qemu/target/mips/op_helper.c
Aleksandar Markovic 14521a2c24 target/mips: Clean up op_helper.c
Mostly fix errors and warnings reported by 'checkpatch.pl -f'.

Reviewed-by: Aleksandar Rikalo <aleksandar.rikalo@rt-rk.com>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1571826227-10583-3-git-send-email-aleksandar.markovic@rt-rk.com>
2019-10-25 18:37:01 +02:00

5059 lines
169 KiB
C

/*
* MIPS emulation helpers for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "internal.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/memop.h"
#include "sysemu/kvm.h"
#include "fpu/softfloat.h"
/*****************************************************************************/
/* Exceptions processing helpers */
void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
int error_code)
{
do_raise_exception_err(env, exception, error_code, 0);
}
void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
{
do_raise_exception(env, exception, GETPC());
}
void helper_raise_exception_debug(CPUMIPSState *env)
{
do_raise_exception(env, EXCP_DEBUG, 0);
}
static void raise_exception(CPUMIPSState *env, uint32_t exception)
{
do_raise_exception(env, exception, 0);
}
#if defined(CONFIG_USER_ONLY)
#define HELPER_LD(name, insn, type) \
static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
int mem_idx, uintptr_t retaddr) \
{ \
return (type) cpu_##insn##_data_ra(env, addr, retaddr); \
}
#else
#define HELPER_LD(name, insn, type) \
static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
int mem_idx, uintptr_t retaddr) \
{ \
switch (mem_idx) { \
case 0: return (type) cpu_##insn##_kernel_ra(env, addr, retaddr); \
case 1: return (type) cpu_##insn##_super_ra(env, addr, retaddr); \
default: \
case 2: return (type) cpu_##insn##_user_ra(env, addr, retaddr); \
case 3: return (type) cpu_##insn##_error_ra(env, addr, retaddr); \
} \
}
#endif
HELPER_LD(lw, ldl, int32_t)
#if defined(TARGET_MIPS64)
HELPER_LD(ld, ldq, int64_t)
#endif
#undef HELPER_LD
#if defined(CONFIG_USER_ONLY)
#define HELPER_ST(name, insn, type) \
static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
type val, int mem_idx, uintptr_t retaddr) \
{ \
cpu_##insn##_data_ra(env, addr, val, retaddr); \
}
#else
#define HELPER_ST(name, insn, type) \
static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
type val, int mem_idx, uintptr_t retaddr) \
{ \
switch (mem_idx) { \
case 0: \
cpu_##insn##_kernel_ra(env, addr, val, retaddr); \
break; \
case 1: \
cpu_##insn##_super_ra(env, addr, val, retaddr); \
break; \
default: \
case 2: \
cpu_##insn##_user_ra(env, addr, val, retaddr); \
break; \
case 3: \
cpu_##insn##_error_ra(env, addr, val, retaddr); \
break; \
} \
}
#endif
HELPER_ST(sb, stb, uint8_t)
HELPER_ST(sw, stl, uint32_t)
#if defined(TARGET_MIPS64)
HELPER_ST(sd, stq, uint64_t)
#endif
#undef HELPER_ST
/* 64 bits arithmetic for 32 bits hosts */
static inline uint64_t get_HILO(CPUMIPSState *env)
{
return ((uint64_t)(env->active_tc.HI[0]) << 32) |
(uint32_t)env->active_tc.LO[0];
}
static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
{
env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
return env->active_tc.HI[0] = (int32_t)(HILO >> 32);
}
static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
{
target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
return tmp;
}
/* Multiplication variants of the vr54xx. */
target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2));
}
target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
(uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
}
target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
}
target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
(int64_t)(int32_t)arg2);
}
target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
target_ulong arg2)
{
return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
(uint64_t)(uint32_t)arg2);
}
static inline target_ulong bitswap(target_ulong v)
{
v = ((v >> 1) & (target_ulong)0x5555555555555555ULL) |
((v & (target_ulong)0x5555555555555555ULL) << 1);
v = ((v >> 2) & (target_ulong)0x3333333333333333ULL) |
((v & (target_ulong)0x3333333333333333ULL) << 2);
v = ((v >> 4) & (target_ulong)0x0F0F0F0F0F0F0F0FULL) |
((v & (target_ulong)0x0F0F0F0F0F0F0F0FULL) << 4);
return v;
}
#ifdef TARGET_MIPS64
target_ulong helper_dbitswap(target_ulong rt)
{
return bitswap(rt);
}
#endif
target_ulong helper_bitswap(target_ulong rt)
{
return (int32_t)bitswap(rt);
}
target_ulong helper_rotx(target_ulong rs, uint32_t shift, uint32_t shiftx,
uint32_t stripe)
{
int i;
uint64_t tmp0 = ((uint64_t)rs) << 32 | ((uint64_t)rs & 0xffffffff);
uint64_t tmp1 = tmp0;
for (i = 0; i <= 46; i++) {
int s;
if (i & 0x8) {
s = shift;
} else {
s = shiftx;
}
if (stripe != 0 && !(i & 0x4)) {
s = ~s;
}
if (s & 0x10) {
if (tmp0 & (1LL << (i + 16))) {
tmp1 |= 1LL << i;
} else {
tmp1 &= ~(1LL << i);
}
}
}
uint64_t tmp2 = tmp1;
for (i = 0; i <= 38; i++) {
int s;
if (i & 0x4) {
s = shift;
} else {
s = shiftx;
}
if (s & 0x8) {
if (tmp1 & (1LL << (i + 8))) {
tmp2 |= 1LL << i;
} else {
tmp2 &= ~(1LL << i);
}
}
}
uint64_t tmp3 = tmp2;
for (i = 0; i <= 34; i++) {
int s;
if (i & 0x2) {
s = shift;
} else {
s = shiftx;
}
if (s & 0x4) {
if (tmp2 & (1LL << (i + 4))) {
tmp3 |= 1LL << i;
} else {
tmp3 &= ~(1LL << i);
}
}
}
uint64_t tmp4 = tmp3;
for (i = 0; i <= 32; i++) {
int s;
if (i & 0x1) {
s = shift;
} else {
s = shiftx;
}
if (s & 0x2) {
if (tmp3 & (1LL << (i + 2))) {
tmp4 |= 1LL << i;
} else {
tmp4 &= ~(1LL << i);
}
}
}
uint64_t tmp5 = tmp4;
for (i = 0; i <= 31; i++) {
int s;
s = shift;
if (s & 0x1) {
if (tmp4 & (1LL << (i + 1))) {
tmp5 |= 1LL << i;
} else {
tmp5 &= ~(1LL << i);
}
}
}
return (int64_t)(int32_t)(uint32_t)tmp5;
}
#ifndef CONFIG_USER_ONLY
static inline hwaddr do_translate_address(CPUMIPSState *env,
target_ulong address,
int rw, uintptr_t retaddr)
{
hwaddr paddr;
CPUState *cs = env_cpu(env);
paddr = cpu_mips_translate_address(env, address, rw);
if (paddr == -1LL) {
cpu_loop_exit_restore(cs, retaddr);
} else {
return paddr;
}
}
#define HELPER_LD_ATOMIC(name, insn, almask) \
target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
{ \
if (arg & almask) { \
if (!(env->hflags & MIPS_HFLAG_DM)) { \
env->CP0_BadVAddr = arg; \
} \
do_raise_exception(env, EXCP_AdEL, GETPC()); \
} \
env->CP0_LLAddr = do_translate_address(env, arg, 0, GETPC()); \
env->lladdr = arg; \
env->llval = do_##insn(env, arg, mem_idx, GETPC()); \
return env->llval; \
}
HELPER_LD_ATOMIC(ll, lw, 0x3)
#ifdef TARGET_MIPS64
HELPER_LD_ATOMIC(lld, ld, 0x7)
#endif
#undef HELPER_LD_ATOMIC
#endif
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK(v) ((v) & 3)
#define GET_OFFSET(addr, offset) (addr + (offset))
#else
#define GET_LMASK(v) (((v) & 3) ^ 3)
#define GET_OFFSET(addr, offset) (addr - (offset))
#endif
void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx, GETPC());
if (GET_LMASK(arg2) <= 2) {
do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx,
GETPC());
}
if (GET_LMASK(arg2) <= 1) {
do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx,
GETPC());
}
if (GET_LMASK(arg2) == 0) {
do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx,
GETPC());
}
}
void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
if (GET_LMASK(arg2) >= 1) {
do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
GETPC());
}
if (GET_LMASK(arg2) >= 2) {
do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
GETPC());
}
if (GET_LMASK(arg2) == 3) {
do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
GETPC());
}
}
#if defined(TARGET_MIPS64)
/*
* "half" load and stores. We must do the memory access inline,
* or fault handling won't work.
*/
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK64(v) ((v) & 7)
#else
#define GET_LMASK64(v) (((v) & 7) ^ 7)
#endif
void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx, GETPC());
if (GET_LMASK64(arg2) <= 6) {
do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) <= 5) {
do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) <= 4) {
do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) <= 3) {
do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) <= 2) {
do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) <= 1) {
do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) <= 0) {
do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx,
GETPC());
}
}
void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
int mem_idx)
{
do_sb(env, arg2, (uint8_t)arg1, mem_idx, GETPC());
if (GET_LMASK64(arg2) >= 1) {
do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) >= 2) {
do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) >= 3) {
do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) >= 4) {
do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) >= 5) {
do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) >= 6) {
do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx,
GETPC());
}
if (GET_LMASK64(arg2) == 7) {
do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx,
GETPC());
}
}
#endif /* TARGET_MIPS64 */
static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] =
(target_long)do_lw(env, addr, mem_idx, GETPC());
addr += 4;
}
}
if (do_r31) {
env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx,
GETPC());
}
}
void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
GETPC());
addr += 4;
}
}
if (do_r31) {
do_sw(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
}
}
#if defined(TARGET_MIPS64)
void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx,
GETPC());
addr += 8;
}
}
if (do_r31) {
env->active_tc.gpr[31] = do_ld(env, addr, mem_idx, GETPC());
}
}
void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE(multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx,
GETPC());
addr += 8;
}
}
if (do_r31) {
do_sd(env, addr, env->active_tc.gpr[31], mem_idx, GETPC());
}
}
#endif
#ifndef CONFIG_USER_ONLY
/* SMP helpers. */
static bool mips_vpe_is_wfi(MIPSCPU *c)
{
CPUState *cpu = CPU(c);
CPUMIPSState *env = &c->env;
/*
* If the VPE is halted but otherwise active, it means it's waiting for
* an interrupt.\
*/
return cpu->halted && mips_vpe_active(env);
}
static bool mips_vp_is_wfi(MIPSCPU *c)
{
CPUState *cpu = CPU(c);
CPUMIPSState *env = &c->env;
return cpu->halted && mips_vp_active(env);
}
static inline void mips_vpe_wake(MIPSCPU *c)
{
/*
* Don't set ->halted = 0 directly, let it be done via cpu_has_work
* because there might be other conditions that state that c should
* be sleeping.
*/
qemu_mutex_lock_iothread();
cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
qemu_mutex_unlock_iothread();
}
static inline void mips_vpe_sleep(MIPSCPU *cpu)
{
CPUState *cs = CPU(cpu);
/*
* The VPE was shut off, really go to bed.
* Reset any old _WAKE requests.
*/
cs->halted = 1;
cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
}
static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
{
CPUMIPSState *c = &cpu->env;
/* FIXME: TC reschedule. */
if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
mips_vpe_wake(cpu);
}
}
static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
{
CPUMIPSState *c = &cpu->env;
/* FIXME: TC reschedule. */
if (!mips_vpe_active(c)) {
mips_vpe_sleep(cpu);
}
}
/**
* mips_cpu_map_tc:
* @env: CPU from which mapping is performed.
* @tc: Should point to an int with the value of the global TC index.
*
* This function will transform @tc into a local index within the
* returned #CPUMIPSState.
*/
/*
* FIXME: This code assumes that all VPEs have the same number of TCs,
* which depends on runtime setup. Can probably be fixed by
* walking the list of CPUMIPSStates.
*/
static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
{
MIPSCPU *cpu;
CPUState *cs;
CPUState *other_cs;
int vpe_idx;
int tc_idx = *tc;
if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
/* Not allowed to address other CPUs. */
*tc = env->current_tc;
return env;
}
cs = env_cpu(env);
vpe_idx = tc_idx / cs->nr_threads;
*tc = tc_idx % cs->nr_threads;
other_cs = qemu_get_cpu(vpe_idx);
if (other_cs == NULL) {
return env;
}
cpu = MIPS_CPU(other_cs);
return &cpu->env;
}
/*
* The per VPE CP0_Status register shares some fields with the per TC
* CP0_TCStatus registers. These fields are wired to the same registers,
* so changes to either of them should be reflected on both registers.
