
spapr->fdt_size = fdt_totalsize(fdt);
spapr->fdt_initial_size = spapr->fdt_size;
spapr->fdt_blob = fdt;
/* Set up the entry state */
spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
first_ppc_cpu->env.gpr[5] = 0;
spapr->cas_reboot = false;
}
static void spapr_create_nvram(SpaprMachineState *spapr)
{
DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
if (dinfo) {
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
}
qdev_init_nofail(dev);
spapr->nvram = (struct SpaprNvram *)dev;
}
static void spapr_rtc_create(SpaprMachineState *spapr)
{
object_initialize_child(OBJECT(spapr), "rtc",
&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
&error_fatal, NULL);
object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
&error_fatal);
object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
"date", &error_fatal);
}
/* Returns whether we want to use VGA or not */
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
{
switch (vga_interface_type) {
case VGA_NONE:
return false;
case VGA_DEVICE:
return true;
case VGA_STD:
case VGA_VIRTIO:
case VGA_CIRRUS:
return pci_vga_init(pci_bus) != NULL;
default:
error_setg(errp,
"Unsupported VGA mode, only -vga std or -vga virtio is supported");
return false;
}
}
static int spapr_pre_load(void *opaque)
{
int rc;
rc = spapr_caps_pre_load(opaque);
if (rc) {
return rc;
}
return 0;
}
static int spapr_post_load(void *opaque, int version_id)
{
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
int err = 0;
err = spapr_caps_post_migration(spapr);
if (err) {
return err;
}
/*
* In earlier versions, there was no separate qdev for the PAPR
* RTC, so the RTC offset was stored directly in sPAPREnvironment.
* So when migrating from those versions, poke the incoming offset
* value into the RTC device
*/
if (version_id < 3) {
err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
if (err) {
return err;
}
}
if (kvm_enabled() && spapr->patb_entry) {
PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
bool radix = !!(spapr->patb_entry & PATE1_GR);
bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
/*
* Update LPCR:HR and UPRT as they may not be set properly in
* the stream
*/
spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
LPCR_HR | LPCR_UPRT);
err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
if (err) {
error_report("Process table config unsupported by the host");
return -EINVAL;
}
}
err = spapr_irq_post_load(spapr, version_id);
if (err) {
return err;
}
return err;
}
static int spapr_pre_save(void *opaque)
{
int rc;
rc = spapr_caps_pre_save(opaque);
if (rc) {
return rc;
}
return 0;
}
static bool version_before_3(void *opaque, int version_id)
{
return version_id < 3;
}
static bool spapr_pending_events_needed(void *opaque)
{
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
return !QTAILQ_EMPTY(&spapr->pending_events);
}
static const VMStateDescription vmstate_spapr_event_entry = {
.name = "spapr_event_log_entry",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(summary, SpaprEventLogEntry),
VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
NULL, extended_length),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr_pending_events = {
.name = "spapr_pending_events",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_pending_events_needed,
.fields = (VMStateField[]) {
VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
vmstate_spapr_event_entry, SpaprEventLogEntry, next),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_ov5_cas_needed(void *opaque)
{
SpaprMachineState *spapr = opaque;
SpaprOptionVector *ov5_mask = spapr_ovec_new();
SpaprOptionVector *ov5_legacy = spapr_ovec_new();
SpaprOptionVector *ov5_removed = spapr_ovec_new();
bool cas_needed;
/* Prior to the introduction of SpaprOptionVector, we had two option
* vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
* Both of these options encode machine topology into the device-tree
* in such a way that the now-booted OS should still be able to interact
* appropriately with QEMU regardless of what options were actually
* negotiatied on the source side.
*
* As such, we can avoid migrating the CAS-negotiated options if these
* are the only options available on the current machine/platform.
* Since these are the only options available for pseries-2.7 and
* earlier, this allows us to maintain old->new/new->old migration
* compatibility.
*
* For QEMU 2.8+, there are additional CAS-negotiatable options available
* via default pseries-2.8 machines and explicit command-line parameters.
* Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
* of the actual CAS-negotiated values to continue working properly. For
* example, availability of memory unplug depends on knowing whether
* OV5_HP_EVT was negotiated via CAS.
*
* Thus, for any cases where the set of available CAS-negotiatable
* options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
* include the CAS-negotiated options in the migration stream, unless
* if they affect boot time behaviour only.
*/
spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
/* spapr_ovec_diff returns true if bits were removed. we avoid using
* the mask itself since in the future it's possible "legacy" bits may be
* removed via machine options, which could generate a false positive
* that breaks migration.
*/
spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
spapr_ovec_cleanup(ov5_mask);
spapr_ovec_cleanup(ov5_legacy);
spapr_ovec_cleanup(ov5_removed);
return cas_needed;
}
static const VMStateDescription vmstate_spapr_ov5_cas = {
.name = "spapr_option_vector_ov5_cas",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_ov5_cas_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
vmstate_spapr_ovec, SpaprOptionVector),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_patb_entry_needed(void *opaque)
{
SpaprMachineState *spapr = opaque;
return !!spapr->patb_entry;
}
static const VMStateDescription vmstate_spapr_patb_entry = {
.name = "spapr_patb_entry",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_patb_entry_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64(patb_entry, SpaprMachineState),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_irq_map_needed(void *opaque)
{
SpaprMachineState *spapr = opaque;
return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
}
static const VMStateDescription vmstate_spapr_irq_map = {
.name = "spapr_irq_map",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_irq_map_needed,
.fields = (VMStateField[]) {
VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
VMSTATE_END_OF_LIST()
},
};
static bool spapr_dtb_needed(void *opaque)
{
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
return smc->update_dt_enabled;
}
static int spapr_dtb_pre_load(void *opaque)
{
SpaprMachineState *spapr = (SpaprMachineState *)opaque;
g_free(spapr->fdt_blob);
spapr->fdt_blob = NULL;
spapr->fdt_size = 0;
return 0;
}
static const VMStateDescription vmstate_spapr_dtb = {
.name = "spapr_dtb",
.version_id = 1,
.minimum_version_id = 1,
.needed = spapr_dtb_needed,
.pre_load = spapr_dtb_pre_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
VMSTATE_UINT32(fdt_size, SpaprMachineState),
VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
fdt_size),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr = {
.name = "spapr",
.version_id = 3,
.minimum_version_id = 1,
.pre_load = spapr_pre_load,
.post_load = spapr_post_load,
.pre_save = spapr_pre_save,
.fields = (VMStateField[]) {
/* used to be @next_irq */
VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
/* RTC offset */
VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_spapr_ov5_cas,
&vmstate_spapr_patb_entry,
&vmstate_spapr_pending_events,
&vmstate_spapr_cap_htm,
&vmstate_spapr_cap_vsx,
&vmstate_spapr_cap_dfp,
&vmstate_spapr_cap_cfpc,
&vmstate_spapr_cap_sbbc,
&vmstate_spapr_cap_ibs,
&vmstate_spapr_cap_hpt_maxpagesize,
&vmstate_spapr_irq_map,
&vmstate_spapr_cap_nested_kvm_hv,
&vmstate_spapr_dtb,
&vmstate_spapr_cap_large_decr,
&vmstate_spapr_cap_ccf_assist,
NULL
}
};
static int htab_save_setup(QEMUFile *f, void *opaque)
{
SpaprMachineState *spapr = opaque;
/* "Iteration" header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
} else {
qemu_put_be32(f, spapr->htab_shift);
}
if (spapr->htab) {
spapr->htab_save_index = 0;
spapr->htab_first_pass = true;
} else {
if (spapr->htab_shift) {
assert(kvm_enabled());
}
}
return 0;
}
static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
