b36a32ead1
This only implements the external delivery method via the GICv3. Signed-off-by: Jinjie Ruan <ruanjinjie@huawei.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 20240407081733.3231820-7-ruanjinjie@huawei.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
1764 lines
54 KiB
C
1764 lines
54 KiB
C
/*
|
|
* QEMU ARM CPU -- internal functions and types
|
|
*
|
|
* Copyright (c) 2014 Linaro Ltd
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see
|
|
* <http://www.gnu.org/licenses/gpl-2.0.html>
|
|
*
|
|
* This header defines functions, types, etc which need to be shared
|
|
* between different source files within target/arm/ but which are
|
|
* private to it and not required by the rest of QEMU.
|
|
*/
|
|
|
|
#ifndef TARGET_ARM_INTERNALS_H
|
|
#define TARGET_ARM_INTERNALS_H
|
|
|
|
#include "hw/registerfields.h"
|
|
#include "tcg/tcg-gvec-desc.h"
|
|
#include "syndrome.h"
|
|
#include "cpu-features.h"
|
|
|
|
/* register banks for CPU modes */
|
|
#define BANK_USRSYS 0
|
|
#define BANK_SVC 1
|
|
#define BANK_ABT 2
|
|
#define BANK_UND 3
|
|
#define BANK_IRQ 4
|
|
#define BANK_FIQ 5
|
|
#define BANK_HYP 6
|
|
#define BANK_MON 7
|
|
|
|
static inline int arm_env_mmu_index(CPUARMState *env)
|
|
{
|
|
return EX_TBFLAG_ANY(env->hflags, MMUIDX);
|
|
}
|
|
|
|
static inline bool excp_is_internal(int excp)
|
|
{
|
|
/* Return true if this exception number represents a QEMU-internal
|
|
* exception that will not be passed to the guest.
|
|
*/
|
|
return excp == EXCP_INTERRUPT
|
|
|| excp == EXCP_HLT
|
|
|| excp == EXCP_DEBUG
|
|
|| excp == EXCP_HALTED
|
|
|| excp == EXCP_EXCEPTION_EXIT
|
|
|| excp == EXCP_KERNEL_TRAP
|
|
|| excp == EXCP_SEMIHOST;
|
|
}
|
|
|
|
/* Scale factor for generic timers, ie number of ns per tick.
|
|
* This gives a 62.5MHz timer.
|
|
*/
|
|
#define GTIMER_SCALE 16
|
|
|
|
/* Bit definitions for the v7M CONTROL register */
|
|
FIELD(V7M_CONTROL, NPRIV, 0, 1)
|
|
FIELD(V7M_CONTROL, SPSEL, 1, 1)
|
|
FIELD(V7M_CONTROL, FPCA, 2, 1)
|
|
FIELD(V7M_CONTROL, SFPA, 3, 1)
|
|
|
|
/* Bit definitions for v7M exception return payload */
|
|
FIELD(V7M_EXCRET, ES, 0, 1)
|
|
FIELD(V7M_EXCRET, RES0, 1, 1)
|
|
FIELD(V7M_EXCRET, SPSEL, 2, 1)
|
|
FIELD(V7M_EXCRET, MODE, 3, 1)
|
|
FIELD(V7M_EXCRET, FTYPE, 4, 1)
|
|
FIELD(V7M_EXCRET, DCRS, 5, 1)
|
|
FIELD(V7M_EXCRET, S, 6, 1)
|
|
FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
|
|
|
|
/* Minimum value which is a magic number for exception return */
|
|
#define EXC_RETURN_MIN_MAGIC 0xff000000
|
|
/* Minimum number which is a magic number for function or exception return
|
|
* when using v8M security extension
|
|
*/
|
|
#define FNC_RETURN_MIN_MAGIC 0xfefffffe
|
|
|
|
/* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
|
|
FIELD(DBGWCR, E, 0, 1)
|
|
FIELD(DBGWCR, PAC, 1, 2)
|
|
FIELD(DBGWCR, LSC, 3, 2)
|
|
FIELD(DBGWCR, BAS, 5, 8)
|
|
FIELD(DBGWCR, HMC, 13, 1)
|
|
FIELD(DBGWCR, SSC, 14, 2)
|
|
FIELD(DBGWCR, LBN, 16, 4)
|
|
FIELD(DBGWCR, WT, 20, 1)
|
|
FIELD(DBGWCR, MASK, 24, 5)
|
|
FIELD(DBGWCR, SSCE, 29, 1)
|
|
|
|
#define VTCR_NSW (1u << 29)
|
|
#define VTCR_NSA (1u << 30)
|
|