*
* Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
*
* These helper call synchronizes the regs for a given cpu.
*/
/*
* Called for updates to CP0_Status. Defined in "cpu.h" for gdbstub.c.
* static inline void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu,
* int tc);
*/
/* Called for updates to CP0_TCStatus. */
static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
target_ulong v)
{
uint32_t status;
uint32_t tcu, tmx, tasid, tksu;
uint32_t mask = ((1U << CP0St_CU3)
| (1 << CP0St_CU2)
| (1 << CP0St_CU1)
| (1 << CP0St_CU0)
| (1 << CP0St_MX)
| (3 << CP0St_KSU));
tcu = (v >> CP0TCSt_TCU0) & 0xf;
tmx = (v >> CP0TCSt_TMX) & 0x1;
tasid = v & cpu->CP0_EntryHi_ASID_mask;
tksu = (v >> CP0TCSt_TKSU) & 0x3;
status = tcu << CP0St_CU0;
status |= tmx << CP0St_MX;
status |= tksu << CP0St_KSU;
cpu->CP0_Status &= ~mask;
cpu->CP0_Status |= status;
/* Sync the TASID with EntryHi. */
cpu->CP0_EntryHi &= ~cpu->CP0_EntryHi_ASID_mask;
cpu->CP0_EntryHi |= tasid;
compute_hflags(cpu);
}
/* Called for updates to CP0_EntryHi. */
static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
{
int32_t *tcst;
uint32_t asid, v = cpu->CP0_EntryHi;
asid = v & cpu->CP0_EntryHi_ASID_mask;
if (tc == cpu->current_tc) {
tcst = &cpu->active_tc.CP0_TCStatus;
} else {
tcst = &cpu->tcs[tc].CP0_TCStatus;
}
*tcst &= ~cpu->CP0_EntryHi_ASID_mask;
*tcst |= asid;
}
/* CP0 helpers */
target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
{
return env->mvp->CP0_MVPControl;
}
target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
{
return env->mvp->CP0_MVPConf0;
}
target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
{
return env->mvp->CP0_MVPConf1;
}
target_ulong helper_mfc0_random(CPUMIPSState *env)
{
return (int32_t)cpu_mips_get_random(env);
}
target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
{
return env->active_tc.CP0_TCStatus;
}
target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.CP0_TCStatus;
} else {
return other->tcs[other_tc].CP0_TCStatus;
}
}
target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
{
return env->active_tc.CP0_TCBind;
}
target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.CP0_TCBind;
} else {
return other->tcs[other_tc].CP0_TCBind;
}
}
target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
{
return env->active_tc.PC;
}
target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.PC;
} else {
return other->tcs[other_tc].PC;
}
}
target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
{
return env->active_tc.CP0_TCHalt;
}
target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.CP0_TCHalt;
} else {
return other->tcs[other_tc].CP0_TCHalt;
}
}
target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
{
return env->active_tc.CP0_TCContext;
}
target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.CP0_TCContext;
} else {
return other->tcs[other_tc].CP0_TCContext;
}
}
target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
{
return env->active_tc.CP0_TCSchedule;
}
target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.CP0_TCSchedule;
} else {
return other->tcs[other_tc].CP0_TCSchedule;
}
}
target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
{
return env->active_tc.CP0_TCScheFBack;
}
target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.CP0_TCScheFBack;
} else {
return other->tcs[other_tc].CP0_TCScheFBack;
}
}
target_ulong helper_mfc0_count(CPUMIPSState *env)
{
return (int32_t)cpu_mips_get_count(env);
}
target_ulong helper_mfc0_saar(CPUMIPSState *env)
{
if ((env->CP0_SAARI & 0x3f) < 2) {
return (int32_t) env->CP0_SAAR[env->CP0_SAARI & 0x3f];
}
return 0;
}
target_ulong helper_mfhc0_saar(CPUMIPSState *env)
{
if ((env->CP0_SAARI & 0x3f) < 2) {
return env->CP0_SAAR[env->CP0_SAARI & 0x3f] >> 32;
}
return 0;
}
target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_EntryHi;
}
target_ulong helper_mftc0_cause(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tccause;
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
tccause = other->CP0_Cause;
} else {
tccause = other->CP0_Cause;
}
return tccause;
}
target_ulong helper_mftc0_status(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_Status;
}
target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
{
return (int32_t)(env->CP0_LLAddr >> env->CP0_LLAddr_shift);
}
target_ulong helper_mfc0_maar(CPUMIPSState *env)
{
return (int32_t) env->CP0_MAAR[env->CP0_MAARI];
}
target_ulong helper_mfhc0_maar(CPUMIPSState *env)
{
return env->CP0_MAAR[env->CP0_MAARI] >> 32;
}
target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
{
return (int32_t)env->CP0_WatchLo[sel];
}
target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
{
return env->CP0_WatchHi[sel];
}
target_ulong helper_mfc0_debug(CPUMIPSState *env)
{
target_ulong t0 = env->CP0_Debug;
if (env->hflags & MIPS_HFLAG_DM) {
t0 |= 1 << CP0DB_DM;
}
return t0;
}
target_ulong helper_mftc0_debug(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tcstatus;
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
tcstatus = other->active_tc.CP0_Debug_tcstatus;
} else {
tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
}
/* XXX: Might be wrong, check with EJTAG spec. */
return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
#if defined(TARGET_MIPS64)
target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
{
return env->active_tc.PC;
}
target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
{
return env->active_tc.CP0_TCHalt;
}
target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
{
return env->active_tc.CP0_TCContext;
}
target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
{
return env->active_tc.CP0_TCSchedule;
}
target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
{
return env->active_tc.CP0_TCScheFBack;
}
target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
{
return env->CP0_LLAddr >> env->CP0_LLAddr_shift;
}
target_ulong helper_dmfc0_maar(CPUMIPSState *env)
{
return env->CP0_MAAR[env->CP0_MAARI];
}
target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
{
return env->CP0_WatchLo[sel];
}
target_ulong helper_dmfc0_saar(CPUMIPSState *env)
{
if ((env->CP0_SAARI & 0x3f) < 2) {
return env->CP0_SAAR[env->CP0_SAARI & 0x3f];
}
return 0;
}
#endif /* TARGET_MIPS64 */
void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
{
uint32_t index_p = env->CP0_Index & 0x80000000;
uint32_t tlb_index = arg1 & 0x7fffffff;
if (tlb_index < env->tlb->nb_tlb) {
if (env->insn_flags & ISA_MIPS32R6) {
index_p |= arg1 & 0x80000000;
}
env->CP0_Index = index_p | tlb_index;
}
}
void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
(1 << CP0MVPCo_EVP);
}
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) {
mask |= (1 << CP0MVPCo_STLB);
}
newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
/* TODO: Enable/disable shared TLB, enable/disable VPEs. */
env->mvp->CP0_MVPControl = newval;
}
void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask;
uint32_t newval;
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
/*
* Yield scheduler intercept not implemented.
* Gating storage scheduler intercept not implemented.
*/
/* TODO: Enable/disable TCs. */
env->CP0_VPEControl = newval;
}
void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
uint32_t mask;
uint32_t newval;
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
/* TODO: Enable/disable TCs. */
other->CP0_VPEControl = newval;
}
target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
/* FIXME: Mask away return zero on read bits. */
return other->CP0_VPEControl;
}
target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_VPEConf0;
}
void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA)) {
mask |= (0xff << CP0VPEC0_XTC);
}
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
}
newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
/* TODO: TC exclusive handling due to ERL/EXL. */
env->CP0_VPEConf0 = newval;
}
void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
uint32_t mask = 0;
uint32_t newval;
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
/* TODO: TC exclusive handling due to ERL/EXL. */
other->CP0_VPEConf0 = newval;
}
void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
(0xff << CP0VPEC1_NCP1);
newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
/* UDI not implemented. */
/* CP2 not implemented. */
/* TODO: Handle FPU (CP1) binding. */
env->CP0_VPEConf1 = newval;
}
void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
{
/* Yield qualifier inputs not implemented. */
env->CP0_YQMask = 0x00000000;
}
void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_VPEOpt = arg1 & 0x0000ffff;
}
#define MTC0_ENTRYLO_MASK(env) ((env->PAMask >> 6) & 0x3FFFFFFF)
void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
{
/* 1k pages not implemented */
target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
env->CP0_EntryLo0 = (arg1 & MTC0_ENTRYLO_MASK(env))
| (rxi << (CP0EnLo_XI - 30));
}
#if defined(TARGET_MIPS64)
#define DMTC0_ENTRYLO_MASK(env) (env->PAMask >> 6)
void helper_dmtc0_entrylo0(CPUMIPSState *env, uint64_t arg1)
{
uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
env->CP0_EntryLo0 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
}
#endif
void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = env->CP0_TCStatus_rw_bitmask;
uint32_t newval;
newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
env->active_tc.CP0_TCStatus = newval;
sync_c0_tcstatus(env, env->current_tc, newval);
}
void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.CP0_TCStatus = arg1;
} else {
other->tcs[other_tc].CP0_TCStatus = arg1;
}
sync_c0_tcstatus(other, other_tc, arg1);
}
void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) {
mask |= (1 << CP0TCBd_CurVPE);
}
newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
env->active_tc.CP0_TCBind = newval;
}
void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC)) {
mask |= (1 << CP0TCBd_CurVPE);
}
if (other_tc == other->current_tc) {
newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
other->active_tc.CP0_TCBind = newval;
} else {
newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
other->tcs[other_tc].CP0_TCBind = newval;
}
}
void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
{
env->active_tc.PC = arg1;
env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
env->CP0_LLAddr = 0;
env->lladdr = 0;
/* MIPS16 not implemented. */
}
void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.PC = arg1;
other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
other->CP0_LLAddr = 0;
other->lladdr = 0;
/* MIPS16 not implemented. */
} else {
other->tcs[other_tc].PC = arg1;
other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
other->CP0_LLAddr = 0;
other->lladdr = 0;
/* MIPS16 not implemented. */
}
}
void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
{
MIPSCPU *cpu = env_archcpu(env);
env->active_tc.CP0_TCHalt = arg1 & 0x1;
/* TODO: Halt TC / Restart (if allocated+active) TC. */
if (env->active_tc.CP0_TCHalt & 1) {
mips_tc_sleep(cpu, env->current_tc);
} else {
mips_tc_wake(cpu, env->current_tc);
}
}
void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
MIPSCPU *other_cpu = env_archcpu(other);
/* TODO: Halt TC / Restart (if allocated+active) TC. */
if (other_tc == other->current_tc) {
other->active_tc.CP0_TCHalt = arg1;
} else {
other->tcs[other_tc].CP0_TCHalt = arg1;
}
if (arg1 & 1) {
mips_tc_sleep(other_cpu, other_tc);
} else {
mips_tc_wake(other_cpu, other_tc);
}
}
void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
{
env->active_tc.CP0_TCContext = arg1;
}
void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.CP0_TCContext = arg1;