int chunkstart, int n_valid, int n_invalid)
{
qemu_put_be32(f, chunkstart);
qemu_put_be16(f, n_valid);
qemu_put_be16(f, n_invalid);
qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
HASH_PTE_SIZE_64 * n_valid);
}
static void htab_save_end_marker(QEMUFile *f)
{
qemu_put_be32(f, 0);
qemu_put_be16(f, 0);
qemu_put_be16(f, 0);
}
static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
int64_t max_ns)
{
bool has_timeout = max_ns != -1;
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
assert(spapr->htab_first_pass);
do {
int chunkstart;
/* Consume invalid HPTEs */
while ((index < htabslots)
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
}
/* Consume valid HPTEs */
chunkstart = index;
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
&& HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
}
if (index > chunkstart) {
int n_valid = index - chunkstart;
htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
if (has_timeout &&
(qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break;
}
}
} while ((index < htabslots) && !qemu_file_rate_limit(f));
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
spapr->htab_first_pass = false;
}
spapr->htab_save_index = index;
}
static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
int64_t max_ns)
{
bool final = max_ns < 0;
int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
int examined = 0, sent = 0;
int index = spapr->htab_save_index;
int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
assert(!spapr->htab_first_pass);
do {
int chunkstart, invalidstart;
/* Consume non-dirty HPTEs */
while ((index < htabslots)
&& !HPTE_DIRTY(HPTE(spapr->htab, index))) {
index++;
examined++;
}
chunkstart = index;
/* Consume valid dirty HPTEs */
while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
&& HPTE_DIRTY(HPTE(spapr->htab, index))
&& HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
examined++;
}
invalidstart = index;
/* Consume invalid dirty HPTEs */
while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
&& HPTE_DIRTY(HPTE(spapr->htab, index))
&& !HPTE_VALID(HPTE(spapr->htab, index))) {
CLEAN_HPTE(HPTE(spapr->htab, index));
index++;
examined++;
}
if (index > chunkstart) {
int n_valid = invalidstart - chunkstart;
int n_invalid = index - invalidstart;
htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
sent += index - chunkstart;
if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
break;
}
}
if (examined >= htabslots) {
break;
}
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
}
} while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
if (index >= htabslots) {
assert(index == htabslots);
index = 0;
}
spapr->htab_save_index = index;
return (examined >= htabslots) && (sent == 0) ? 1 : 0;
}
#define MAX_ITERATION_NS 5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE 2048
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
SpaprMachineState *spapr = opaque;
int fd;
int rc = 0;
/* Iteration header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
return 1;
} else {
qemu_put_be32(f, 0);
}
if (!spapr->htab) {
assert(kvm_enabled());
fd = get_htab_fd(spapr);
if (fd < 0) {
return fd;
}
rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
if (rc < 0) {
return rc;
}
} else if (spapr->htab_first_pass) {
htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
} else {
rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
}
htab_save_end_marker(f);
return rc;
}
static int htab_save_complete(QEMUFile *f, void *opaque)
{
SpaprMachineState *spapr = opaque;
int fd;
/* Iteration header */
if (!spapr->htab_shift) {
qemu_put_be32(f, -1);
return 0;
} else {
qemu_put_be32(f, 0);
}
if (!spapr->htab) {
int rc;
assert(kvm_enabled());
fd = get_htab_fd(spapr);
if (fd < 0) {
return fd;
}
rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
if (rc < 0) {
return rc;
}
} else {
if (spapr->htab_first_pass) {
htab_save_first_pass(f, spapr, -1);
}
htab_save_later_pass(f, spapr, -1);
}
/* End marker */
htab_save_end_marker(f);
return 0;
}
static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
SpaprMachineState *spapr = opaque;
uint32_t section_hdr;
int fd = -1;
Error *local_err = NULL;
if (version_id < 1 || version_id > 1) {
error_report("htab_load() bad version");
return -EINVAL;
}
section_hdr = qemu_get_be32(f);
if (section_hdr == -1) {
spapr_free_hpt(spapr);
return 0;
}
if (section_hdr) {
/* First section gives the htab size */
spapr_reallocate_hpt(spapr, section_hdr, &local_err);
if (local_err) {
error_report_err(local_err);
return -EINVAL;
}
return 0;
}
if (!spapr->htab) {
assert(kvm_enabled());
fd = kvmppc_get_htab_fd(true, 0, &local_err);
if (fd < 0) {
error_report_err(local_err);
return fd;
}
}
while (true) {
uint32_t index;
uint16_t n_valid, n_invalid;
index = qemu_get_be32(f);
n_valid = qemu_get_be16(f);
n_invalid = qemu_get_be16(f);
if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
/* End of Stream */
break;
}
if ((index + n_valid + n_invalid) >
(HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
/* Bad index in stream */
error_report(
"htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
index, n_valid, n_invalid, spapr->htab_shift);
return -EINVAL;
}
if (spapr->htab) {
if (n_valid) {
qemu_get_buffer(f, HPTE(spapr->htab, index),
HASH_PTE_SIZE_64 * n_valid);
}
if (n_invalid) {
memset(HPTE(spapr->htab, index + n_valid), 0,
HASH_PTE_SIZE_64 * n_invalid);
}
} else {
int rc;
assert(fd >= 0);
rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
if (rc < 0) {
return rc;
}
}
}
if (!spapr->htab) {
assert(fd >= 0);
close(fd);
}
return 0;
}
static void htab_save_cleanup(void *opaque)
{
SpaprMachineState *spapr = opaque;
close_htab_fd(spapr);
}
static SaveVMHandlers savevm_htab_handlers = {
.save_setup = htab_save_setup,
.save_live_iterate = htab_save_iterate,
.save_live_complete_precopy = htab_save_complete,
.save_cleanup = htab_save_cleanup,
.load_state = htab_load,
};
static void spapr_boot_set(void *opaque, const char *boot_device,
Error **errp)
{
MachineState *machine = MACHINE(opaque);
machine->boot_order = g_strdup(boot_device);
}
static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
int i;
for (i = 0; i < nr_lmbs; i++) {
uint64_t addr;
addr = i * lmb_size + machine->device_memory->base;
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
addr / lmb_size);
}
}
/*
* If RAM size, maxmem size and individual node mem sizes aren't aligned
* to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
* since we can't support such unaligned sizes with DRCONF_MEMORY.
*/
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
{
int i;
if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
" is not aligned to %" PRIu64 " MiB",
machine->ram_size,
SPAPR_MEMORY_BLOCK_SIZE / MiB);
return;
}
if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
" is not aligned to %" PRIu64 " MiB",
machine->ram_size,
SPAPR_MEMORY_BLOCK_SIZE / MiB);
return;
}
for (i = 0; i < nb_numa_nodes; i++) {
if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp,
"Node %d memory size 0x%" PRIx64
" is not aligned to %" PRIu64 " MiB",
i, numa_info[i].node_mem,
SPAPR_MEMORY_BLOCK_SIZE / MiB);
return;
}
}
}
/* find cpu slot in machine->possible_cpus by core_id */
static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
int index = id / smp_threads;
if (index >= ms->possible_cpus->len) {
return NULL;
}
if (idx) {
*idx = index;
}
return &ms->possible_cpus->cpus[index];
}
static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
{
Error *local_err = NULL;
bool vsmt_user = !!spapr->vsmt;
int kvm_smt = kvmppc_smt_threads();
int ret;
if (!kvm_enabled() && (smp_threads > 1)) {
error_setg(&local_err, "TCG cannot support more than 1 thread/core "
"on a pseries machine");
goto out;
}
if (!is_power_of_2(smp_threads)) {
error_setg(&local_err, "Cannot support %d threads/core on a pseries "
"machine because it must be a power of 2", smp_threads);
goto out;
}
/* Detemine the VSMT mode to use: */
if (vsmt_user) {
if (spapr->vsmt < smp_threads) {
error_setg(&local_err, "Cannot support VSMT mode %d"
" because it must be >= threads/core (%d)",
spapr->vsmt, smp_threads);
goto out;
}
/* In this case, spapr->vsmt has been set by the command line */
} else {
/*
* Default VSMT value is tricky, because we need it to be as
* consistent as possible (for migration), but this requires
* changing it for at least some existing cases. We pick 8 as
* the value that we'd get with KVM on POWER8, the
* overwhelmingly common case in production systems.