#define VSTCR_SW VTCR_NSW
|
|
#define VSTCR_SA VTCR_NSA
|
|
|
|
/* Bit definitions for CPACR (AArch32 only) */
|
|
FIELD(CPACR, CP10, 20, 2)
|
|
FIELD(CPACR, CP11, 22, 2)
|
|
FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
|
|
FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
|
|
FIELD(CPACR, ASEDIS, 31, 1)
|
|
|
|
/* Bit definitions for CPACR_EL1 (AArch64 only) */
|
|
FIELD(CPACR_EL1, ZEN, 16, 2)
|
|
FIELD(CPACR_EL1, FPEN, 20, 2)
|
|
FIELD(CPACR_EL1, SMEN, 24, 2)
|
|
FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
|
|
|
|
/* Bit definitions for HCPTR (AArch32 only) */
|
|
FIELD(HCPTR, TCP10, 10, 1)
|
|
FIELD(HCPTR, TCP11, 11, 1)
|
|
FIELD(HCPTR, TASE, 15, 1)
|
|
FIELD(HCPTR, TTA, 20, 1)
|
|
FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
|
|
FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
|
|
|
|
/* Bit definitions for CPTR_EL2 (AArch64 only) */
|
|
FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
|
|
FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
|
|
FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
|
|
FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
|
|
FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
|
|
FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
|
|
FIELD(CPTR_EL2, TTA, 28, 1)
|
|
FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
|
|
FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
|
|
|
|
/* Bit definitions for CPTR_EL3 (AArch64 only) */
|
|
FIELD(CPTR_EL3, EZ, 8, 1)
|
|
FIELD(CPTR_EL3, TFP, 10, 1)
|
|
FIELD(CPTR_EL3, ESM, 12, 1)
|
|
FIELD(CPTR_EL3, TTA, 20, 1)
|
|
FIELD(CPTR_EL3, TAM, 30, 1)
|
|
FIELD(CPTR_EL3, TCPAC, 31, 1)
|
|
|
|
#define MDCR_MTPME (1U << 28)
|
|
#define MDCR_TDCC (1U << 27)
|
|
#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
|
|
#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
|
|
#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
|
|
#define MDCR_EPMAD (1U << 21)
|
|
#define MDCR_EDAD (1U << 20)
|
|
#define MDCR_TTRF (1U << 19)
|
|
#define MDCR_STE (1U << 18) /* MDCR_EL3 */
|
|
#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
|
|
#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
|
|
#define MDCR_SDD (1U << 16)
|
|
#define MDCR_SPD (3U << 14)
|
|
#define MDCR_TDRA (1U << 11)
|
|
#define MDCR_TDOSA (1U << 10)
|
|
#define MDCR_TDA (1U << 9)
|
|
#define MDCR_TDE (1U << 8)
|
|
#define MDCR_HPME (1U << 7)
|
|
#define MDCR_TPM (1U << 6)
|
|
#define MDCR_TPMCR (1U << 5)
|
|
#define MDCR_HPMN (0x1fU)
|
|
|
|
/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
|
|
#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
|
|
MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
|
|
MDCR_STE | MDCR_SPME | MDCR_SPD)
|
|
|
|
#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
|
|
#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
|
|
#define TTBCR_PD0 (1U << 4)
|
|
#define TTBCR_PD1 (1U << 5)
|
|
#define TTBCR_EPD0 (1U << 7)
|
|
#define TTBCR_IRGN0 (3U << 8)
|
|
#define TTBCR_ORGN0 (3U << 10)
|
|
#define TTBCR_SH0 (3U << 12)
|
|
#define TTBCR_T1SZ (3U << 16)
|
|
#define TTBCR_A1 (1U << 22)
|
|
#define TTBCR_EPD1 (1U << 23)