} else {
other->tcs[other_tc].CP0_TCContext = arg1;
}
}
void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
{
env->active_tc.CP0_TCSchedule = arg1;
}
void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.CP0_TCSchedule = arg1;
} else {
other->tcs[other_tc].CP0_TCSchedule = arg1;
}
}
void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
{
env->active_tc.CP0_TCScheFBack = arg1;
}
void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.CP0_TCScheFBack = arg1;
} else {
other->tcs[other_tc].CP0_TCScheFBack = arg1;
}
}
void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
{
/* 1k pages not implemented */
target_ulong rxi = arg1 & (env->CP0_PageGrain & (3u << CP0PG_XIE));
env->CP0_EntryLo1 = (arg1 & MTC0_ENTRYLO_MASK(env))
| (rxi << (CP0EnLo_XI - 30));
}
#if defined(TARGET_MIPS64)
void helper_dmtc0_entrylo1(CPUMIPSState *env, uint64_t arg1)
{
uint64_t rxi = arg1 & ((env->CP0_PageGrain & (3ull << CP0PG_XIE)) << 32);
env->CP0_EntryLo1 = (arg1 & DMTC0_ENTRYLO_MASK(env)) | rxi;
}
#endif
void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
}
void update_pagemask(CPUMIPSState *env, target_ulong arg1, int32_t *pagemask)
{
uint64_t mask = arg1 >> (TARGET_PAGE_BITS + 1);
if (!(env->insn_flags & ISA_MIPS32R6) || (arg1 == ~0) ||
(mask == 0x0000 || mask == 0x0003 || mask == 0x000F ||
mask == 0x003F || mask == 0x00FF || mask == 0x03FF ||
mask == 0x0FFF || mask == 0x3FFF || mask == 0xFFFF)) {
env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
}
}
void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
{
update_pagemask(env, arg1, &env->CP0_PageMask);
}
void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
{
/* SmartMIPS not implemented */
/* 1k pages not implemented */
env->CP0_PageGrain = (arg1 & env->CP0_PageGrain_rw_bitmask) |
(env->CP0_PageGrain & ~env->CP0_PageGrain_rw_bitmask);
compute_hflags(env);
restore_pamask(env);
}
void helper_mtc0_segctl0(CPUMIPSState *env, target_ulong arg1)
{
CPUState *cs = env_cpu(env);
env->CP0_SegCtl0 = arg1 & CP0SC0_MASK;
tlb_flush(cs);
}
void helper_mtc0_segctl1(CPUMIPSState *env, target_ulong arg1)
{
CPUState *cs = env_cpu(env);
env->CP0_SegCtl1 = arg1 & CP0SC1_MASK;
tlb_flush(cs);
}
void helper_mtc0_segctl2(CPUMIPSState *env, target_ulong arg1)
{
CPUState *cs = env_cpu(env);
env->CP0_SegCtl2 = arg1 & CP0SC2_MASK;
tlb_flush(cs);
}
void helper_mtc0_pwfield(CPUMIPSState *env, target_ulong arg1)
{
#if defined(TARGET_MIPS64)
uint64_t mask = 0x3F3FFFFFFFULL;
uint32_t old_ptei = (env->CP0_PWField >> CP0PF_PTEI) & 0x3FULL;
uint32_t new_ptei = (arg1 >> CP0PF_PTEI) & 0x3FULL;
if ((env->insn_flags & ISA_MIPS32R6)) {
if (((arg1 >> CP0PF_BDI) & 0x3FULL) < 12) {
mask &= ~(0x3FULL << CP0PF_BDI);
}
if (((arg1 >> CP0PF_GDI) & 0x3FULL) < 12) {
mask &= ~(0x3FULL << CP0PF_GDI);
}
if (((arg1 >> CP0PF_UDI) & 0x3FULL) < 12) {
mask &= ~(0x3FULL << CP0PF_UDI);
}
if (((arg1 >> CP0PF_MDI) & 0x3FULL) < 12) {
mask &= ~(0x3FULL << CP0PF_MDI);
}
if (((arg1 >> CP0PF_PTI) & 0x3FULL) < 12) {
mask &= ~(0x3FULL << CP0PF_PTI);
}
}
env->CP0_PWField = arg1 & mask;
if ((new_ptei >= 32) ||
((env->insn_flags & ISA_MIPS32R6) &&
(new_ptei == 0 || new_ptei == 1))) {
env->CP0_PWField = (env->CP0_PWField & ~0x3FULL) |
(old_ptei << CP0PF_PTEI);
}
#else
uint32_t mask = 0x3FFFFFFF;
uint32_t old_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
uint32_t new_ptew = (arg1 >> CP0PF_PTEW) & 0x3F;
if ((env->insn_flags & ISA_MIPS32R6)) {
if (((arg1 >> CP0PF_GDW) & 0x3F) < 12) {
mask &= ~(0x3F << CP0PF_GDW);
}
if (((arg1 >> CP0PF_UDW) & 0x3F) < 12) {
mask &= ~(0x3F << CP0PF_UDW);
}
if (((arg1 >> CP0PF_MDW) & 0x3F) < 12) {
mask &= ~(0x3F << CP0PF_MDW);
}
if (((arg1 >> CP0PF_PTW) & 0x3F) < 12) {
mask &= ~(0x3F << CP0PF_PTW);
}
}
env->CP0_PWField = arg1 & mask;
if ((new_ptew >= 32) ||
((env->insn_flags & ISA_MIPS32R6) &&
(new_ptew == 0 || new_ptew == 1))) {
env->CP0_PWField = (env->CP0_PWField & ~0x3F) |
(old_ptew << CP0PF_PTEW);
}
#endif
}
void helper_mtc0_pwsize(CPUMIPSState *env, target_ulong arg1)
{
#if defined(TARGET_MIPS64)
env->CP0_PWSize = arg1 & 0x3F7FFFFFFFULL;
#else
env->CP0_PWSize = arg1 & 0x3FFFFFFF;
#endif
}
void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
{
if (env->insn_flags & ISA_MIPS32R6) {
if (arg1 < env->tlb->nb_tlb) {
env->CP0_Wired = arg1;
}
} else {
env->CP0_Wired = arg1 % env->tlb->nb_tlb;
}
}
void helper_mtc0_pwctl(CPUMIPSState *env, target_ulong arg1)
{
#if defined(TARGET_MIPS64)
/* PWEn = 0. Hardware page table walking is not implemented. */
env->CP0_PWCtl = (env->CP0_PWCtl & 0x000000C0) | (arg1 & 0x5C00003F);
#else
env->CP0_PWCtl = (arg1 & 0x800000FF);
#endif
}
void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
}
void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
}
void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
}
void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
}
void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
}
void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = 0x0000000F;
if ((env->CP0_Config1 & (1 << CP0C1_PC)) &&
(env->insn_flags & ISA_MIPS32R6)) {
mask |= (1 << 4);
}
if (env->insn_flags & ISA_MIPS32R6) {
mask |= (1 << 5);
}
if (env->CP0_Config3 & (1 << CP0C3_ULRI)) {
mask |= (1 << 29);
if (arg1 & (1 << 29)) {
env->hflags |= MIPS_HFLAG_HWRENA_ULR;
} else {
env->hflags &= ~MIPS_HFLAG_HWRENA_ULR;
}
}
env->CP0_HWREna = arg1 & mask;
}
void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
{
cpu_mips_store_count(env, arg1);
}
void helper_mtc0_saari(CPUMIPSState *env, target_ulong arg1)
{
uint32_t target = arg1 & 0x3f;
if (target <= 1) {
env->CP0_SAARI = target;
}
}
void helper_mtc0_saar(CPUMIPSState *env, target_ulong arg1)
{
uint32_t target = env->CP0_SAARI & 0x3f;
if (target < 2) {
env->CP0_SAAR[target] = arg1 & 0x00000ffffffff03fULL;
switch (target) {
case 0:
if (env->itu) {
itc_reconfigure(env->itu);
}
break;
}
}
}
void helper_mthc0_saar(CPUMIPSState *env, target_ulong arg1)
{
uint32_t target = env->CP0_SAARI & 0x3f;
if (target < 2) {
env->CP0_SAAR[target] =
(((uint64_t) arg1 << 32) & 0x00000fff00000000ULL) |
(env->CP0_SAAR[target] & 0x00000000ffffffffULL);
switch (target) {
case 0:
if (env->itu) {
itc_reconfigure(env->itu);
}
break;
}
}
}
void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
{
target_ulong old, val, mask;
mask = (TARGET_PAGE_MASK << 1) | env->CP0_EntryHi_ASID_mask;
if (((env->CP0_Config4 >> CP0C4_IE) & 0x3) >= 2) {
mask |= 1 << CP0EnHi_EHINV;
}
/* 1k pages not implemented */
#if defined(TARGET_MIPS64)
if (env->insn_flags & ISA_MIPS32R6) {
int entryhi_r = extract64(arg1, 62, 2);
int config0_at = extract32(env->CP0_Config0, 13, 2);
bool no_supervisor = (env->CP0_Status_rw_bitmask & 0x8) == 0;
if ((entryhi_r == 2) ||
(entryhi_r == 1 && (no_supervisor || config0_at == 1))) {
/* skip EntryHi.R field if new value is reserved */
mask &= ~(0x3ull << 62);
}
}
mask &= env->SEGMask;
#endif
old = env->CP0_EntryHi;
val = (arg1 & mask) | (old & ~mask);
env->CP0_EntryHi = val;
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
sync_c0_entryhi(env, env->current_tc);
}
/* If the ASID changes, flush qemu's TLB. */
if ((old & env->CP0_EntryHi_ASID_mask) !=
(val & env->CP0_EntryHi_ASID_mask)) {
tlb_flush(env_cpu(env));
}
}
void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
other->CP0_EntryHi = arg1;
sync_c0_entryhi(other, other_tc);
}
void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
{
cpu_mips_store_compare(env, arg1);
}
void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
{
uint32_t val, old;
old = env->CP0_Status;
cpu_mips_store_status(env, arg1);
val = env->CP0_Status;
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
old, old & env->CP0_Cause & CP0Ca_IP_mask,
val, val & env->CP0_Cause & CP0Ca_IP_mask,
env->CP0_Cause);
switch (cpu_mmu_index(env, false)) {
case 3:
qemu_log(", ERL\n");
break;
case MIPS_HFLAG_UM:
qemu_log(", UM\n");
break;
case MIPS_HFLAG_SM:
qemu_log(", SM\n");
break;
case MIPS_HFLAG_KM:
qemu_log("\n");
break;
default:
cpu_abort(env_cpu(env), "Invalid MMU mode!\n");
break;
}
}
}
void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t mask = env->CP0_Status_rw_bitmask & ~0xf1000018;
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
other->CP0_Status = (other->CP0_Status & ~mask) | (arg1 & mask);
sync_c0_status(env, other, other_tc);
}
void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
}
void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
{
uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
}
void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
{
cpu_mips_store_cause(env, arg1);
}
void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
cpu_mips_store_cause(other, arg1);
}
target_ulong helper_mftc0_epc(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_EPC;
}
target_ulong helper_mftc0_ebase(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
return other->CP0_EBase;
}
void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
{
target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
mask |= ~0x3FFFFFFF;
}
env->CP0_EBase = (env->CP0_EBase & ~mask) | (arg1 & mask);
}
void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
target_ulong mask = 0x3FFFF000 | env->CP0_EBaseWG_rw_bitmask;
if (arg1 & env->CP0_EBaseWG_rw_bitmask) {
mask |= ~0x3FFFFFFF;
}
other->CP0_EBase = (other->CP0_EBase & ~mask) | (arg1 & mask);
}
target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
switch (idx) {
case 0: return other->CP0_Config0;
case 1: return other->CP0_Config1;
case 2: return other->CP0_Config2;
case 3: return other->CP0_Config3;
/* 4 and 5 are reserved. */
case 6: return other->CP0_Config6;
case 7: return other->CP0_Config7;
default:
break;
}
return 0;
}
void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
}
void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
{
/* tertiary/secondary caches not implemented */
env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
}
void helper_mtc0_config3(CPUMIPSState *env, target_ulong arg1)
{
if (env->insn_flags & ASE_MICROMIPS) {
env->CP0_Config3 = (env->CP0_Config3 & ~(1 << CP0C3_ISA_ON_EXC)) |
(arg1 & (1 << CP0C3_ISA_ON_EXC));
}
}
void helper_mtc0_config4(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Config4 = (env->CP0_Config4 & (~env->CP0_Config4_rw_bitmask)) |
(arg1 & env->CP0_Config4_rw_bitmask);
}
void helper_mtc0_config5(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Config5 = (env->CP0_Config5 & (~env->CP0_Config5_rw_bitmask)) |
(arg1 & env->CP0_Config5_rw_bitmask);
compute_hflags(env);
}
void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
{
target_long mask = env->CP0_LLAddr_rw_bitmask;
arg1 = arg1 << env->CP0_LLAddr_shift;
env->CP0_LLAddr = (env->CP0_LLAddr & ~mask) | (arg1 & mask);
}
#define MTC0_MAAR_MASK(env) \
((0x1ULL << 63) | ((env->PAMask >> 4) & ~0xFFFull) | 0x3)
void helper_mtc0_maar(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_MAAR[env->CP0_MAARI] = arg1 & MTC0_MAAR_MASK(env);
}
void helper_mthc0_maar(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_MAAR[env->CP0_MAARI] =
(((uint64_t) arg1 << 32) & MTC0_MAAR_MASK(env)) |
(env->CP0_MAAR[env->CP0_MAARI] & 0x00000000ffffffffULL);
}
void helper_mtc0_maari(CPUMIPSState *env, target_ulong arg1)
{
int index = arg1 & 0x3f;
if (index == 0x3f) {
/*
* Software may write all ones to INDEX to determine the
* maximum value supported.
*/
env->CP0_MAARI = MIPS_MAAR_MAX - 1;
} else if (index < MIPS_MAAR_MAX) {
env->CP0_MAARI = index;
}
/*
* Other than the all ones, if the value written is not supported,
* then INDEX is unchanged from its previous value.