*/
spapr->vsmt = MAX(8, smp_threads);
}
/* KVM: If necessary, set the SMT mode: */
if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
ret = kvmppc_set_smt_threads(spapr->vsmt);
if (ret) {
/* Looks like KVM isn't able to change VSMT mode */
error_setg(&local_err,
"Failed to set KVM's VSMT mode to %d (errno %d)",
spapr->vsmt, ret);
/* We can live with that if the default one is big enough
* for the number of threads, and a submultiple of the one
* we want. In this case we'll waste some vcpu ids, but
* behaviour will be correct */
if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
warn_report_err(local_err);
local_err = NULL;
goto out;
} else {
if (!vsmt_user) {
error_append_hint(&local_err,
"On PPC, a VM with %d threads/core"
" on a host with %d threads/core"
" requires the use of VSMT mode %d.\n",
smp_threads, kvm_smt, spapr->vsmt);
}
kvmppc_hint_smt_possible(&local_err);
goto out;
}
}
}
/* else TCG: nothing to do currently */
out:
error_propagate(errp, local_err);
}
static void spapr_init_cpus(SpaprMachineState *spapr)
{
MachineState *machine = MACHINE(spapr);
MachineClass *mc = MACHINE_GET_CLASS(machine);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
const char *type = spapr_get_cpu_core_type(machine->cpu_type);
const CPUArchIdList *possible_cpus;
int boot_cores_nr = smp_cpus / smp_threads;
int i;
possible_cpus = mc->possible_cpu_arch_ids(machine);
if (mc->has_hotpluggable_cpus) {
if (smp_cpus % smp_threads) {
error_report("smp_cpus (%u) must be multiple of threads (%u)",
smp_cpus, smp_threads);
exit(1);
}
if (max_cpus % smp_threads) {
error_report("max_cpus (%u) must be multiple of threads (%u)",
max_cpus, smp_threads);
exit(1);
}
} else {
if (max_cpus != smp_cpus) {
error_report("This machine version does not support CPU hotplug");
exit(1);
}
boot_cores_nr = possible_cpus->len;
}
if (smc->pre_2_10_has_unused_icps) {
int i;
for (i = 0; i < spapr_max_server_number(spapr); i++) {
/* Dummy entries get deregistered when real ICPState objects
* are registered during CPU core hotplug.
*/
pre_2_10_vmstate_register_dummy_icp(i);
}
}
for (i = 0; i < possible_cpus->len; i++) {
int core_id = i * smp_threads;
if (mc->has_hotpluggable_cpus) {
spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
spapr_vcpu_id(spapr, core_id));
}
if (i < boot_cores_nr) {
Object *core = object_new(type);
int nr_threads = smp_threads;
/* Handle the partially filled core for older machine types */
if ((i + 1) * smp_threads >= smp_cpus) {
nr_threads = smp_cpus - i * smp_threads;
}
object_property_set_int(core, nr_threads, "nr-threads",
&error_fatal);
object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
&error_fatal);
object_property_set_bool(core, true, "realized", &error_fatal);
object_unref(core);
}
}
}
static PCIHostState *spapr_create_default_phb(void)
{
DeviceState *dev;
dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
qdev_prop_set_uint32(dev, "index", 0);
qdev_init_nofail(dev);
return PCI_HOST_BRIDGE(dev);
}
/* pSeries LPAR / sPAPR hardware init */
static void spapr_machine_init(MachineState *machine)
{
SpaprMachineState *spapr = SPAPR_MACHINE(machine);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
const char *kernel_filename = machine->kernel_filename;
const char *initrd_filename = machine->initrd_filename;
PCIHostState *phb;
int i;
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
hwaddr node0_size = spapr_node0_size(machine);
long load_limit, fw_size;
char *filename;
Error *resize_hpt_err = NULL;
msi_nonbroken = true;
QLIST_INIT(&spapr->phbs);
QTAILQ_INIT(&spapr->pending_dimm_unplugs);
/* Determine capabilities to run with */
spapr_caps_init(spapr);
kvmppc_check_papr_resize_hpt(&resize_hpt_err);
if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
/*
* If the user explicitly requested a mode we should either
* supply it, or fail completely (which we do below). But if
* it's not set explicitly, we reset our mode to something
* that works
*/
if (resize_hpt_err) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
error_free(resize_hpt_err);
resize_hpt_err = NULL;
} else {
spapr->resize_hpt = smc->resize_hpt_default;
}
}
assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
/*
* User requested HPT resize, but this host can't supply it. Bail out
*/
error_report_err(resize_hpt_err);
exit(1);
}
spapr->rma_size = node0_size;
/* With KVM, we don't actually know whether KVM supports an
* unbounded RMA (PR KVM) or is limited by the hash table size
* (HV KVM using VRMA), so we always assume the latter
*
* In that case, we also limit the initial allocations for RTAS
* etc... to 256M since we have no way to know what the VRMA size
* is going to be as it depends on the size of the hash table
* which isn't determined yet.
*/
if (kvm_enabled()) {
spapr->vrma_adjust = 1;
spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
}
/* Actually we don't support unbounded RMA anymore since we added
* proper emulation of HV mode. The max we can get is 16G which
* also happens to be what we configure for PAPR mode so make sure
* we don't do anything bigger than that
*/
spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
if (spapr->rma_size > node0_size) {
error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
spapr->rma_size);
exit(1);
}
/* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
/*
* VSMT must be set in order to be able to compute VCPU ids, ie to
* call spapr_max_server_number() or spapr_vcpu_id().
*/
spapr_set_vsmt_mode(spapr, &error_fatal);
/* Set up Interrupt Controller before we create the VCPUs */
spapr_irq_init(spapr, &error_fatal);
/* Set up containers for ibm,client-architecture-support negotiated options
*/
spapr->ov5 = spapr_ovec_new();
spapr->ov5_cas = spapr_ovec_new();
if (smc->dr_lmb_enabled) {
spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
spapr_validate_node_memory(machine, &error_fatal);
}
spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
/* advertise support for dedicated HP event source to guests */
if (spapr->use_hotplug_event_source) {
spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
}
/* advertise support for HPT resizing */
if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
}
/* advertise support for ibm,dyamic-memory-v2 */
spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
/* advertise XIVE on POWER9 machines */
if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
}
/* init CPUs */
spapr_init_cpus(spapr);
if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
spapr->max_compat_pvr)) {
/* KVM and TCG always allow GTSE with radix... */
spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
}
/* ... but not with hash (currently). */
if (kvm_enabled()) {
/* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
kvmppc_enable_logical_ci_hcalls();
kvmppc_enable_set_mode_hcall();
/* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
kvmppc_enable_clear_ref_mod_hcalls();
/* Enable H_PAGE_INIT */
kvmppc_enable_h_page_init();
}
/* allocate RAM */
memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
machine->ram_size);
memory_region_add_subregion(sysmem, 0, ram);
/* always allocate the device memory information */
machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
/* initialize hotplug memory address space */
if (machine->ram_size < machine->maxram_size) {
ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
/*
* Limit the number of hotpluggable memory slots to half the number
* slots that KVM supports, leaving the other half for PCI and other
* devices. However ensure that number of slots doesn't drop below 32.