|
|
#define TTBCR_IRGN1 (3U << 24)
|
|
#define TTBCR_ORGN1 (3U << 26)
|
|
#define TTBCR_SH1 (1U << 28)
|
|
#define TTBCR_EAE (1U << 31)
|
|
|
|
FIELD(VTCR, T0SZ, 0, 6)
|
|
FIELD(VTCR, SL0, 6, 2)
|
|
FIELD(VTCR, IRGN0, 8, 2)
|
|
FIELD(VTCR, ORGN0, 10, 2)
|
|
FIELD(VTCR, SH0, 12, 2)
|
|
FIELD(VTCR, TG0, 14, 2)
|
|
FIELD(VTCR, PS, 16, 3)
|
|
FIELD(VTCR, VS, 19, 1)
|
|
FIELD(VTCR, HA, 21, 1)
|
|
FIELD(VTCR, HD, 22, 1)
|
|
FIELD(VTCR, HWU59, 25, 1)
|
|
FIELD(VTCR, HWU60, 26, 1)
|
|
FIELD(VTCR, HWU61, 27, 1)
|
|
FIELD(VTCR, HWU62, 28, 1)
|
|
FIELD(VTCR, NSW, 29, 1)
|
|
FIELD(VTCR, NSA, 30, 1)
|
|
FIELD(VTCR, DS, 32, 1)
|
|
FIELD(VTCR, SL2, 33, 1)
|
|
|
|
#define HCRX_ENAS0 (1ULL << 0)
|
|
#define HCRX_ENALS (1ULL << 1)
|
|
#define HCRX_ENASR (1ULL << 2)
|
|
#define HCRX_FNXS (1ULL << 3)
|
|
#define HCRX_FGTNXS (1ULL << 4)
|
|
#define HCRX_SMPME (1ULL << 5)
|
|
#define HCRX_TALLINT (1ULL << 6)
|
|
#define HCRX_VINMI (1ULL << 7)
|
|
#define HCRX_VFNMI (1ULL << 8)
|
|
#define HCRX_CMOW (1ULL << 9)
|
|
#define HCRX_MCE2 (1ULL << 10)
|
|
#define HCRX_MSCEN (1ULL << 11)
|
|
|
|
#define HPFAR_NS (1ULL << 63)
|
|
|
|
#define HSTR_TTEE (1 << 16)
|
|
#define HSTR_TJDBX (1 << 17)
|
|
|
|
/*
|
|
* Depending on the value of HCR_EL2.E2H, bits 0 and 1
|
|
* have different bit definitions, and EL1PCTEN might be
|
|
* bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
|
|
* disambiguate if necessary.
|
|
*/
|
|
FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
|
|
FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
|
|
FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
|
|
FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
|
|
FIELD(CNTHCTL, EVNTEN, 2, 1)
|
|
FIELD(CNTHCTL, EVNTDIR, 3, 1)
|
|
FIELD(CNTHCTL, EVNTI, 4, 4)
|
|
FIELD(CNTHCTL, EL0VTEN, 8, 1)
|
|
FIELD(CNTHCTL, EL0PTEN, 9, 1)
|
|
FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
|
|
FIELD(CNTHCTL, EL1PTEN, 11, 1)
|
|
FIELD(CNTHCTL, ECV, 12, 1)
|
|
FIELD(CNTHCTL, EL1TVT, 13, 1)
|
|
FIELD(CNTHCTL, EL1TVCT, 14, 1)
|
|
FIELD(CNTHCTL, EL1NVPCT, 15, 1)
|
|
FIELD(CNTHCTL, EL1NVVCT, 16, 1)
|
|
FIELD(CNTHCTL, EVNTIS, 17, 1)
|
|
FIELD(CNTHCTL, CNTVMASK, 18, 1)
|
|
FIELD(CNTHCTL, CNTPMASK, 19, 1)
|
|
|
|
/* We use a few fake FSR values for internal purposes in M profile.
|
|
* M profile cores don't have A/R format FSRs, but currently our
|
|
* get_phys_addr() code assumes A/R profile and reports failures via
|
|
* an A/R format FSR value. We then translate that into the proper
|
|
* M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
|
|
* Mostly the FSR values we use for this are those defined for v7PMSA,
|
|
* since we share some of that codepath. A few kinds of fault are
|
|
* only for M profile and have no A/R equivalent, though, so we have
|
|
* to pick a value from the reserved range (which we never otherwise
|
|
* generate) to use for these.
|
|
* These values will never be visible to the guest.
|
|
*/
|
|
#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
|
|
#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
|
|
|
|
/**
|
|
* raise_exception: Raise the specified exception.