*/
}
void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
/*
* Watch exceptions for instructions, data loads, data stores
* not implemented.
*/
env->CP0_WatchLo[sel] = (arg1 & ~0x7);
}
void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int mask = 0x40000FF8 | (env->CP0_EntryHi_ASID_mask << CP0WH_ASID);
env->CP0_WatchHi[sel] = arg1 & mask;
env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
}
void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
{
target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
}
void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Framemask = arg1; /* XXX */
}
void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
if (arg1 & (1 << CP0DB_DM)) {
env->hflags |= MIPS_HFLAG_DM;
} else {
env->hflags &= ~MIPS_HFLAG_DM;
}
}
void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
/* XXX: Might be wrong, check with EJTAG spec. */
if (other_tc == other->current_tc) {
other->active_tc.CP0_Debug_tcstatus = val;
} else {
other->tcs[other_tc].CP0_Debug_tcstatus = val;
}
other->CP0_Debug = (other->CP0_Debug &
((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_Performance0 = arg1 & 0x000007ff;
}
void helper_mtc0_errctl(CPUMIPSState *env, target_ulong arg1)
{
int32_t wst = arg1 & (1 << CP0EC_WST);
int32_t spr = arg1 & (1 << CP0EC_SPR);
int32_t itc = env->itc_tag ? (arg1 & (1 << CP0EC_ITC)) : 0;
env->CP0_ErrCtl = wst | spr | itc;
if (itc && !wst && !spr) {
env->hflags |= MIPS_HFLAG_ITC_CACHE;
} else {
env->hflags &= ~MIPS_HFLAG_ITC_CACHE;
}
}
void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
{
if (env->hflags & MIPS_HFLAG_ITC_CACHE) {
/*
* If CACHE instruction is configured for ITC tags then make all
* CP0.TagLo bits writable. The actual write to ITC Configuration
* Tag will take care of the read-only bits.
*/
env->CP0_TagLo = arg1;
} else {
env->CP0_TagLo = arg1 & 0xFFFFFCF6;
}
}
void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_DataLo = arg1; /* XXX */
}
void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_TagHi = arg1; /* XXX */
}
void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
{
env->CP0_DataHi = arg1; /* XXX */
}
/* MIPS MT functions */
target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.gpr[sel];
} else {
return other->tcs[other_tc].gpr[sel];
}
}
target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.LO[sel];
} else {
return other->tcs[other_tc].LO[sel];
}
}
target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.HI[sel];
} else {
return other->tcs[other_tc].HI[sel];
}
}
target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.ACX[sel];
} else {
return other->tcs[other_tc].ACX[sel];
}
}
target_ulong helper_mftdsp(CPUMIPSState *env)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
return other->active_tc.DSPControl;
} else {
return other->tcs[other_tc].DSPControl;
}
}
void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.gpr[sel] = arg1;
} else {
other->tcs[other_tc].gpr[sel] = arg1;
}
}
void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.LO[sel] = arg1;
} else {
other->tcs[other_tc].LO[sel] = arg1;
}
}
void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.HI[sel] = arg1;
} else {
other->tcs[other_tc].HI[sel] = arg1;
}
}
void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.ACX[sel] = arg1;
} else {
other->tcs[other_tc].ACX[sel] = arg1;
}
}
void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
if (other_tc == other->current_tc) {
other->active_tc.DSPControl = arg1;
} else {
other->tcs[other_tc].DSPControl = arg1;
}
}
/* MIPS MT functions */
target_ulong helper_dmt(void)
{
/* TODO */
return 0;
}
target_ulong helper_emt(void)
{
/* TODO */
return 0;
}
target_ulong helper_dvpe(CPUMIPSState *env)
{
CPUState *other_cs = first_cpu;
target_ulong prev = env->mvp->CP0_MVPControl;
CPU_FOREACH(other_cs) {
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
/* Turn off all VPEs except the one executing the dvpe. */
if (&other_cpu->env != env) {
other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
mips_vpe_sleep(other_cpu);
}
}
return prev;
}
target_ulong helper_evpe(CPUMIPSState *env)
{
CPUState *other_cs = first_cpu;
target_ulong prev = env->mvp->CP0_MVPControl;
CPU_FOREACH(other_cs) {
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
if (&other_cpu->env != env
/* If the VPE is WFI, don't disturb its sleep. */
&& !mips_vpe_is_wfi(other_cpu)) {
/* Enable the VPE. */
other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
mips_vpe_wake(other_cpu); /* And wake it up. */
}
}
return prev;
}
#endif /* !CONFIG_USER_ONLY */
void helper_fork(target_ulong arg1, target_ulong arg2)
{
/*
* arg1 = rt, arg2 = rs
* TODO: store to TC register
*/
}
target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
{
target_long arg1 = arg;
if (arg1 < 0) {
/* No scheduling policy implemented. */
if (arg1 != -2) {
if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
do_raise_exception(env, EXCP_THREAD, GETPC());
}
}
} else if (arg1 == 0) {
if (0) {
/* TODO: TC underflow */
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
do_raise_exception(env, EXCP_THREAD, GETPC());
} else {
/* TODO: Deallocate TC */
}
} else if (arg1 > 0) {
/* Yield qualifier inputs not implemented. */
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
do_raise_exception(env, EXCP_THREAD, GETPC());
}
return env->CP0_YQMask;
}
/* R6 Multi-threading */
#ifndef CONFIG_USER_ONLY
target_ulong helper_dvp(CPUMIPSState *env)
{
CPUState *other_cs = first_cpu;
target_ulong prev = env->CP0_VPControl;
if (!((env->CP0_VPControl >> CP0VPCtl_DIS) & 1)) {
CPU_FOREACH(other_cs) {
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
/* Turn off all VPs except the one executing the dvp. */
if (&other_cpu->env != env) {
mips_vpe_sleep(other_cpu);
}
}
env->CP0_VPControl |= (1 << CP0VPCtl_DIS);
}
return prev;
}
target_ulong helper_evp(CPUMIPSState *env)
{
CPUState *other_cs = first_cpu;
target_ulong prev = env->CP0_VPControl;
if ((env->CP0_VPControl >> CP0VPCtl_DIS) & 1) {
CPU_FOREACH(other_cs) {
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
if ((&other_cpu->env != env) && !mips_vp_is_wfi(other_cpu)) {
/*
* If the VP is WFI, don't disturb its sleep.
* Otherwise, wake it up.
*/
mips_vpe_wake(other_cpu);
}
}
env->CP0_VPControl &= ~(1 << CP0VPCtl_DIS);
}
return prev;
}
#endif /* !CONFIG_USER_ONLY */
#ifndef CONFIG_USER_ONLY
/* TLB management */
static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
{
/* Discard entries from env->tlb[first] onwards. */
while (env->tlb->tlb_in_use > first) {
r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
}
}
static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
{
#if defined(TARGET_MIPS64)
return extract64(entrylo, 6, 54);
#else
return extract64(entrylo, 6, 24) | /* PFN */
(extract64(entrylo, 32, 32) << 24); /* PFNX */
#endif
}
static void r4k_fill_tlb(CPUMIPSState *env, int idx)
{
r4k_tlb_t *tlb;
uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
tlb = &env->tlb->mmu.r4k.tlb[idx];
if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
tlb->EHINV = 1;
return;
}
tlb->EHINV = 0;
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
tlb->VPN &= env->SEGMask;
#endif
tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
tlb->PageMask = env->CP0_PageMask;
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
}
void r4k_helper_tlbinv(CPUMIPSState *env)
{
int idx;
r4k_tlb_t *tlb;
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
tlb = &env->tlb->mmu.r4k.tlb[idx];
if (!tlb->G && tlb->ASID == ASID) {
tlb->EHINV = 1;
}
}
cpu_mips_tlb_flush(env);
}
void r4k_helper_tlbinvf(CPUMIPSState *env)
{
int idx;
for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
}
cpu_mips_tlb_flush(env);
}
void r4k_helper_tlbwi(CPUMIPSState *env)
{
r4k_tlb_t *tlb;
int idx;
target_ulong VPN;
uint16_t ASID;
bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
VPN &= env->SEGMask;
#endif
ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
V0 = (env->CP0_EntryLo0 & 2) != 0;
D0 = (env->CP0_EntryLo0 & 4) != 0;
XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
V1 = (env->CP0_EntryLo1 & 2) != 0;
D1 = (env->CP0_EntryLo1 & 4) != 0;
XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
/*
* Discard cached TLB entries, unless tlbwi is just upgrading access
* permissions on the current entry.
*/
if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
(!tlb->EHINV && EHINV) ||
(tlb->V0 && !V0) || (tlb->D0 && !D0) ||
(!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
(tlb->V1 && !V1) || (tlb->D1 && !D1) ||
(!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
}
r4k_invalidate_tlb(env, idx, 0);
r4k_fill_tlb(env, idx);
}
void r4k_helper_tlbwr(CPUMIPSState *env)
{
int r = cpu_mips_get_random(env);
r4k_invalidate_tlb(env, r, 1);
r4k_fill_tlb(env, r);
}
void r4k_helper_tlbp(CPUMIPSState *env)
{
r4k_tlb_t *tlb;
target_ulong mask;
target_ulong tag;
target_ulong VPN;
uint16_t ASID;
int i;
ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
for (i = 0; i < env->tlb->nb_tlb; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
/* TLB match */
env->CP0_Index = i;
break;
}
}
if (i == env->tlb->nb_tlb) {
/* No match. Discard any shadow entries, if any of them match. */
for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
r4k_mips_tlb_flush_extra(env, i);
break;
}
}
env->CP0_Index |= 0x80000000;
}
}
static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
{
#if defined(TARGET_MIPS64)
return tlb_pfn << 6;
#else
return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
(extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
#endif
}
void r4k_helper_tlbr(CPUMIPSState *env)
{
r4k_tlb_t *tlb;
uint16_t ASID;
int idx;
ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
/* If this will change the current ASID, flush qemu's TLB. */
if (ASID != tlb->ASID) {
cpu_mips_tlb_flush(env);
}
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
if (tlb->EHINV) {
env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
env->CP0_PageMask = 0;
env->CP0_EntryLo0 = 0;
env->CP0_EntryLo1 = 0;
} else {
env->CP0_EntryHi = tlb->VPN | tlb->ASID;
env->CP0_PageMask = tlb->PageMask;
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
((uint64_t)tlb->RI0 << CP0EnLo_RI) |
((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
((uint64_t)tlb->RI1 << CP0EnLo_RI) |
((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
}
}
void helper_tlbwi(CPUMIPSState *env)
{
env->tlb->helper_tlbwi(env);
}
void helper_tlbwr(CPUMIPSState *env)
{
env->tlb->helper_tlbwr(env);
}
void helper_tlbp(CPUMIPSState *env)
{
env->tlb->helper_tlbp(env);
}
void helper_tlbr(CPUMIPSState *env)
{
env->tlb->helper_tlbr(env);
}
void helper_tlbinv(CPUMIPSState *env)
{
env->tlb->helper_tlbinv(env);
}
void helper_tlbinvf(CPUMIPSState *env)
{
env->tlb->helper_tlbinvf(env);
}
/* Specials */
target_ulong helper_di(CPUMIPSState *env)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 & ~(1 << CP0St_IE);
return t0;
}
target_ulong helper_ei(CPUMIPSState *env)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 | (1 << CP0St_IE);
return t0;
}
static void debug_pre_eret(CPUMIPSState *env)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL)) {
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
}
if (env->hflags & MIPS_HFLAG_DM) {
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
}
qemu_log("\n");
}
}
static void debug_post_eret(CPUMIPSState *env)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL)) {
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
}
if (env->hflags & MIPS_HFLAG_DM) {
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
}
switch (cpu_mmu_index(env, false)) {
case 3:
qemu_log(", ERL\n");
break;
case MIPS_HFLAG_UM:
qemu_log(", UM\n");
break;
case MIPS_HFLAG_SM:
qemu_log(", SM\n");
break;
case MIPS_HFLAG_KM:
qemu_log("\n");
break;
default:
cpu_abort(env_cpu(env), "Invalid MMU mode!\n");
break;
}
}
}
static void set_pc(CPUMIPSState *env, target_ulong error_pc)
{
env->active_tc.PC = error_pc & ~(target_ulong)1;
if (error_pc & 1) {
env->hflags |= MIPS_HFLAG_M16;
} else {
env->hflags &= ~(MIPS_HFLAG_M16);
}
}
static inline void exception_return(CPUMIPSState *env)
{
debug_pre_eret(env);
if (env->CP0_Status & (1 << CP0St_ERL)) {
set_pc(env, env->CP0_ErrorEPC);
env->CP0_Status &= ~(1 << CP0St_ERL);
} else {
set_pc(env, env->CP0_EPC);
env->CP0_Status &= ~(1 << CP0St_EXL);
}
compute_hflags(env);
debug_post_eret(env);
}
void helper_eret(CPUMIPSState *env)
{
exception_return(env);
env->CP0_LLAddr = 1;
env->lladdr = 1;
}
void helper_eretnc(CPUMIPSState *env)
{
exception_return(env);
}
void helper_deret(CPUMIPSState *env)
{
debug_pre_eret(env);
env->hflags &= ~MIPS_HFLAG_DM;
compute_hflags(env);
set_pc(env, env->CP0_DEPC);
debug_post_eret(env);
}
#endif /* !CONFIG_USER_ONLY */
static inline void check_hwrena(CPUMIPSState *env, int reg, uintptr_t pc)
{
if ((env->hflags & MIPS_HFLAG_CP0) || (env->CP0_HWREna & (1 << reg))) {
return;
}
do_raise_exception(env, EXCP_RI, pc);
}
target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
{
check_hwrena(env, 0, GETPC());
return env->CP0_EBase & 0x3ff;
}
target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
{
check_hwrena(env, 1, GETPC());
return env->SYNCI_Step;
}
target_ulong helper_rdhwr_cc(CPUMIPSState *env)
{
check_hwrena(env, 2, GETPC());
#ifdef CONFIG_USER_ONLY
return env->CP0_Count;
#else
return (int32_t)cpu_mips_get_count(env);
#endif
}
target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
{
check_hwrena(env, 3, GETPC());
return env->CCRes;
}
target_ulong helper_rdhwr_performance(CPUMIPSState *env)
{
check_hwrena(env, 4, GETPC());
return env->CP0_Performance0;
}
target_ulong helper_rdhwr_xnp(CPUMIPSState *env)
{
check_hwrena(env, 5, GETPC());
return (env->CP0_Config5 >> CP0C5_XNP) & 1;
}
void helper_pmon(CPUMIPSState *env, int function)
{
function /= 2;
switch (function) {
case 2: /* TODO: char inbyte(int waitflag); */
if (env->active_tc.gpr[4] == 0) {
env->active_tc.gpr[2] = -1;
}
/* Fall through */
case 11: /* TODO: char inbyte (void); */
env->active_tc.gpr[2] = -1;
break;
case 3:
case 12:
printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
break;
case 17:
break;
case 158:
{
unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
printf("%s", fmt);
}
break;
}
}
void helper_wait(CPUMIPSState *env)
{
CPUState *cs = env_cpu(env);
cs->halted = 1;
cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
/*
* Last instruction in the block, PC was updated before
* - no need to recover PC and icount.