*/
int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
SPAPR_MAX_RAM_SLOTS;
if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
max_memslots = SPAPR_MAX_RAM_SLOTS;
}
if (machine->ram_slots > max_memslots) {
error_report("Specified number of memory slots %"
PRIu64" exceeds max supported %d",
machine->ram_slots, max_memslots);
exit(1);
}
machine->device_memory->base = ROUND_UP(machine->ram_size,
SPAPR_DEVICE_MEM_ALIGN);
memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
"device-memory", device_mem_size);
memory_region_add_subregion(sysmem, machine->device_memory->base,
&machine->device_memory->mr);
}
if (smc->dr_lmb_enabled) {
spapr_create_lmb_dr_connectors(spapr);
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
if (!filename) {
error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
exit(1);
}
spapr->rtas_size = get_image_size(filename);
if (spapr->rtas_size < 0) {
error_report("Could not get size of LPAR rtas '%s'", filename);
exit(1);
}
spapr->rtas_blob = g_malloc(spapr->rtas_size);
if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
error_report("Could not load LPAR rtas '%s'", filename);
exit(1);
}
if (spapr->rtas_size > RTAS_MAX_SIZE) {
error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
(size_t)spapr->rtas_size, RTAS_MAX_SIZE);
exit(1);
}
g_free(filename);
/* Set up RTAS event infrastructure */
spapr_events_init(spapr);
/* Set up the RTC RTAS interfaces */
spapr_rtc_create(spapr);
/* Set up VIO bus */
spapr->vio_bus = spapr_vio_bus_init();
for (i = 0; i < serial_max_hds(); i++) {
if (serial_hd(i)) {
spapr_vty_create(spapr->vio_bus, serial_hd(i));
}
}
/* We always have at least the nvram device on VIO */
spapr_create_nvram(spapr);
/*
* Setup hotplug / dynamic-reconfiguration connectors. top-level
* connectors (described in root DT node's "ibm,drc-types" property)
* are pre-initialized here. additional child connectors (such as
* connectors for a PHBs PCI slots) are added as needed during their
* parent's realization.
*/
if (smc->dr_phb_enabled) {
for (i = 0; i < SPAPR_MAX_PHBS; i++) {
spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
}
}
/* Set up PCI */
spapr_pci_rtas_init();
phb = spapr_create_default_phb();
for (i = 0; i < nb_nics; i++) {
NICInfo *nd = &nd_table[i];
if (!nd->model) {
nd->model = g_strdup("spapr-vlan");
}
if (g_str_equal(nd->model, "spapr-vlan") ||
g_str_equal(nd->model, "ibmveth")) {
spapr_vlan_create(spapr->vio_bus, nd);
} else {
pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
}
}
for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
spapr_vscsi_create(spapr->vio_bus);
}
/* Graphics */
if (spapr_vga_init(phb->bus, &error_fatal)) {
spapr->has_graphics = true;
machine->usb |= defaults_enabled() && !machine->usb_disabled;
}
if (machine->usb) {
if (smc->use_ohci_by_default) {
pci_create_simple(phb->bus, -1, "pci-ohci");
} else {
pci_create_simple(phb->bus, -1, "nec-usb-xhci");
}
if (spapr->has_graphics) {
USBBus *usb_bus = usb_bus_find(-1);
usb_create_simple(usb_bus, "usb-kbd");
usb_create_simple(usb_bus, "usb-mouse");
}
}
if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
error_report(
"pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
MIN_RMA_SLOF);
exit(1);
}
if (kernel_filename) {
uint64_t lowaddr = 0;
spapr->kernel_size = load_elf(kernel_filename, NULL,
translate_kernel_address, NULL,
NULL, &lowaddr, NULL, 1,
PPC_ELF_MACHINE, 0, 0);
if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
spapr->kernel_size = load_elf(kernel_filename, NULL,
translate_kernel_address, NULL, NULL,
&lowaddr, NULL, 0, PPC_ELF_MACHINE,
0, 0);
spapr->kernel_le = spapr->kernel_size > 0;
}
if (spapr->kernel_size < 0) {
error_report("error loading %s: %s", kernel_filename,
load_elf_strerror(spapr->kernel_size));
exit(1);
}
/* load initrd */
if (initrd_filename) {
/* Try to locate the initrd in the gap between the kernel
* and the firmware. Add a bit of space just in case
*/
spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
+ 0x1ffff) & ~0xffff;
spapr->initrd_size = load_image_targphys(initrd_filename,
spapr->initrd_base,
load_limit
- spapr->initrd_base);
if (spapr->initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
}
}
if (bios_name == NULL) {
bios_name = FW_FILE_NAME;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!filename) {
error_report("Could not find LPAR firmware '%s'", bios_name);
exit(1);
}
fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
if (fw_size <= 0) {
error_report("Could not load LPAR firmware '%s'", filename);
exit(1);
}
g_free(filename);
/* FIXME: Should register things through the MachineState's qdev
* interface, this is a legacy from the sPAPREnvironment structure
* which predated MachineState but had a similar function */
vmstate_register(NULL, 0, &vmstate_spapr, spapr);
register_savevm_live(NULL, "spapr/htab", -1, 1,
&savevm_htab_handlers, spapr);
qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
&error_fatal);
qemu_register_boot_set(spapr_boot_set, spapr);
if (kvm_enabled()) {
/* to stop and start vmclock */
qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
&spapr->tb);
kvmppc_spapr_enable_inkernel_multitce();
}
}
static int spapr_kvm_type(MachineState *machine, const char *vm_type)
{
if (!vm_type) {
return 0;
}
if (!strcmp(vm_type, "HV")) {
return 1;
}
if (!strcmp(vm_type, "PR")) {
return 2;
}
error_report("Unknown kvm-type specified '%s'", vm_type);
exit(1);
}
/*
* Implementation of an interface to adjust firmware path
* for the bootindex property handling.
*/
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
DeviceState *dev)
{
#define CAST(type, obj, name) \
((type *)object_dynamic_cast(OBJECT(obj), (name)))
SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
if (d) {
void *spapr = CAST(void, bus->parent, "spapr-vscsi");
VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
if (spapr) {
/*
* Replace "channel@0/disk@0,0" with "disk@8000000000000000":
* In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
* 0x8000 | (target << 8) | (bus << 5) | lun
* (see the "Logical unit addressing format" table in SAM5)
*/
unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 48);
} else if (virtio) {
/*
* We use SRP luns of the form 01000000 | (target << 8) | lun
* in the top 32 bits of the 64-bit LUN
* Note: the quote above is from SLOF and it is wrong,
* the actual binding is:
* swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
*/
unsigned id = 0x1000000 | (d->id << 16) | d->lun;
if (d->lun >= 256) {
/* Use the LUN "flat space addressing method" */
id |= 0x4000;
}
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 32);
} else if (usb) {
/*
* We use SRP luns of the form 01000000 | (usb-port << 16) | lun
* in the top 32 bits of the 64-bit LUN
*/
unsigned usb_port = atoi(usb->port->path);
unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
(uint64_t)id << 32);
}
}
/*
* SLOF probes the USB devices, and if it recognizes that the device is a
* storage device, it changes its name to "storage" instead of "usb-host",
* and additionally adds a child node for the SCSI LUN, so the correct
* boot path in SLOF is something like .../storage@1/disk@xxx" instead.