|
|
* Raise a guest exception with the specified value, syndrome register
|
|
* and target exception level. This should be called from helper functions,
|
|
* and never returns because we will longjump back up to the CPU main loop.
|
|
*/
|
|
G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
|
|
uint32_t syndrome, uint32_t target_el);
|
|
|
|
/*
|
|
* Similarly, but also use unwinding to restore cpu state.
|
|
*/
|
|
G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
|
|
uint32_t syndrome, uint32_t target_el,
|
|
uintptr_t ra);
|
|
|
|
/*
|
|
* For AArch64, map a given EL to an index in the banked_spsr array.
|
|
* Note that this mapping and the AArch32 mapping defined in bank_number()
|
|
* must agree such that the AArch64<->AArch32 SPSRs have the architecturally
|
|
* mandated mapping between each other.
|
|
*/
|
|
static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
|
|
{
|
|
static const unsigned int map[4] = {
|
|
[1] = BANK_SVC, /* EL1. */
|
|
[2] = BANK_HYP, /* EL2. */
|
|
[3] = BANK_MON, /* EL3. */
|
|
};
|
|
assert(el >= 1 && el <= 3);
|
|
return map[el];
|
|
}
|
|
|
|
/* Map CPU modes onto saved register banks. */
|
|
static inline int bank_number(int mode)
|
|
{
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
return BANK_USRSYS;
|
|
case ARM_CPU_MODE_SVC:
|
|
return BANK_SVC;
|
|
case ARM_CPU_MODE_ABT:
|
|
return BANK_ABT;
|
|
case ARM_CPU_MODE_UND:
|
|
return BANK_UND;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return BANK_IRQ;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return BANK_FIQ;
|
|
case ARM_CPU_MODE_HYP:
|
|
return BANK_HYP;
|
|
case ARM_CPU_MODE_MON:
|
|
return BANK_MON;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/**
|
|
* r14_bank_number: Map CPU mode onto register bank for r14
|
|
*
|
|
* Given an AArch32 CPU mode, return the index into the saved register
|
|
* banks to use for the R14 (LR) in that mode. This is the same as
|
|
* bank_number(), except for the special case of Hyp mode, where
|
|
* R14 is shared with USR and SYS, unlike its R13 and SPSR.
|
|
* This should be used as the index into env->banked_r14[], and
|
|
* bank_number() used for the index into env->banked_r13[] and
|
|
* env->banked_spsr[].
|
|
*/
|
|
static inline int r14_bank_number(int mode)
|
|
{
|
|
return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
|
|
}
|
|
|
|
void arm_cpu_register(const ARMCPUInfo *info);
|
|
void aarch64_cpu_register(const ARMCPUInfo *info);
|
|
|
|
void register_cp_regs_for_features(ARMCPU *cpu);
|
|
void init_cpreg_list(ARMCPU *cpu);
|
|
|
|
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
|
|
void arm_translate_init(void);
|
|
|
|
void arm_restore_state_to_opc(CPUState *cs,
|
|
const TranslationBlock *tb,
|
|
const uint64_t *data);
|
|
|
|
#ifdef CONFIG_TCG
|
|
void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
|
|
#endif /* CONFIG_TCG */
|
|
|
|
typedef enum ARMFPRounding {
|
|
FPROUNDING_TIEEVEN,
|
|
FPROUNDING_POSINF,
|
|
FPROUNDING_NEGINF,
|
|
FPROUNDING_ZERO,
|
|
FPROUNDING_TIEAWAY,
|
|
FPROUNDING_ODD
|
|
} ARMFPRounding;
|
|
|
|
extern const FloatRoundMode arm_rmode_to_sf_map[6];
|
|
|
|
static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
|
|
{
|
|
assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
|
|
return arm_rmode_to_sf_map[rmode];
|
|
}
|
|
|
|
static inline void aarch64_save_sp(CPUARMState *env, int el)
|
|
{
|
|
if (env->pstate & PSTATE_SP) {
|
|
env->sp_el[el] = env->xregs[31];
|
|
} else {
|
|
env->sp_el[0] = env->xregs[31];
|
|
}
|
|
}
|
|
|
|
static inline void aarch64_restore_sp(CPUARMState *env, int el)
|
|
{
|
|
if (env->pstate & PSTATE_SP) {
|
|
env->xregs[31] = env->sp_el[el];
|
|
} else {
|
|
env->xregs[31] = env->sp_el[0];
|
|
}
|
|
}
|
|
|
|
static inline void update_spsel(CPUARMState *env, uint32_t imm)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
/* Update PSTATE SPSel bit; this requires us to update the
|
|
* working stack pointer in xregs[31].