*/
raise_exception(env, EXCP_HLT);
}
#if !defined(CONFIG_USER_ONLY)
void mips_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
int error_code = 0;
int excp;
if (!(env->hflags & MIPS_HFLAG_DM)) {
env->CP0_BadVAddr = addr;
}
if (access_type == MMU_DATA_STORE) {
excp = EXCP_AdES;
} else {
excp = EXCP_AdEL;
if (access_type == MMU_INST_FETCH) {
error_code |= EXCP_INST_NOTAVAIL;
}
}
do_raise_exception_err(env, excp, error_code, retaddr);
}
void mips_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
if (access_type == MMU_INST_FETCH) {
do_raise_exception(env, EXCP_IBE, retaddr);
} else {
do_raise_exception(env, EXCP_DBE, retaddr);
}
}
#endif /* !CONFIG_USER_ONLY */
/* Complex FPU operations which may need stack space. */
#define FLOAT_TWO32 make_float32(1 << 30)
#define FLOAT_TWO64 make_float64(1ULL << 62)
#define FP_TO_INT32_OVERFLOW 0x7fffffff
#define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
/* convert MIPS rounding mode in FCR31 to IEEE library */
unsigned int ieee_rm[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down
};
target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
{
target_ulong arg1 = 0;
switch (reg) {
case 0:
arg1 = (int32_t)env->active_fpu.fcr0;
break;
case 1:
/* UFR Support - Read Status FR */
if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
arg1 = (int32_t)
((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
} else {
do_raise_exception(env, EXCP_RI, GETPC());
}
}
break;
case 5:
/* FRE Support - read Config5.FRE bit */
if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
} else {
helper_raise_exception(env, EXCP_RI);
}
}
break;
case 25:
arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) |
((env->active_fpu.fcr31 >> 23) & 0x1);
break;
case 26:
arg1 = env->active_fpu.fcr31 & 0x0003f07c;
break;
case 28:
arg1 = (env->active_fpu.fcr31 & 0x00000f83) |
((env->active_fpu.fcr31 >> 22) & 0x4);
break;
default:
arg1 = (int32_t)env->active_fpu.fcr31;
break;
}
return arg1;
}
void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
{
switch (fs) {
case 1:
/* UFR Alias - Reset Status FR */
if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
return;
}
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
env->CP0_Status &= ~(1 << CP0St_FR);
compute_hflags(env);
} else {
do_raise_exception(env, EXCP_RI, GETPC());
}
break;
case 4:
/* UNFR Alias - Set Status FR */
if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
return;
}
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
env->CP0_Status |= (1 << CP0St_FR);
compute_hflags(env);
} else {
do_raise_exception(env, EXCP_RI, GETPC());
}
break;
case 5:
/* FRE Support - clear Config5.FRE bit */
if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
return;
}
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
env->CP0_Config5 &= ~(1 << CP0C5_FRE);
compute_hflags(env);
} else {
helper_raise_exception(env, EXCP_RI);
}
break;
case 6:
/* FRE Support - set Config5.FRE bit */
if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
return;
}
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
env->CP0_Config5 |= (1 << CP0C5_FRE);
compute_hflags(env);
} else {
helper_raise_exception(env, EXCP_RI);
}
break;
case 25:
if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
return;
}
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) |
((arg1 & 0xfe) << 24) |
((arg1 & 0x1) << 23);
break;
case 26:
if (arg1 & 0x007c0000) {
return;
}
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) |
(arg1 & 0x0003f07c);
break;
case 28:
if (arg1 & 0x007c0000) {
return;
}
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) |
(arg1 & 0x00000f83) |
((arg1 & 0x4) << 22);
break;
case 31:
env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
(env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
break;
default:
if (env->insn_flags & ISA_MIPS32R6) {
do_raise_exception(env, EXCP_RI, GETPC());
}
return;
}
restore_fp_status(env);
set_float_exception_flags(0, &env->active_fpu.fp_status);
if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) &
GET_FP_CAUSE(env->active_fpu.fcr31)) {
do_raise_exception(env, EXCP_FPE, GETPC());
}
}
int ieee_ex_to_mips(int xcpt)
{
int ret = 0;
if (xcpt) {
if (xcpt & float_flag_invalid) {
ret |= FP_INVALID;
}
if (xcpt & float_flag_overflow) {
ret |= FP_OVERFLOW;
}
if (xcpt & float_flag_underflow) {
ret |= FP_UNDERFLOW;
}
if (xcpt & float_flag_divbyzero) {
ret |= FP_DIV0;
}
if (xcpt & float_flag_inexact) {
ret |= FP_INEXACT;
}
}
return ret;
}
static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
{
int tmp = ieee_ex_to_mips(get_float_exception_flags(
&env->active_fpu.fp_status));
SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
if (tmp) {
set_float_exception_flags(0, &env->active_fpu.fp_status);
if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
do_raise_exception(env, EXCP_FPE, pc);
} else {
UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
}
}
}
/*
* Float support.
* Single precition routines have a "s" suffix, double precision a
* "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
* paired single lower "pl", paired single upper "pu".
*/
/* unary operations, modifying fp status */
uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
{
fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt0;
}
uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
{
fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst0;
}
uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t fdt2;
fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
{
uint64_t fdt2;
fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
{
uint64_t fdt2;
fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
{
uint32_t fst2;
uint32_t fsth2;
fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
uint32_t wth2;
int excp, excph;
wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
excp = get_float_exception_flags(&env->active_fpu.fp_status);
if (excp & (float_flag_overflow | float_flag_invalid)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
set_float_exception_flags(0, &env->active_fpu.fp_status);
wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
excph = get_float_exception_flags(&env->active_fpu.fp_status);
if (excph & (float_flag_overflow | float_flag_invalid)) {
wth2 = FP_TO_INT32_OVERFLOW;
}
set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)wth2 << 32) | wt2;
}
uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fst2;
fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
{
uint32_t fst2;
fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
{
uint32_t fst2;
fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
{
uint32_t wt2;
wt2 = wt0;
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
{
uint32_t wt2;
wt2 = wth0;
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64_round_to_zero(fdt0,
&env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
dt2 = FP_TO_INT64_OVERFLOW;
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& (float_flag_invalid | float_flag_overflow)) {
wt2 = FP_TO_INT32_OVERFLOW;
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_nearest_even,
&env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
{
uint64_t dt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
dt2 = 0;
}
}
update_fcr31(env, GETPC());
return dt2;
}
uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float64_is_any_nan(fdt0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t wt2;
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
restore_rounding_mode(env);
if (get_float_exception_flags(&env->active_fpu.fp_status)
& float_flag_invalid) {
if (float32_is_any_nan(fst0)) {
wt2 = 0;
}
}
update_fcr31(env, GETPC());
return wt2;
}
/* unary operations, not modifying fp status */
#define FLOAT_UNOP(name) \
uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
{ \
return float64_ ## name(fdt0); \
} \
uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
{ \
return float32_ ## name(fst0); \
} \
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
{ \
uint32_t wt0; \
uint32_t wth0; \
\
wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
wth0 = float32_ ## name(fdt0 >> 32); \
return ((uint64_t)wth0 << 32) | wt0; \
}
FLOAT_UNOP(abs)
FLOAT_UNOP(chs)
#undef FLOAT_UNOP
/* MIPS specific unary operations */
uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fst2;
uint32_t fsth2;
fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF,
&env->active_fpu.fp_status);
fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
{
uint64_t fdt2;
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
{
uint32_t fst2;
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
{
uint32_t fst2;
uint32_t fsth2;
fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
#define FLOAT_RINT(name, bits) \
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
uint ## bits ## _t fs) \
{ \
uint ## bits ## _t fdret; \
\
fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return fdret; \
}
FLOAT_RINT(rint_s, 32)
FLOAT_RINT(rint_d, 64)
#undef FLOAT_RINT
#define FLOAT_CLASS_SIGNALING_NAN 0x001
#define FLOAT_CLASS_QUIET_NAN 0x002
#define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
#define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
#define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
#define FLOAT_CLASS_NEGATIVE_ZERO 0x020
#define FLOAT_CLASS_POSITIVE_INFINITY 0x040
#define FLOAT_CLASS_POSITIVE_NORMAL 0x080
#define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
#define FLOAT_CLASS_POSITIVE_ZERO 0x200
#define FLOAT_CLASS(name, bits) \
uint ## bits ## _t float_ ## name(uint ## bits ## _t arg, \
float_status *status) \
{ \
if (float ## bits ## _is_signaling_nan(arg, status)) { \
return FLOAT_CLASS_SIGNALING_NAN; \
} else if (float ## bits ## _is_quiet_nan(arg, status)) { \
return FLOAT_CLASS_QUIET_NAN; \
} else if (float ## bits ## _is_neg(arg)) { \
if (float ## bits ## _is_infinity(arg)) { \
return FLOAT_CLASS_NEGATIVE_INFINITY; \
} else if (float ## bits ## _is_zero(arg)) { \
return FLOAT_CLASS_NEGATIVE_ZERO; \
} else if (float ## bits ## _is_zero_or_denormal(arg)) { \
return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
} else { \
return FLOAT_CLASS_NEGATIVE_NORMAL; \
} \
} else { \
if (float ## bits ## _is_infinity(arg)) { \
return FLOAT_CLASS_POSITIVE_INFINITY; \
} else if (float ## bits ## _is_zero(arg)) { \
return FLOAT_CLASS_POSITIVE_ZERO; \
} else if (float ## bits ## _is_zero_or_denormal(arg)) { \