*/
if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
if (usb_host_dev_is_scsi_storage(usbdev)) {
return g_strdup_printf("storage@%s/disk", usbdev->port->path);
}
}
if (phb) {
/* Replace "pci" with "pci@800000020000000" */
return g_strdup_printf("pci@%"PRIX64, phb->buid);
}
if (vsc) {
/* Same logic as virtio above */
unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
}
if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
/* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
}
return NULL;
}
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return g_strdup(spapr->kvm_type);
}
static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->kvm_type);
spapr->kvm_type = g_strdup(value);
}
static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return spapr->use_hotplug_event_source;
}
static void spapr_set_modern_hotplug_events(Object *obj, bool value,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
spapr->use_hotplug_event_source = value;
}
static bool spapr_get_msix_emulation(Object *obj, Error **errp)
{
return true;
}
static char *spapr_get_resize_hpt(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
switch (spapr->resize_hpt) {
case SPAPR_RESIZE_HPT_DEFAULT:
return g_strdup("default");
case SPAPR_RESIZE_HPT_DISABLED:
return g_strdup("disabled");
case SPAPR_RESIZE_HPT_ENABLED:
return g_strdup("enabled");
case SPAPR_RESIZE_HPT_REQUIRED:
return g_strdup("required");
}
g_assert_not_reached();
}
static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
if (strcmp(value, "default") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
} else if (strcmp(value, "disabled") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
} else if (strcmp(value, "enabled") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
} else if (strcmp(value, "required") == 0) {
spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
} else {
error_setg(errp, "Bad value for \"resize-hpt\" property");
}
}
static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
visit_type_uint32(v, name, (uint32_t *)opaque, errp);
}
static char *spapr_get_ic_mode(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
if (spapr->irq == &spapr_irq_xics_legacy) {
return g_strdup("legacy");
} else if (spapr->irq == &spapr_irq_xics) {
return g_strdup("xics");
} else if (spapr->irq == &spapr_irq_xive) {
return g_strdup("xive");
} else if (spapr->irq == &spapr_irq_dual) {
return g_strdup("dual");
}
g_assert_not_reached();
}
static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
return;
}
/* The legacy IRQ backend can not be set */
if (strcmp(value, "xics") == 0) {
spapr->irq = &spapr_irq_xics;
} else if (strcmp(value, "xive") == 0) {
spapr->irq = &spapr_irq_xive;
} else if (strcmp(value, "dual") == 0) {
spapr->irq = &spapr_irq_dual;
} else {
error_setg(errp, "Bad value for \"ic-mode\" property");
}
}
static char *spapr_get_host_model(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return g_strdup(spapr->host_model);
}
static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->host_model);
spapr->host_model = g_strdup(value);
}
static char *spapr_get_host_serial(Object *obj, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
return g_strdup(spapr->host_serial);
}
static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->host_serial);
spapr->host_serial = g_strdup(value);
}
static void spapr_instance_init(Object *obj)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
spapr->htab_fd = -1;
spapr->use_hotplug_event_source = true;
object_property_add_str(obj, "kvm-type",
spapr_get_kvm_type, spapr_set_kvm_type, NULL);
object_property_set_description(obj, "kvm-type",
"Specifies the KVM virtualization mode (HV, PR)",
NULL);
object_property_add_bool(obj, "modern-hotplug-events",
spapr_get_modern_hotplug_events,
spapr_set_modern_hotplug_events,
NULL);
object_property_set_description(obj, "modern-hotplug-events",
"Use dedicated hotplug event mechanism in"
" place of standard EPOW events when possible"
" (required for memory hot-unplug support)",
NULL);
ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
"Maximum permitted CPU compatibility mode",
&error_fatal);
object_property_add_str(obj, "resize-hpt",
spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
object_property_set_description(obj, "resize-hpt",
"Resizing of the Hash Page Table (enabled, disabled, required)",
NULL);
object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
object_property_set_description(obj, "vsmt",
"Virtual SMT: KVM behaves as if this were"
" the host's SMT mode", &error_abort);
object_property_add_bool(obj, "vfio-no-msix-emulation",
spapr_get_msix_emulation, NULL, NULL);
/* The machine class defines the default interrupt controller mode */
spapr->irq = smc->irq;
object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
spapr_set_ic_mode, NULL);
object_property_set_description(obj, "ic-mode",
"Specifies the interrupt controller mode (xics, xive, dual)",
NULL);
object_property_add_str(obj, "host-model",
spapr_get_host_model, spapr_set_host_model,
&error_abort);
object_property_set_description(obj, "host-model",
"Host model to advertise in guest device tree", &error_abort);
object_property_add_str(obj, "host-serial",
spapr_get_host_serial, spapr_set_host_serial,
&error_abort);
object_property_set_description(obj, "host-serial",
"Host serial number to advertise in guest device tree", &error_abort);
}
static void spapr_machine_finalizefn(Object *obj)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
g_free(spapr->kvm_type);
}
void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
{
cpu_synchronize_state(cs);
ppc_cpu_do_system_reset(cs);
}
static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
CPUState *cs;
CPU_FOREACH(cs) {
async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
}
}
int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
void *fdt, int *fdt_start_offset, Error **errp)
{
uint64_t addr;
uint32_t node;
addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
&error_abort);
*fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
SPAPR_MEMORY_BLOCK_SIZE);
return 0;
}
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
bool dedicated_hp_event_source, Error **errp)
{
SpaprDrc *drc;
uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
int i;
uint64_t addr = addr_start;
bool hotplugged = spapr_drc_hotplugged(dev);
Error *local_err = NULL;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
spapr_drc_attach(drc, dev, &local_err);
if (local_err) {
while (addr > addr_start) {
addr -= SPAPR_MEMORY_BLOCK_SIZE;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
spapr_drc_detach(drc);
}
error_propagate(errp, local_err);
return;
}
if (!hotplugged) {
spapr_drc_reset(drc);
}
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
/* send hotplug notification to the
* guest only in case of hotplugged memory
*/
if (hotplugged) {
if (dedicated_hp_event_source) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr_start / SPAPR_MEMORY_BLOCK_SIZE);
spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs,
spapr_drc_index(drc));
} else {
spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs);
}
}
}
static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
Error *local_err = NULL;
SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
uint64_t size, addr;
size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
pc_dimm_plug(dimm, MACHINE(ms), &local_err);
if (local_err) {
goto out;
}
addr = object_property_get_uint(OBJECT(dimm),
PC_DIMM_ADDR_PROP, &local_err);
if (local_err) {
goto out_unplug;
}
spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
&local_err);
if (local_err) {
goto out_unplug;
}
return;
out_unplug:
pc_dimm_unplug(dimm, MACHINE(ms));
out:
error_propagate(errp, local_err);
}
static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
PCDIMMDevice *dimm = PC_DIMM(dev);
Error *local_err = NULL;
uint64_t size;
Object *memdev;
hwaddr pagesize;
if (!smc->dr_lmb_enabled) {
error_setg(errp, "Memory hotplug not supported for this machine");
return;
}
size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (size % SPAPR_MEMORY_BLOCK_SIZE) {
error_setg(errp, "Hotplugged memory size must be a multiple of "
"%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
return;
}
memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
&error_abort);
pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
spapr_check_pagesize(spapr, pagesize, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
}
struct SpaprDimmState {
PCDIMMDevice *dimm;
uint32_t nr_lmbs;
QTAILQ_ENTRY(SpaprDimmState) next;
};
static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
PCDIMMDevice *dimm)
{
SpaprDimmState *dimm_state = NULL;
QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
if (dimm_state->dimm == dimm) {
break;
}
}
return dimm_state;
}
static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
uint32_t nr_lmbs,
PCDIMMDevice *dimm)
{
SpaprDimmState *ds = NULL;
/*
* If this request is for a DIMM whose removal had failed earlier
* (due to guest's refusal to remove the LMBs), we would have this
* dimm already in the pending_dimm_unplugs list. In that
* case don't add again.