|
|
*/
|
|
if (!((imm ^ env->pstate) & PSTATE_SP)) {
|
|
return;
|
|
}
|
|
aarch64_save_sp(env, cur_el);
|
|
env->pstate = deposit32(env->pstate, 0, 1, imm);
|
|
|
|
/* We rely on illegal updates to SPsel from EL0 to get trapped
|
|
* at translation time.
|
|
*/
|
|
assert(cur_el >= 1 && cur_el <= 3);
|
|
aarch64_restore_sp(env, cur_el);
|
|
}
|
|
|
|
/*
|
|
* arm_pamax
|
|
* @cpu: ARMCPU
|
|
*
|
|
* Returns the implementation defined bit-width of physical addresses.
|
|
* The ARMv8 reference manuals refer to this as PAMax().
|
|
*/
|
|
unsigned int arm_pamax(ARMCPU *cpu);
|
|
|
|
/* Return true if extended addresses are enabled.
|
|
* This is always the case if our translation regime is 64 bit,
|
|
* but depends on TTBCR.EAE for 32 bit.
|
|
*/
|
|
static inline bool extended_addresses_enabled(CPUARMState *env)
|
|
{
|
|
uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
return true;
|
|
}
|
|
return arm_el_is_aa64(env, 1) ||
|
|
(arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
|
|
}
|
|
|
|
/* Update a QEMU watchpoint based on the information the guest has set in the
|
|
* DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
|
|
*/
|
|
void hw_watchpoint_update(ARMCPU *cpu, int n);
|
|
/* Update the QEMU watchpoints for every guest watchpoint. This does a
|
|
* complete delete-and-reinstate of the QEMU watchpoint list and so is
|
|
* suitable for use after migration or on reset.
|
|
*/
|
|
void hw_watchpoint_update_all(ARMCPU *cpu);
|
|
/* Update a QEMU breakpoint based on the information the guest has set in the
|
|
* DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
|
|
*/
|
|
void hw_breakpoint_update(ARMCPU *cpu, int n);
|
|
/* Update the QEMU breakpoints for every guest breakpoint. This does a
|
|
* complete delete-and-reinstate of the QEMU breakpoint list and so is
|
|
* suitable for use after migration or on reset.
|
|
*/
|
|
void hw_breakpoint_update_all(ARMCPU *cpu);
|
|
|
|
/* Callback function for checking if a breakpoint should trigger. */
|
|
bool arm_debug_check_breakpoint(CPUState *cs);
|
|
|
|
/* Callback function for checking if a watchpoint should trigger. */
|
|
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
|
|
|
|
/* Adjust addresses (in BE32 mode) before testing against watchpoint
|
|
* addresses.
|
|
*/
|
|
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
|
|
|
|
/* Callback function for when a watchpoint or breakpoint triggers. */
|
|
void arm_debug_excp_handler(CPUState *cs);
|
|
|
|
#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
|
|
static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
|
|
{
|
|
return false;
|
|
}
|
|
static inline void arm_handle_psci_call(ARMCPU *cpu)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
#else
|
|
/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
|
|
bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
|
|
/* Actually handle a PSCI call */
|
|
void arm_handle_psci_call(ARMCPU *cpu);
|
|
#endif
|
|
|
|
/**
|
|
* arm_clear_exclusive: clear the exclusive monitor
|
|
* @env: CPU env
|
|
* Clear the CPU's exclusive monitor, like the guest CLREX instruction.
|
|
*/
|
|
static inline void arm_clear_exclusive(CPUARMState *env)
|
|
{
|
|
env->exclusive_addr = -1;
|
|
}
|
|
|
|
/**
|
|
* ARMFaultType: type of an ARM MMU fault
|
|
* This corresponds to the v8A pseudocode's Fault enumeration,
|
|
* with extensions for QEMU internal conditions.