return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
} else { \
return FLOAT_CLASS_POSITIVE_NORMAL; \
} \
} \
} \
\
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
uint ## bits ## _t arg) \
{ \
return float_ ## name(arg, &env->active_fpu.fp_status); \
}
FLOAT_CLASS(class_s, 32)
FLOAT_CLASS(class_d, 64)
#undef FLOAT_CLASS
/* binary operations */
#define FLOAT_BINOP(name) \
uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
uint64_t fdt0, uint64_t fdt1) \
{ \
uint64_t dt2; \
\
dt2 = float64_ ## name(fdt0, fdt1, &env->active_fpu.fp_status);\
update_fcr31(env, GETPC()); \
return dt2; \
} \
\
uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
uint32_t fst0, uint32_t fst1) \
{ \
uint32_t wt2; \
\
wt2 = float32_ ## name(fst0, fst1, &env->active_fpu.fp_status);\
update_fcr31(env, GETPC()); \
return wt2; \
} \
\
uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
uint64_t fdt0, \
uint64_t fdt1) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t wt2; \
uint32_t wth2; \
\
wt2 = float32_ ## name(fst0, fst1, &env->active_fpu.fp_status); \
wth2 = float32_ ## name(fsth0, fsth1, &env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return ((uint64_t)wth2 << 32) | wt2; \
}
FLOAT_BINOP(add)
FLOAT_BINOP(sub)
FLOAT_BINOP(mul)
FLOAT_BINOP(div)
#undef FLOAT_BINOP
/* MIPS specific binary operations */
uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_sub(fdt2, float64_one,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
{
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, float32_one,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, float32_one,
&env->active_fpu.fp_status));
fsth2 = float32_chs(float32_sub(fsth2, float32_one,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fdt2;
}
uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
{
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return fst2;
}
uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32,
&env->active_fpu.fp_status));
fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32,
&env->active_fpu.fp_status));
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fst2;
uint32_t fsth2;
fst2 = float32_add(fst0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_add(fst1, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fst2;
uint32_t fsth2;
fst2 = float32_mul(fst0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_mul(fst1, fsth1, &env->active_fpu.fp_status);
update_fcr31(env, GETPC());
return ((uint64_t)fsth2 << 32) | fst2;
}
#define FLOAT_MINMAX(name, bits, minmaxfunc) \
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
uint ## bits ## _t fs, \
uint ## bits ## _t ft) \
{ \
uint ## bits ## _t fdret; \
\
fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
&env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return fdret; \
}
FLOAT_MINMAX(max_s, 32, maxnum)
FLOAT_MINMAX(max_d, 64, maxnum)
FLOAT_MINMAX(maxa_s, 32, maxnummag)
FLOAT_MINMAX(maxa_d, 64, maxnummag)
FLOAT_MINMAX(min_s, 32, minnum)
FLOAT_MINMAX(min_d, 64, minnum)
FLOAT_MINMAX(mina_s, 32, minnummag)
FLOAT_MINMAX(mina_d, 64, minnummag)
#undef FLOAT_MINMAX
/* ternary operations */
#define UNFUSED_FMA(prefix, a, b, c, flags) \
{ \
a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
if ((flags) & float_muladd_negate_c) { \
a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
} else { \
a = prefix##_add(a, c, &env->active_fpu.fp_status); \
} \
if ((flags) & float_muladd_negate_result) { \
a = prefix##_chs(a); \
} \
}
/* FMA based operations */
#define FLOAT_FMA(name, type) \
uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
update_fcr31(env, GETPC()); \
return fdt0; \
} \
\
uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
uint32_t fst0, uint32_t fst1, \
uint32_t fst2) \
{ \
UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
update_fcr31(env, GETPC()); \
return fst0; \
} \
\
uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
uint32_t fsth2 = fdt2 >> 32; \
\
UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
update_fcr31(env, GETPC()); \
return ((uint64_t)fsth0 << 32) | fst0; \
}
FLOAT_FMA(madd, 0)
FLOAT_FMA(msub, float_muladd_negate_c)
FLOAT_FMA(nmadd, float_muladd_negate_result)
FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
#undef FLOAT_FMA
#define FLOAT_FMADDSUB(name, bits, muladd_arg) \
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
uint ## bits ## _t fs, \
uint ## bits ## _t ft, \
uint ## bits ## _t fd) \
{ \
uint ## bits ## _t fdret; \
\
fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
&env->active_fpu.fp_status); \
update_fcr31(env, GETPC()); \
return fdret; \
}
FLOAT_FMADDSUB(maddf_s, 32, 0)
FLOAT_FMADDSUB(maddf_d, 64, 0)
FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
#undef FLOAT_FMADDSUB
/* compare operations */
#define FOP_COND_D(op, cond) \
void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
int c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
int c; \
fdt0 = float64_abs(fdt0); \
fdt1 = float64_abs(fdt1); \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered_quiet() is still called.
*/
FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status), 0))
FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status))
FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_eq_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered() is still called.
*/
FOP_COND_D(sf, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status), 0))
FOP_COND_D(ngle, float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status))
FOP_COND_D(seq, float64_eq(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ngl, float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_eq(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(lt, float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(nge, float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(le, float64_le(fdt0, fdt1,
&env->active_fpu.fp_status))
FOP_COND_D(ngt, float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le(fdt0, fdt1,
&env->active_fpu.fp_status))
#define FOP_COND_S(op, cond) \
void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
uint32_t fst1, int cc) \
{ \
int c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
uint32_t fst1, int cc) \
{ \
int c; \
fst0 = float32_abs(fst0); \
fst1 = float32_abs(fst1); \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called.
*/
FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status), 0))
FOP_COND_S(un, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status))
FOP_COND_S(eq, float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(olt, float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ole, float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called.
*/
FOP_COND_S(sf, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status), 0))
FOP_COND_S(ngle, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status))
FOP_COND_S(seq, float32_eq(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ngl, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(lt, float32_lt(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(nge, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(le, float32_le(fst0, fst1,
&env->active_fpu.fp_status))
FOP_COND_S(ngt, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le(fst0, fst1,
&env->active_fpu.fp_status))
#define FOP_COND_PS(op, condl, condh) \
void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
uint32_t fst0, fsth0, fst1, fsth1; \
int ch, cl; \
fst0 = fdt0 & 0XFFFFFFFF; \
fsth0 = fdt0 >> 32; \
fst1 = fdt1 & 0XFFFFFFFF; \
fsth1 = fdt1 >> 32; \
cl = condl; \
ch = condh; \
update_fcr31(env, GETPC()); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
} \
void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1, int cc) \
{ \
uint32_t fst0, fsth0, fst1, fsth1; \
int ch, cl; \
fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
fsth0 = float32_abs(fdt0 >> 32); \
fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
fsth1 = float32_abs(fdt1 >> 32); \
cl = condl; \
ch = condh; \
update_fcr31(env, GETPC()); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called.
*/
FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status), 0),
(float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status), 0))
FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status))
FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_eq_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_eq_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_lt_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ole, float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_le_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fsth0, fsth1,
&env->active_fpu.fp_status))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called.
*/
FOP_COND_PS(sf, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status), 0),
(float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status), 0))
FOP_COND_PS(ngle, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status))
FOP_COND_PS(seq, float32_eq(fst0, fst1,
&env->active_fpu.fp_status),
float32_eq(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ngl, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_eq(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(lt, float32_lt(fst0, fst1,
&env->active_fpu.fp_status),
float32_lt(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(nge, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_lt(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(le, float32_le(fst0, fst1,
&env->active_fpu.fp_status),
float32_le(fsth0, fsth1,
&env->active_fpu.fp_status))
FOP_COND_PS(ngt, float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le(fst0, fst1,
&env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0,
&env->active_fpu.fp_status)
|| float32_le(fsth0, fsth1,
&env->active_fpu.fp_status))
/* R6 compare operations */
#define FOP_CONDN_D(op, cond) \
uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
uint64_t fdt1) \
{ \
uint64_t c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) { \
return -1; \
} else { \
return 0; \
} \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered_quiet() is still called.
*/
FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status), 0))
FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)))
FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_eq_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered() is still called.\
*/
FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status), 0))
FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)))
FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_eq(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sle, (float64_le(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt_quiet(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sor, (float64_le(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_le(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status)))
FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0,
&env->active_fpu.fp_status)
|| float64_lt(fdt0, fdt1,
&env->active_fpu.fp_status)))
#define FOP_CONDN_S(op, cond) \
uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
uint32_t fst1) \
{ \
uint64_t c; \
c = cond; \
update_fcr31(env, GETPC()); \
if (c) { \
return -1; \
} else { \
return 0; \
} \
}
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called.
*/
FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status), 0))
FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)))
FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
/*
* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called.
*/
FOP_CONDN_S(saf, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status), 0))
FOP_CONDN_S(sun, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)))
FOP_CONDN_S(seq, (float32_eq(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_eq(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(slt, (float32_lt(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sult, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sle, (float32_le(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sule, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt_quiet(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sor, (float32_le(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_le(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sune, (float32_unordered(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status)))
FOP_CONDN_S(sne, (float32_lt(fst1, fst0,
&env->active_fpu.fp_status)
|| float32_lt(fst0, fst1,
&env->active_fpu.fp_status)))
/* MSA */
/* Data format min and max values */
#define DF_BITS(df) (1 << ((df) + 3))
/* Element-by-element access macros */
#define DF_ELEMENTS(df) (MSA_WRLEN / DF_BITS(df))
#if !defined(CONFIG_USER_ONLY)
#define MEMOP_IDX(DF) \
TCGMemOpIdx oi = make_memop_idx(MO_TE | DF | MO_UNALN, \
cpu_mmu_index(env, false));
#else
#define MEMOP_IDX(DF)
#endif
void helper_msa_ld_b(CPUMIPSState *env, uint32_t wd,
target_ulong addr)
{
wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
MEMOP_IDX(DF_BYTE)
#if !defined(CONFIG_USER_ONLY)
#if !defined(HOST_WORDS_BIGENDIAN)
pwd->b[0] = helper_ret_ldub_mmu(env, addr + (0 << DF_BYTE), oi, GETPC());
pwd->b[1] = helper_ret_ldub_mmu(env, addr + (1 << DF_BYTE), oi, GETPC());
pwd->b[2] = helper_ret_ldub_mmu(env, addr + (2 << DF_BYTE), oi, GETPC());
pwd->b[3] = helper_ret_ldub_mmu(env, addr + (3 << DF_BYTE), oi, GETPC());
pwd->b[4] = helper_ret_ldub_mmu(env, addr + (4 << DF_BYTE), oi, GETPC());
pwd->b[5] = helper_ret_ldub_mmu(env, addr + (5 << DF_BYTE), oi, GETPC());
pwd->b[6] = helper_ret_ldub_mmu(env, addr + (6 << DF_BYTE), oi, GETPC());
pwd->b[7] = helper_ret_ldub_mmu(env, addr + (7 << DF_BYTE), oi, GETPC());
pwd->b[8] = helper_ret_ldub_mmu(env, addr + (8 << DF_BYTE), oi, GETPC());
pwd->b[9] = helper_ret_ldub_mmu(env, addr + (9 << DF_BYTE), oi, GETPC());
pwd->b[10] = helper_ret_ldub_mmu(env, addr + (10 << DF_BYTE), oi, GETPC());
pwd->b[11] = helper_ret_ldub_mmu(env, addr + (11 << DF_BYTE), oi, GETPC());
pwd->b[12] = helper_ret_ldub_mmu(env, addr + (12 << DF_BYTE), oi, GETPC());
pwd->b[13] = helper_ret_ldub_mmu(env, addr + (13 << DF_BYTE), oi, GETPC());
pwd->b[14] = helper_ret_ldub_mmu(env, addr + (14 << DF_BYTE), oi, GETPC());
pwd->b[15] = helper_ret_ldub_mmu(env, addr + (15 << DF_BYTE), oi, GETPC());
#else
pwd->b[0] = helper_ret_ldub_mmu(env, addr + (7 << DF_BYTE), oi, GETPC());
pwd->b[1] = helper_ret_ldub_mmu(env, addr + (6 << DF_BYTE), oi, GETPC());
pwd->b[2] = helper_ret_ldub_mmu(env, addr + (5 << DF_BYTE), oi, GETPC());
pwd->b[3] = helper_ret_ldub_mmu(env, addr + (4 << DF_BYTE), oi, GETPC());
pwd->b[4] = helper_ret_ldub_mmu(env, addr + (3 << DF_BYTE), oi, GETPC());
pwd->b[5] = helper_ret_ldub_mmu(env, addr + (2 << DF_BYTE), oi, GETPC());
pwd->b[6] = helper_ret_ldub_mmu(env, addr + (1 << DF_BYTE), oi, GETPC());
pwd->b[7] = helper_ret_ldub_mmu(env, addr + (0 << DF_BYTE), oi, GETPC());
pwd->b[8] = helper_ret_ldub_mmu(env, addr + (15 << DF_BYTE), oi, GETPC());
pwd->b[9] = helper_ret_ldub_mmu(env, addr + (14 << DF_BYTE), oi, GETPC());
pwd->b[10] = helper_ret_ldub_mmu(env, addr + (13 << DF_BYTE), oi, GETPC());
pwd->b[11] = helper_ret_ldub_mmu(env, addr + (12 << DF_BYTE), oi, GETPC());
pwd->b[12] = helper_ret_ldub_mmu(env, addr + (11 << DF_BYTE), oi, GETPC());
pwd->b[13] = helper_ret_ldub_mmu(env, addr + (10 << DF_BYTE), oi, GETPC());
pwd->b[14] = helper_ret_ldub_mmu(env, addr + (9 << DF_BYTE), oi, GETPC());
pwd->b[15] = helper_ret_ldub_mmu(env, addr + (8 << DF_BYTE), oi, GETPC());
#endif
#else
#if !defined(HOST_WORDS_BIGENDIAN)
pwd->b[0] = cpu_ldub_data(env, addr + (0 << DF_BYTE));
pwd->b[1] = cpu_ldub_data(env, addr + (1 << DF_BYTE));
pwd->b[2] = cpu_ldub_data(env, addr + (2 << DF_BYTE));
pwd->b[3] = cpu_ldub_data(env, addr + (3 << DF_BYTE));
pwd->b[4] = cpu_ldub_data(env, addr + (4 << DF_BYTE));
pwd->b[5] = cpu_ldub_data(env, addr + (5 << DF_BYTE));
pwd->b[6] = cpu_ldub_data(env, addr + (6 << DF_BYTE));
pwd->b[7] = cpu_ldub_data(env, addr + (7 << DF_BYTE));
pwd->b[8] = cpu_ldub_data(env, addr + (8 << DF_BYTE));
pwd->b[9] = cpu_ldub_data(env, addr + (9 << DF_BYTE));
pwd->b[10] = cpu_ldub_data(env, addr + (10 << DF_BYTE));
pwd->b[11] = cpu_ldub_data(env, addr + (11 << DF_BYTE));
pwd->b[12] = cpu_ldub_data(env, addr + (12 << DF_BYTE));
pwd->b[13] = cpu_ldub_data(env, addr + (13 << DF_BYTE));
pwd->b[14] = cpu_ldub_data(env, addr + (14 << DF_BYTE));
pwd->b[15] = cpu_ldub_data(env, addr + (15 << DF_BYTE));
#else
pwd->b[0] = cpu_ldub_data(env, addr + (7 << DF_BYTE));
pwd->b[1] = cpu_ldub_data(env, addr + (6 << DF_BYTE));
pwd->b[2] = cpu_ldub_data(env, addr + (5 << DF_BYTE));
pwd->b[3] = cpu_ldub_data(env, addr + (4 << DF_BYTE));
pwd->b[4] = cpu_ldub_data(env, addr + (3 << DF_BYTE));
pwd->b[5] = cpu_ldub_data(env, addr + (2 << DF_BYTE));
pwd->b[6] = cpu_ldub_data(env, addr + (1 << DF_BYTE));
pwd->b[7] = cpu_ldub_data(env, addr + (0 << DF_BYTE));
pwd->b[8] = cpu_ldub_data(env, addr + (15 << DF_BYTE));
pwd->b[9] = cpu_ldub_data(env, addr + (14 << DF_BYTE));
pwd->b[10] = cpu_ldub_data(env, addr + (13 << DF_BYTE));
pwd->b[11] = cpu_ldub_data(env, addr + (12 << DF_BYTE));
pwd->b[12] = cpu_ldub_data(env, addr + (11 << DF_BYTE));
pwd->b[13] = cpu_ldub_data(env, addr + (10 << DF_BYTE));
pwd->b[14] = cpu_ldub_data(env, addr + (9 << DF_BYTE));
pwd->b[15] = cpu_ldub_data(env, addr + (8 << DF_BYTE));
#endif
#endif
}
void helper_msa_ld_h(CPUMIPSState *env, uint32_t wd,
target_ulong addr)
{
wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
MEMOP_IDX(DF_HALF)
#if !defined(CONFIG_USER_ONLY)
#if !defined(HOST_WORDS_BIGENDIAN)
pwd->h[0] = helper_ret_lduw_mmu(env, addr + (0 << DF_HALF), oi, GETPC());
pwd->h[1] = helper_ret_lduw_mmu(env, addr + (1 << DF_HALF), oi, GETPC());
pwd->h[2] = helper_ret_lduw_mmu(env, addr + (2 << DF_HALF), oi, GETPC());
pwd->h[3] = helper_ret_lduw_mmu(env, addr + (3 << DF_HALF), oi, GETPC());
pwd->h[4] = helper_ret_lduw_mmu(env, addr + (4 << DF_HALF), oi, GETPC());
pwd->h[5] = helper_ret_lduw_mmu(env, addr + (5 << DF_HALF), oi, GETPC());
pwd->h[6] = helper_ret_lduw_mmu(env, addr + (6 << DF_HALF), oi, GETPC());
pwd->h[7] = helper_ret_lduw_mmu(env, addr + (7 << DF_HALF), oi, GETPC());
#else
pwd->h[0] = helper_ret_lduw_mmu(env, addr + (3 << DF_HALF), oi, GETPC());
pwd->h[1] = helper_ret_lduw_mmu(env, addr + (2 << DF_HALF), oi, GETPC());
pwd->h[2] = helper_ret_lduw_mmu(env, addr + (1 << DF_HALF), oi, GETPC());
pwd->h[3] = helper_ret_lduw_mmu(env, addr + (0 << DF_HALF), oi, GETPC());
pwd->h[4] = helper_ret_lduw_mmu(env, addr + (7 << DF_HALF), oi, GETPC());
pwd->h[5] = helper_ret_lduw_mmu(env, addr + (6 << DF_HALF), oi, GETPC());
pwd->h[6] = helper_ret_lduw_mmu(env, addr + (5 << DF_HALF), oi, GETPC());
pwd->h[7] = helper_ret_lduw_mmu(env, addr + (4 << DF_HALF), oi, GETPC());
#endif
#else
#if !defined(HOST_WORDS_BIGENDIAN)
pwd->h[0] = cpu_lduw_data(env, addr + (0 << DF_HALF));
pwd->h[1] = cpu_lduw_data(env, addr + (1 << DF_HALF));
pwd->h[2] = cpu_lduw_data(env, addr + (2 << DF_HALF));
pwd->h[3] = cpu_lduw_data(env, addr + (3 << DF_HALF));
pwd->h[4] = cpu_lduw_data(env, addr + (4 << DF_HALF));
pwd->h[5] = cpu_lduw_data(env, addr + (5 << DF_HALF));
pwd->h[6] = cpu_lduw_data(env, addr + (6 << DF_HALF));
pwd->h[7] = cpu_lduw_data(env, addr + (7 << DF_HALF));
#else
pwd->h[0] = cpu_lduw_data(env, addr + (3 << DF_HALF));
pwd->h[1] = cpu_lduw_data(env, addr + (2 << DF_HALF));
pwd->h[2] = cpu_lduw_data(env, addr + (1 << DF_HALF));
pwd->h[3] = cpu_lduw_data(env, addr + (0 << DF_HALF));
pwd->h[4] = cpu_lduw_data(env, addr + (7 << DF_HALF));
pwd->h[5] = cpu_lduw_data(env, addr + (6 << DF_HALF));
pwd->h[6] = cpu_lduw_data(env, addr + (5 << DF_HALF));
pwd->h[7] = cpu_lduw_data(env, addr + (4 << DF_HALF));
#endif
#endif
}
void helper_msa_ld_w(CPUMIPSState *env, uint32_t wd,
target_ulong addr)
{
wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
MEMOP_IDX(DF_WORD)
#if !defined(CONFIG_USER_ONLY)
#if !defined(HOST_WORDS_BIGENDIAN)
pwd->w[0] = helper_ret_ldul_mmu(env, addr + (0 << DF_WORD), oi, GETPC());
pwd->w[1] = helper_ret_ldul_mmu(env, addr + (1 << DF_WORD), oi, GETPC());
pwd->w[2] = helper_ret_ldul_mmu(env, addr + (2 << DF_WORD), oi, GETPC());
pwd->w[3] = helper_ret_ldul_mmu(env, addr + (3 << DF_WORD), oi, GETPC());
#else
pwd->w[0] = helper_ret_ldul_mmu(env, addr + (1 << DF_WORD), oi, GETPC());
pwd->w[1] = helper_ret_ldul_mmu(env, addr + (0 << DF_WORD), oi, GETPC());
pwd->w[2] = helper_ret_ldul_mmu(env, addr + (3 << DF_WORD), oi, GETPC());
pwd->w[3] = helper_ret_ldul_mmu(env, addr + (2 << DF_WORD), oi, GETPC());
#endif
#else
#if !defined(HOST_WORDS_BIGENDIAN)
pwd->w[0] = cpu_ldl_data(env, addr + (0 << DF_WORD));
pwd->w[1] = cpu_ldl_data(env, addr + (1 << DF_WORD));
pwd->w[2] = cpu_ldl_data(env, addr + (2 << DF_WORD));
pwd->w[3] = cpu_ldl_data(env, addr + (3 << DF_WORD));
#else