*/
ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
if (!ds) {
ds = g_malloc0(sizeof(SpaprDimmState));
ds->nr_lmbs = nr_lmbs;
ds->dimm = dimm;
QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
}
return ds;
}
static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
SpaprDimmState *dimm_state)
{
QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
g_free(dimm_state);
}
static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
PCDIMMDevice *dimm)
{
SpaprDrc *drc;
uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
&error_abort);
uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
uint32_t avail_lmbs = 0;
uint64_t addr_start, addr;
int i;
addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
&error_abort);
addr = addr_start;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
if (drc->dev) {
avail_lmbs++;
}
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
}
/* Callback to be called during DRC release. */
void spapr_lmb_release(DeviceState *dev)
{
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
/* This information will get lost if a migration occurs
* during the unplug process. In this case recover it. */
if (ds == NULL) {
ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
g_assert(ds);
/* The DRC being examined by the caller at least must be counted */
g_assert(ds->nr_lmbs);
}
if (--ds->nr_lmbs) {
return;
}
/*
* Now that all the LMBs have been removed by the guest, call the
* unplug handler chain. This can never fail.
*/
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
object_unparent(OBJECT(dev));
}
static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
object_property_set_bool(OBJECT(dev), false, "realized", NULL);
spapr_pending_dimm_unplugs_remove(spapr, ds);
}
static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
Error *local_err = NULL;
PCDIMMDevice *dimm = PC_DIMM(dev);
uint32_t nr_lmbs;
uint64_t size, addr_start, addr;
int i;
SpaprDrc *drc;
size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
&local_err);
if (local_err) {
goto out;
}
/*
* An existing pending dimm state for this DIMM means that there is an
* unplug operation in progress, waiting for the spapr_lmb_release
* callback to complete the job (BQL can't cover that far). In this case,
* bail out to avoid detaching DRCs that were already released.
*/
if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
error_setg(&local_err,
"Memory unplug already in progress for device %s",
dev->id);
goto out;
}
spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
addr = addr_start;
for (i = 0; i < nr_lmbs; i++) {
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr / SPAPR_MEMORY_BLOCK_SIZE);
g_assert(drc);
spapr_drc_detach(drc);
addr += SPAPR_MEMORY_BLOCK_SIZE;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
addr_start / SPAPR_MEMORY_BLOCK_SIZE);
spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
nr_lmbs, spapr_drc_index(drc));
out:
error_propagate(errp, local_err);
}
/* Callback to be called during DRC release. */
void spapr_core_release(DeviceState *dev)
{
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
/* Call the unplug handler chain. This can never fail. */
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
object_unparent(OBJECT(dev));
}
static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
MachineState *ms = MACHINE(hotplug_dev);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
CPUCore *cc = CPU_CORE(dev);
CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
if (smc->pre_2_10_has_unused_icps) {
SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
int i;
for (i = 0; i < cc->nr_threads; i++) {
CPUState *cs = CPU(sc->threads[i]);
pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
}
}
assert(core_slot);
core_slot->cpu = NULL;
object_property_set_bool(OBJECT(dev), false, "realized", NULL);
}
static
void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
int index;
SpaprDrc *drc;
CPUCore *cc = CPU_CORE(dev);
if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
error_setg(errp, "Unable to find CPU core with core-id: %d",
cc->core_id);
return;
}
if (index == 0) {
error_setg(errp, "Boot CPU core may not be unplugged");
return;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
spapr_vcpu_id(spapr, cc->core_id));
g_assert(drc);
spapr_drc_detach(drc);
spapr_hotplug_req_remove_by_index(drc);
}
int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
void *fdt, int *fdt_start_offset, Error **errp)
{
SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
CPUState *cs = CPU(core->threads[0]);
PowerPCCPU *cpu = POWERPC_CPU(cs);
DeviceClass *dc = DEVICE_GET_CLASS(cs);
int id = spapr_get_vcpu_id(cpu);
char *nodename;
int offset;
nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
offset = fdt_add_subnode(fdt, 0, nodename);
g_free(nodename);
spapr_populate_cpu_dt(cs, fdt, offset, spapr);
*fdt_start_offset = offset;
return 0;
}
static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(spapr);
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
CPUCore *cc = CPU_CORE(dev);
CPUState *cs;
SpaprDrc *drc;
Error *local_err = NULL;
CPUArchId *core_slot;
int index;
bool hotplugged = spapr_drc_hotplugged(dev);
core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
if (!core_slot) {
error_setg(errp, "Unable to find CPU core with core-id: %d",
cc->core_id);
return;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
spapr_vcpu_id(spapr, cc->core_id));
g_assert(drc || !mc->has_hotpluggable_cpus);
if (drc) {
spapr_drc_attach(drc, dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (hotplugged) {
/*
* Send hotplug notification interrupt to the guest only
* in case of hotplugged CPUs.
*/
spapr_hotplug_req_add_by_index(drc);
} else {
spapr_drc_reset(drc);
}
}
core_slot->cpu = OBJECT(dev);
if (smc->pre_2_10_has_unused_icps) {
int i;
for (i = 0; i < cc->nr_threads; i++) {
cs = CPU(core->threads[i]);
pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
}
}
}
static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
MachineState *machine = MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
Error *local_err = NULL;
CPUCore *cc = CPU_CORE(dev);
const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
const char *type = object_get_typename(OBJECT(dev));
CPUArchId *core_slot;
int index;
if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
error_setg(&local_err, "CPU hotplug not supported for this machine");
goto out;
}
if (strcmp(base_core_type, type)) {
error_setg(&local_err, "CPU core type should be %s", base_core_type);
goto out;
}
if (cc->core_id % smp_threads) {
error_setg(&local_err, "invalid core id %d", cc->core_id);
goto out;
}
/*
* In general we should have homogeneous threads-per-core, but old
* (pre hotplug support) machine types allow the last core to have
* reduced threads as a compatibility hack for when we allowed
* total vcpus not a multiple of threads-per-core.
*/
if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
error_setg(&local_err, "invalid nr-threads %d, must be %d",
cc->nr_threads, smp_threads);
goto out;
}
core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
if (!core_slot) {
error_setg(&local_err, "core id %d out of range", cc->core_id);
goto out;
}
if (core_slot->cpu) {
error_setg(&local_err, "core %d already populated", cc->core_id);
goto out;
}
numa_cpu_pre_plug(core_slot, dev, &local_err);
out:
error_propagate(errp, local_err);
}
int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
void *fdt, int *fdt_start_offset, Error **errp)
{
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
int intc_phandle;
intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
if (intc_phandle <= 0) {
return -1;
}
if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
fdt_start_offset)) {
error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
return -1;
}
/* generally SLOF creates these, for hotplug it's up to QEMU */
_FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
return 0;
}
static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
const unsigned windows_supported = spapr_phb_windows_supported(sphb);
if (dev->hotplugged && !smc->dr_phb_enabled) {
error_setg(errp, "PHB hotplug not supported for this machine");
return;
}
if (sphb->index == (uint32_t)-1) {
error_setg(errp, "\"index\" for PAPR PHB is mandatory");
return;
}
/*
* This will check that sphb->index doesn't exceed the maximum number of
* PHBs for the current machine type.
*/
smc->phb_placement(spapr, sphb->index,
&sphb->buid, &sphb->io_win_addr,
&sphb->mem_win_addr, &sphb->mem64_win_addr,
windows_supported, sphb->dma_liobn,
&sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
errp);
}
static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
SpaprDrc *drc;
bool hotplugged = spapr_drc_hotplugged(dev);
Error *local_err = NULL;
if (!smc->dr_phb_enabled) {
return;
}
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
/* hotplug hooks should check it's enabled before getting this far */
assert(drc);
spapr_drc_attach(drc, DEVICE(dev), &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (hotplugged) {
spapr_hotplug_req_add_by_index(drc);
} else {
spapr_drc_reset(drc);
}
}
void spapr_phb_release(DeviceState *dev)
{
HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
object_unparent(OBJECT(dev));
}
static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
{
object_property_set_bool(OBJECT(dev), false, "realized", NULL);
}
static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
SpaprDrc *drc;
drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
assert(drc);
if (!spapr_drc_unplug_requested(drc)) {
spapr_drc_detach(drc);
spapr_hotplug_req_remove_by_index(drc);
}
}
static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
spapr_memory_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
spapr_core_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
spapr_phb_plug(hotplug_dev, dev, errp);
}
}
static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
spapr_memory_unplug(hotplug_dev, dev);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
spapr_core_unplug(hotplug_dev, dev);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
spapr_phb_unplug(hotplug_dev, dev);
}
}
static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
MachineClass *mc = MACHINE_GET_CLASS(sms);
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
spapr_memory_unplug_request(hotplug_dev, dev, errp);
} else {
/* NOTE: this means there is a window after guest reset, prior to
* CAS negotiation, where unplug requests will fail due to the
* capability not being detected yet. This is a bit different than
* the case with PCI unplug, where the events will be queued and
* eventually handled by the guest after boot
*/
error_setg(errp, "Memory hot unplug not supported for this guest");
}
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
if (!mc->has_hotpluggable_cpus) {
error_setg(errp, "CPU hot unplug not supported on this machine");
return;
}
spapr_core_unplug_request(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
if (!smc->dr_phb_enabled) {
error_setg(errp, "PHB hot unplug not supported on this machine");
return;
}
spapr_phb_unplug_request(hotplug_dev, dev, errp);
}
}
static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
spapr_memory_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
spapr_core_pre_plug(hotplug_dev, dev, errp);
} else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
spapr_phb_pre_plug(hotplug_dev, dev, errp);
}
}
static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
return HOTPLUG_HANDLER(machine);
}
return NULL;
}
static CpuInstanceProperties
spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
{
CPUArchId *core_slot;
MachineClass *mc = MACHINE_GET_CLASS(machine);
/* make sure possible_cpu are intialized */
mc->possible_cpu_arch_ids(machine);
/* get CPU core slot containing thread that matches cpu_index */
core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
assert(core_slot);
return core_slot->props;
}
static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
{
return idx / smp_cores % nb_numa_nodes;
}
static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
{
int i;
const char *core_type;
int spapr_max_cores = max_cpus / smp_threads;
MachineClass *mc = MACHINE_GET_CLASS(machine);
if (!mc->has_hotpluggable_cpus) {
spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
}
if (machine->possible_cpus) {
assert(machine->possible_cpus->len == spapr_max_cores);
return machine->possible_cpus;
}
core_type = spapr_get_cpu_core_type(machine->cpu_type);
if (!core_type) {
error_report("Unable to find sPAPR CPU Core definition");
exit(1);
}
machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * spapr_max_cores);
machine->possible_cpus->len = spapr_max_cores;
for (i = 0; i < machine->possible_cpus->len; i++) {
int core_id = i * smp_threads;
machine->possible_cpus->cpus[i].type = core_type;
machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
machine->possible_cpus->cpus[i].arch_id = core_id;
machine->possible_cpus->cpus[i].props.has_core_id = true;
machine->possible_cpus->cpus[i].props.core_id = core_id;
}
return machine->possible_cpus;
}
static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
uint64_t *buid, hwaddr *pio,
hwaddr *mmio32, hwaddr *mmio64,
unsigned n_dma, uint32_t *liobns,
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
{
/*
* New-style PHB window placement.
*
* Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
* for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
* windows.
*
* Some guest kernels can't work with MMIO windows above 1<<46
* (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
*
* 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
* PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
* 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
* 1TiB 64-bit MMIO windows for each PHB.
*/
const uint64_t base_buid = 0x800000020000000ULL;
int i;
/* Sanity check natural alignments */
QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
/* Sanity check bounds */
QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
SPAPR_PCI_MEM32_WIN_SIZE);
QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
SPAPR_PCI_MEM64_WIN_SIZE);
if (index >= SPAPR_MAX_PHBS) {
error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
SPAPR_MAX_PHBS - 1);
return;
}
*buid = base_buid + index;
for (i = 0; i < n_dma; ++i) {
liobns[i] = SPAPR_PCI_LIOBN(index, i);
}
*pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
*mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
*mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
*nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
*nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
}
static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
{
SpaprMachineState *spapr = SPAPR_MACHINE(dev);
return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
}
static void spapr_ics_resend(XICSFabric *dev)
{
SpaprMachineState *spapr = SPAPR_MACHINE(dev);
ics_resend(spapr->ics);
}
static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
{
PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
return cpu ? spapr_cpu_state(cpu)->icp : NULL;
}
static void spapr_pic_print_info(InterruptStatsProvider *obj,
Monitor *mon)
{
SpaprMachineState *spapr = SPAPR_MACHINE(obj);
spapr->irq->print_info(spapr, mon);
}
int spapr_get_vcpu_id(PowerPCCPU *cpu)
{
return cpu->vcpu_id;
}
void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
{
SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
int vcpu_id;
vcpu_id = spapr_vcpu_id(spapr, cpu_index);
if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
error_append_hint(errp, "Adjust the number of cpus to %d "
"or try to raise the number of threads per core\n",
vcpu_id * smp_threads / spapr->vsmt);
return;
}
cpu->vcpu_id = vcpu_id;
}
PowerPCCPU *spapr_find_cpu(int vcpu_id)
{
CPUState *cs;
CPU_FOREACH(cs) {
PowerPCCPU *cpu = POWERPC_CPU(cs);
if (spapr_get_vcpu_id(cpu) == vcpu_id) {
return cpu;
}
}
return NULL;
}
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
mc->desc = "pSeries Logical Partition (PAPR compliant)";
mc->ignore_boot_device_suffixes = true;
/*
* We set up the default / latest behaviour here. The class_init
* functions for the specific versioned machine types can override
* these details for backwards compatibility
*/
mc->init = spapr_machine_init;
mc->reset = spapr_machine_reset;
mc->block_default_type = IF_SCSI;
mc->max_cpus = 1024;
mc->no_parallel = 1;
mc->default_boot_order = "";
mc->default_ram_size = 512 * MiB;
mc->default_display = "std";
mc->kvm_type = spapr_kvm_type;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
mc->pci_allow_0_address = true;
assert(!mc->get_hotplug_handler);
mc->get_hotplug_handler = spapr_get_hotplug_handler;
hc->pre_plug = spapr_machine_device_pre_plug;
hc->plug = spapr_machine_device_plug;
mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
hc->unplug_request = spapr_machine_device_unplug_request;
hc->unplug = spapr_machine_device_unplug;
smc->dr_lmb_enabled = true;
smc->update_dt_enabled = true;
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
mc->has_hotpluggable_cpus = true;
smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
fwc->get_dev_path = spapr_get_fw_dev_path;
nc->nmi_monitor_handler = spapr_nmi;
smc->phb_placement = spapr_phb_placement;
vhc->hypercall = emulate_spapr_hypercall;
vhc->hpt_mask = spapr_hpt_mask;