pwd->w[0] = cpu_ldl_data(env, addr + (1 << DF_WORD));
pwd->w[1] = cpu_ldl_data(env, addr + (0 << DF_WORD));
pwd->w[2] = cpu_ldl_data(env, addr + (3 << DF_WORD));
pwd->w[3] = cpu_ldl_data(env, addr + (2 << DF_WORD));
#endif
#endif
}
void helper_msa_ld_d(CPUMIPSState *env, uint32_t wd,
target_ulong addr)
{
wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
MEMOP_IDX(DF_DOUBLE)
#if !defined(CONFIG_USER_ONLY)
pwd->d[0] = helper_ret_ldq_mmu(env, addr + (0 << DF_DOUBLE), oi, GETPC());
pwd->d[1] = helper_ret_ldq_mmu(env, addr + (1 << DF_DOUBLE), oi, GETPC());
#else
pwd->d[0] = cpu_ldq_data(env, addr + (0 << DF_DOUBLE));
pwd->d[1] = cpu_ldq_data(env, addr + (1 << DF_DOUBLE));
#endif
}
#define MSA_PAGESPAN(x) \
((((x) & ~TARGET_PAGE_MASK) + MSA_WRLEN / 8 - 1) >= TARGET_PAGE_SIZE)
static inline void ensure_writable_pages(CPUMIPSState *env,
target_ulong addr,
int mmu_idx,
uintptr_t retaddr)
{
/* FIXME: Probe the actual accesses (pass and use a size) */
if (unlikely(MSA_PAGESPAN(addr))) {
/* first page */
probe_write(env, addr, 0, mmu_idx, retaddr);
/* second page */
addr = (addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
probe_write(env, addr, 0, mmu_idx, retaddr);
}
}
void helper_msa_st_b(CPUMIPSState *env, uint32_t wd,
target_ulong addr)
{
wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
int mmu_idx = cpu_mmu_index(env, false);
MEMOP_IDX(DF_BYTE)
ensure_writable_pages(env, addr, mmu_idx, GETPC());
#if !defined(CONFIG_USER_ONLY)
#if !defined(HOST_WORDS_BIGENDIAN)
helper_ret_stb_mmu(env, addr + (0 << DF_BYTE), pwd->b[0], oi, GETPC());
helper_ret_stb_mmu(env, addr + (1 << DF_BYTE), pwd->b[1], oi, GETPC());
helper_ret_stb_mmu(env, addr + (2 << DF_BYTE), pwd->b[2], oi, GETPC());
helper_ret_stb_mmu(env, addr + (3 << DF_BYTE), pwd->b[3], oi, GETPC());
helper_ret_stb_mmu(env, addr + (4 << DF_BYTE), pwd->b[4], oi, GETPC());
helper_ret_stb_mmu(env, addr + (5 << DF_BYTE), pwd->b[5], oi, GETPC());
helper_ret_stb_mmu(env, addr + (6 << DF_BYTE), pwd->b[6], oi, GETPC());
helper_ret_stb_mmu(env, addr + (7 << DF_BYTE), pwd->b[7], oi, GETPC());
helper_ret_stb_mmu(env, addr + (8 << DF_BYTE), pwd->b[8], oi, GETPC());
helper_ret_stb_mmu(env, addr + (9 << DF_BYTE), pwd->b[9], oi, GETPC());
helper_ret_stb_mmu(env, addr + (10 << DF_BYTE), pwd->b[10], oi, GETPC());
helper_ret_stb_mmu(env, addr + (11 << DF_BYTE), pwd->b[11], oi, GETPC());
helper_ret_stb_mmu(env, addr + (12 << DF_BYTE), pwd->b[12], oi, GETPC());
helper_ret_stb_mmu(env, addr + (13 << DF_BYTE), pwd->b[13], oi, GETPC());
helper_ret_stb_mmu(env, addr + (14 << DF_BYTE), pwd->b[14], oi, GETPC());
helper_ret_stb_mmu(env, addr + (15 << DF_BYTE), pwd->b[15], oi, GETPC());
#else
helper_ret_stb_mmu(env, addr + (7 << DF_BYTE), pwd->b[0], oi, GETPC());
helper_ret_stb_mmu(env, addr + (6 << DF_BYTE), pwd->b[1], oi, GETPC());
helper_ret_stb_mmu(env, addr + (5 << DF_BYTE), pwd->b[2], oi, GETPC());
helper_ret_stb_mmu(env, addr + (4 << DF_BYTE), pwd->b[3], oi, GETPC());
helper_ret_stb_mmu(env, addr + (3 << DF_BYTE), pwd->b[4], oi, GETPC());
helper_ret_stb_mmu(env, addr + (2 << DF_BYTE), pwd->b[5], oi, GETPC());
helper_ret_stb_mmu(env, addr + (1 << DF_BYTE), pwd->b[6], oi, GETPC());
helper_ret_stb_mmu(env, addr + (0 << DF_BYTE), pwd->b[7], oi, GETPC());
helper_ret_stb_mmu(env, addr + (15 << DF_BYTE), pwd->b[8], oi, GETPC());
helper_ret_stb_mmu(env, addr + (14 << DF_BYTE), pwd->b[9], oi, GETPC());
helper_ret_stb_mmu(env, addr + (13 << DF_BYTE), pwd->b[10], oi, GETPC());
helper_ret_stb_mmu(env, addr + (12 << DF_BYTE), pwd->b[11], oi, GETPC());
helper_ret_stb_mmu(env, addr + (11 << DF_BYTE), pwd->b[12], oi, GETPC());
helper_ret_stb_mmu(env, addr + (10 << DF_BYTE), pwd->b[13], oi, GETPC());
helper_ret_stb_mmu(env, addr + (9 << DF_BYTE), pwd->b[14], oi, GETPC());
helper_ret_stb_mmu(env, addr + (8 << DF_BYTE), pwd->b[15], oi, GETPC());
#endif
#else
#if !defined(HOST_WORDS_BIGENDIAN)
cpu_stb_data(env, addr + (0 << DF_BYTE), pwd->b[0]);
cpu_stb_data(env, addr + (1 << DF_BYTE), pwd->b[1]);
cpu_stb_data(env, addr + (2 << DF_BYTE), pwd->b[2]);
cpu_stb_data(env, addr + (3 << DF_BYTE), pwd->b[3]);
cpu_stb_data(env, addr + (4 << DF_BYTE), pwd->b[4]);
cpu_stb_data(env, addr + (5 << DF_BYTE), pwd->b[5]);
cpu_stb_data(env, addr + (6 << DF_BYTE), pwd->b[6]);
cpu_stb_data(env, addr + (7 << DF_BYTE), pwd->b[7]);
cpu_stb_data(env, addr + (8 << DF_BYTE), pwd->b[8]);
cpu_stb_data(env, addr + (9 << DF_BYTE), pwd->b[9]);
cpu_stb_data(env, addr + (10 << DF_BYTE), pwd->b[10]);
cpu_stb_data(env, addr + (11 << DF_BYTE), pwd->b[11]);
cpu_stb_data(env, addr + (12 << DF_BYTE), pwd->b[12]);
cpu_stb_data(env, addr + (13 << DF_BYTE), pwd->b[13]);
cpu_stb_data(env, addr + (14 << DF_BYTE), pwd->b[14]);
cpu_stb_data(env, addr + (15 << DF_BYTE), pwd->b[15]);
#else
cpu_stb_data(env, addr + (7 << DF_BYTE), pwd->b[0]);
cpu_stb_data(env, addr + (6 << DF_BYTE), pwd->b[1]);
cpu_stb_data(env, addr + (5 << DF_BYTE), pwd->b[2]);
cpu_stb_data(env, addr + (4 << DF_BYTE), pwd->b[3]);
cpu_stb_data(env, addr + (3 << DF_BYTE), pwd->b[4]);
cpu_stb_data(env, addr + (2 << DF_BYTE), pwd->b[5]);
cpu_stb_data(env, addr + (1 << DF_BYTE), pwd->b[6]);
cpu_stb_data(env, addr + (0 << DF_BYTE), pwd->b[7]);
cpu_stb_data(env, addr + (15 << DF_BYTE), pwd->b[8]);
cpu_stb_data(env, addr + (14 << DF_BYTE), pwd->b[9]);
cpu_stb_data(env, addr + (13 << DF_BYTE), pwd->b[10]);
cpu_stb_data(env, addr + (12 << DF_BYTE), pwd->b[11]);
cpu_stb_data(env, addr + (11 << DF_BYTE), pwd->b[12]);
cpu_stb_data(env, addr + (10 << DF_BYTE), pwd->b[13]);
cpu_stb_data(env, addr + (9 << DF_BYTE), pwd->b[14]);
cpu_stb_data(env, addr + (8 << DF_BYTE), pwd->b[15]);
#endif
#endif
}
void helper_msa_st_h(CPUMIPSState *env, uint32_t wd,
target_ulong addr)
{
wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
int mmu_idx = cpu_mmu_index(env, false);
MEMOP_IDX(DF_HALF)
ensure_writable_pages(env, addr, mmu_idx, GETPC());
#if !defined(CONFIG_USER_ONLY)
#if !defined(HOST_WORDS_BIGENDIAN)
helper_ret_stw_mmu(env, addr + (0 << DF_HALF), pwd->h[0], oi, GETPC());
helper_ret_stw_mmu(env, addr + (1 << DF_HALF), pwd->h[1], oi, GETPC());
helper_ret_stw_mmu(env, addr + (2 << DF_HALF), pwd->h[2], oi, GETPC());
helper_ret_stw_mmu(env, addr + (3 << DF_HALF), pwd->h[3], oi, GETPC());
helper_ret_stw_mmu(env, addr + (4 << DF_HALF), pwd->h[4], oi, GETPC());
helper_ret_stw_mmu(env, addr + (5 << DF_HALF), pwd->h[5], oi, GETPC());
helper_ret_stw_mmu(env, addr + (6 << DF_HALF), pwd->h[6], oi, GETPC());
helper_ret_stw_mmu(env, addr + (7 << DF_HALF), pwd->h[7], oi, GETPC());
#else
helper_ret_stw_mmu(env, addr + (3 << DF_HALF), pwd->h[0], oi, GETPC());
helper_ret_stw_mmu(env, addr + (2 << DF_HALF), pwd->h[1], oi, GETPC());
helper_ret_stw_mmu(env, addr + (1 << DF_HALF), pwd->h[2], oi, GETPC());
helper_ret_stw_mmu(env, addr + (0 << DF_HALF), pwd->h[3], oi, GETPC());
helper_ret_stw_mmu(env, addr + (7 << DF_HALF), pwd->h[4], oi, GETPC());
helper_ret_stw_mmu(env, addr + (6 << DF_HALF), pwd->h[5], oi, GETPC());
helper_ret_stw_mmu(env, addr + (5 << DF_HALF), pwd->h[6], oi, GETPC());
helper_ret_stw_mmu(env, addr + (4 << DF_HALF), pwd->h[7], oi, GETPC());
#endif
#else
#if !defined(HOST_WORDS_BIGENDIAN)
cpu_stw_data(env, addr + (0 << DF_HALF), pwd->h[0]);
cpu_stw_data(env, addr + (1 << DF_HALF), pwd->h[1]);
cpu_stw_data(env, addr + (2 << DF_HALF), pwd->h[2]);
cpu_stw_data(env, addr + (3 << DF_HALF), pwd->h[3]);
cpu_stw_data(env, addr + (4 << DF_HALF), pwd->h[4]);
cpu_stw_data(env, addr + (5 << DF_HALF), pwd->h[5]);
cpu_stw_data(env, addr + (6 << DF_HALF), pwd->h[6]);
cpu_stw_data(env, addr + (7 << DF_HALF), pwd->h[7]);
#else
cpu_stw_data(env, addr + (3 << DF_HALF), pwd->h[0]);
cpu_stw_data(env, addr + (2 << DF_HALF), pwd->h[1]);
cpu_stw_data(env, addr + (1 << DF_HALF), pwd->h[2]);
cpu_stw_data(env, addr + (0 << DF_HALF), pwd->h[3]);
cpu_stw_data(env, addr + (7 << DF_HALF), pwd->h[4]);
cpu_stw_data(env, addr + (6 << DF_HALF), pwd->h[5]);
cpu_stw_data(env, addr + (5 << DF_HALF), pwd->h[6]);
cpu_stw_data(env, addr + (4 << DF_HALF), pwd->h[7]);
#endif
#endif
}
void helper_msa_st_w(CPUMIPSState *env, uint32_t wd,
target_ulong addr)
{
wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
int mmu_idx = cpu_mmu_index(env, false);
MEMOP_IDX(DF_WORD)
ensure_writable_pages(env, addr, mmu_idx, GETPC());
#if !defined(CONFIG_USER_ONLY)
#if !defined(HOST_WORDS_BIGENDIAN)
helper_ret_stl_mmu(env, addr + (0 << DF_WORD), pwd->w[0], oi, GETPC());
helper_ret_stl_mmu(env, addr + (1 << DF_WORD), pwd->w[1], oi, GETPC());
helper_ret_stl_mmu(env, addr + (2 << DF_WORD), pwd->w[2], oi, GETPC());
helper_ret_stl_mmu(env, addr + (3 << DF_WORD), pwd->w[3], oi, GETPC());
#else
helper_ret_stl_mmu(env, addr + (1 << DF_WORD), pwd->w[0], oi, GETPC());
helper_ret_stl_mmu(env, addr + (0 << DF_WORD), pwd->w[1], oi, GETPC());
helper_ret_stl_mmu(env, addr + (3 << DF_WORD), pwd->w[2], oi, GETPC());
helper_ret_stl_mmu(env, addr + (2 << DF_WORD), pwd->w[3], oi, GETPC());
#endif
#else
#if !defined(HOST_WORDS_BIGENDIAN)
cpu_stl_data(env, addr + (0 << DF_WORD), pwd->w[0]);
cpu_stl_data(env, addr + (1 << DF_WORD), pwd->w[1]);
cpu_stl_data(env, addr + (2 << DF_WORD), pwd->w[2]);
cpu_stl_data(env, addr + (3 << DF_WORD), pwd->w[3]);
#else
cpu_stl_data(env, addr + (1 << DF_WORD), pwd->w[0]);
cpu_stl_data(env, addr + (0 << DF_WORD), pwd->w[1]);
cpu_stl_data(env, addr + (3 << DF_WORD), pwd->w[2]);
cpu_stl_data(env, addr + (2 << DF_WORD), pwd->w[3]);
#endif
#endif
}
void helper_msa_st_d(CPUMIPSState *env, uint32_t wd,
target_ulong addr)
{
wr_t *pwd = &(env->active_fpu.fpr[wd].wr);
int mmu_idx = cpu_mmu_index(env, false);
MEMOP_IDX(DF_DOUBLE)
ensure_writable_pages(env, addr, mmu_idx, GETPC());
#if !defined(CONFIG_USER_ONLY)
helper_ret_stq_mmu(env, addr + (0 << DF_DOUBLE), pwd->d[0], oi, GETPC());
helper_ret_stq_mmu(env, addr + (1 << DF_DOUBLE), pwd->d[1], oi, GETPC());
#else
cpu_stq_data(env, addr + (0 << DF_DOUBLE), pwd->d[0]);
cpu_stq_data(env, addr + (1 << DF_DOUBLE), pwd->d[1]);
#endif
}
void helper_cache(CPUMIPSState *env, target_ulong addr, uint32_t op)
{
#ifndef CONFIG_USER_ONLY
target_ulong index = addr & 0x1fffffff;
if (op == 9) {
/* Index Store Tag */
memory_region_dispatch_write(env->itc_tag, index, env->CP0_TagLo,
MO_64, MEMTXATTRS_UNSPECIFIED);
} else if (op == 5) {
/* Index Load Tag */
memory_region_dispatch_read(env->itc_tag, index, &env->CP0_TagLo,
MO_64, MEMTXATTRS_UNSPECIFIED);
}
#endif
}