vhc->map_hptes = spapr_map_hptes;
vhc->unmap_hptes = spapr_unmap_hptes;
vhc->hpte_set_c = spapr_hpte_set_c;
vhc->hpte_set_r = spapr_hpte_set_r;
vhc->get_pate = spapr_get_pate;
vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
xic->ics_get = spapr_ics_get;
xic->ics_resend = spapr_ics_resend;
xic->icp_get = spapr_icp_get;
ispc->print_info = spapr_pic_print_info;
/* Force NUMA node memory size to be a multiple of
* SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
* in which LMBs are represented and hot-added
*/
mc->numa_mem_align_shift = 28;
smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
spapr_caps_add_properties(smc, &error_abort);
smc->irq = &spapr_irq_dual;
smc->dr_phb_enabled = true;
}
static const TypeInfo spapr_machine_info = {
.name = TYPE_SPAPR_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(SpaprMachineState),
.instance_init = spapr_instance_init,
.instance_finalize = spapr_machine_finalizefn,
.class_size = sizeof(SpaprMachineClass),
.class_init = spapr_machine_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_FW_PATH_PROVIDER },
{ TYPE_NMI },
{ TYPE_HOTPLUG_HANDLER },
{ TYPE_PPC_VIRTUAL_HYPERVISOR },
{ TYPE_XICS_FABRIC },
{ TYPE_INTERRUPT_STATS_PROVIDER },
{ }
},
};
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
void *data) \
{ \
MachineClass *mc = MACHINE_CLASS(oc); \
spapr_machine_##suffix##_class_options(mc); \
if (latest) { \
mc->alias = "pseries"; \
mc->is_default = 1; \
} \
} \
static const TypeInfo spapr_machine_##suffix##_info = { \
.name = MACHINE_TYPE_NAME("pseries-" verstr), \
.parent = TYPE_SPAPR_MACHINE, \
.class_init = spapr_machine_##suffix##_class_init, \
}; \
static void spapr_machine_register_##suffix(void) \
{ \
type_register(&spapr_machine_##suffix##_info); \
} \
type_init(spapr_machine_register_##suffix)
/*
* pseries-4.1
*/
static void spapr_machine_4_1_class_options(MachineClass *mc)
{
/* Defaults for the latest behaviour inherited from the base class */
}
DEFINE_SPAPR_MACHINE(4_1, "4.1", true);
/*
* pseries-4.0
*/
static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
uint64_t *buid, hwaddr *pio,
hwaddr *mmio32, hwaddr *mmio64,
unsigned n_dma, uint32_t *liobns,
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
{
spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
nv2gpa, nv2atsd, errp);
*nv2gpa = 0;
*nv2atsd = 0;
}
static void spapr_machine_4_0_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_4_1_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
smc->phb_placement = phb_placement_4_0;
smc->irq = &spapr_irq_xics;
smc->pre_4_1_migration = true;
}
DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
/*
* pseries-3.1
*/
static void spapr_machine_3_1_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_4_0_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
smc->update_dt_enabled = false;
smc->dr_phb_enabled = false;
smc->broken_host_serial_model = true;
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
}
DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
/*
* pseries-3.0
*/
static void spapr_machine_3_0_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_3_1_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
smc->legacy_irq_allocation = true;
smc->irq = &spapr_irq_xics_legacy;
}
DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
/*
* pseries-2.12
*/
static void spapr_machine_2_12_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
{ TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
};
spapr_machine_3_0_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
/* We depend on kvm_enabled() to choose a default value for the
* hpt-max-page-size capability. Of course we can't do it here
* because this is too early and the HW accelerator isn't initialzed
* yet. Postpone this to machine init (see default_caps_with_cpu()).
*/
smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
}
DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_12_class_options(mc);
smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
}
DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
/*
* pseries-2.11
*/
static void spapr_machine_2_11_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_12_class_options(mc);
smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
}
DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
/*
* pseries-2.10
*/
static void spapr_machine_2_10_class_options(MachineClass *mc)
{
spapr_machine_2_11_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
}
DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
/*
* pseries-2.9
*/
static void spapr_machine_2_9_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
};
spapr_machine_2_10_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
smc->pre_2_10_has_unused_icps = true;
smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
}
DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
/*
* pseries-2.8
*/
static void spapr_machine_2_8_class_options(MachineClass *mc)
{
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
};
spapr_machine_2_9_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
mc->numa_mem_align_shift = 23;
}
DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
/*
* pseries-2.7
*/
static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
uint64_t *buid, hwaddr *pio,
hwaddr *mmio32, hwaddr *mmio64,
unsigned n_dma, uint32_t *liobns,
hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
{
/* Legacy PHB placement for pseries-2.7 and earlier machine types */
const uint64_t base_buid = 0x800000020000000ULL;
const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
const hwaddr pio_offset = 0x80000000; /* 2 GiB */
const uint32_t max_index = 255;
const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
uint64_t ram_top = MACHINE(spapr)->ram_size;
hwaddr phb0_base, phb_base;
int i;
/* Do we have device memory? */
if (MACHINE(spapr)->maxram_size > ram_top) {
/* Can't just use maxram_size, because there may be an
* alignment gap between normal and device memory regions
*/
ram_top = MACHINE(spapr)->device_memory->base +
memory_region_size(&MACHINE(spapr)->device_memory->mr);
}
phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
if (index > max_index) {
error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
max_index);
return;
}
*buid = base_buid + index;
for (i = 0; i < n_dma; ++i) {
liobns[i] = SPAPR_PCI_LIOBN(index, i);
}
phb_base = phb0_base + index * phb_spacing;
*pio = phb_base + pio_offset;
*mmio32 = phb_base + mmio_offset;
/*
* We don't set the 64-bit MMIO window, relying on the PHB's
* fallback behaviour of automatically splitting a large "32-bit"
* window into contiguous 32-bit and 64-bit windows
*/
*nv2gpa = 0;
*nv2atsd = 0;
}
static void spapr_machine_2_7_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
{ TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
};
spapr_machine_2_8_class_options(mc);
mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
mc->default_machine_opts = "modern-hotplug-events=off";
compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
smc->phb_placement = phb_placement_2_7;
}
DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
/*
* pseries-2.6
*/
static void spapr_machine_2_6_class_options(MachineClass *mc)
{
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
};
spapr_machine_2_7_class_options(mc);
mc->has_hotpluggable_cpus = false;
compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
/*
* pseries-2.5
*/
static void spapr_machine_2_5_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
static GlobalProperty compat[] = {
{ "spapr-vlan", "use-rx-buffer-pools", "off" },
};
spapr_machine_2_6_class_options(mc);
smc->use_ohci_by_default = true;
compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
/*
* pseries-2.4
*/
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
spapr_machine_2_5_class_options(mc);
smc->dr_lmb_enabled = false;
compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
}
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
/*
* pseries-2.3
*/
static void spapr_machine_2_3_class_options(MachineClass *mc)
{
static GlobalProperty compat[] = {
{ "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
};
spapr_machine_2_4_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
}
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
/*
* pseries-2.2
*/
static void spapr_machine_2_2_class_options(MachineClass *mc)
{
static GlobalProperty compat[] = {
{ TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
};
spapr_machine_2_3_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
}
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
/*
* pseries-2.1
*/
static void spapr_machine_2_1_class_options(MachineClass *mc)
{
spapr_machine_2_2_class_options(mc);
compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
}
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
static void spapr_machine_register_types(void)
{
type_register_static(&spapr_machine_info);
}
type_init(spapr_machine_register_types)