|
|
*/
|
|
typedef enum ARMFaultType {
|
|
ARMFault_None,
|
|
ARMFault_AccessFlag,
|
|
ARMFault_Alignment,
|
|
ARMFault_Background,
|
|
ARMFault_Domain,
|
|
ARMFault_Permission,
|
|
ARMFault_Translation,
|
|
ARMFault_AddressSize,
|
|
ARMFault_SyncExternal,
|
|
ARMFault_SyncExternalOnWalk,
|
|
ARMFault_SyncParity,
|
|
ARMFault_SyncParityOnWalk,
|
|
ARMFault_AsyncParity,
|
|
ARMFault_AsyncExternal,
|
|
ARMFault_Debug,
|
|
ARMFault_TLBConflict,
|
|
ARMFault_UnsuppAtomicUpdate,
|
|
ARMFault_Lockdown,
|
|
ARMFault_Exclusive,
|
|
ARMFault_ICacheMaint,
|
|
ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
|
|
ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
|
|
ARMFault_GPCFOnWalk,
|
|
ARMFault_GPCFOnOutput,
|
|
} ARMFaultType;
|
|
|
|
typedef enum ARMGPCF {
|
|
GPCF_None,
|
|
GPCF_AddressSize,
|
|
GPCF_Walk,
|
|
GPCF_EABT,
|
|
GPCF_Fail,
|
|
} ARMGPCF;
|
|
|
|
/**
|
|
* ARMMMUFaultInfo: Information describing an ARM MMU Fault
|
|
* @type: Type of fault
|
|
* @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
|
|
* @level: Table walk level (for translation, access flag and permission faults)
|
|
* @domain: Domain of the fault address (for non-LPAE CPUs only)
|
|
* @s2addr: Address that caused a fault at stage 2
|
|
* @paddr: physical address that caused a fault for gpc
|
|
* @paddr_space: physical address space that caused a fault for gpc
|
|
* @stage2: True if we faulted at stage 2
|
|
* @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
|
|
* @s1ns: True if we faulted on a non-secure IPA while in secure state
|
|
* @ea: True if we should set the EA (external abort type) bit in syndrome
|
|
*/
|
|
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
|
|
struct ARMMMUFaultInfo {
|
|
ARMFaultType type;
|
|
ARMGPCF gpcf;
|
|
target_ulong s2addr;
|
|
target_ulong paddr;
|
|
ARMSecuritySpace paddr_space;
|
|
int level;
|
|
int domain;
|
|
bool stage2;
|
|
bool s1ptw;
|
|
bool s1ns;
|
|
bool ea;
|
|
};
|
|
|
|
/**
|
|
* arm_fi_to_sfsc: Convert fault info struct to short-format FSC
|
|
* Compare pseudocode EncodeSDFSC(), though unlike that function
|
|
* we set up a whole FSR-format code including domain field and
|
|
* putting the high bit of the FSC into bit 10.
|
|
*/
|
|
static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
|
|
{
|
|
uint32_t fsc;
|
|
|
|
switch (fi->type) {
|
|
case ARMFault_None:
|
|
return 0;
|
|
case ARMFault_AccessFlag:
|
|
fsc = fi->level == 1 ? 0x3 : 0x6;
|
|
break;
|
|
case ARMFault_Alignment:
|
|
fsc = 0x1;
|
|
break;
|
|
case ARMFault_Permission:
|
|
fsc = fi->level == 1 ? 0xd : 0xf;
|
|
break;
|
|
case ARMFault_Domain:
|
|
fsc = fi->level == 1 ? 0x9 : 0xb;
|
|
break;
|
|
case ARMFault_Translation:
|
|
fsc = fi->level == 1 ? 0x5 : 0x7;
|
|
break;
|
|
case ARMFault_SyncExternal:
|
|
fsc = 0x8 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncExternalOnWalk:
|
|
fsc = fi->level == 1 ? 0xc : 0xe;
|
|
fsc |= (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncParity:
|
|
fsc = 0x409;
|
|
break;
|
|
case ARMFault_SyncParityOnWalk:
|
|
fsc = fi->level == 1 ? 0x40c : 0x40e;
|
|
break;
|
|
case ARMFault_AsyncParity:
|
|
fsc = 0x408;
|
|
break;
|
|
case ARMFault_AsyncExternal:
|
|
fsc = 0x406 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_Debug:
|
|
fsc = 0x2;
|
|
break;
|
|
case ARMFault_TLBConflict:
|
|
fsc = 0x400;
|
|
break;
|
|
case ARMFault_Lockdown:
|
|
fsc = 0x404;
|
|
break;
|
|
case ARMFault_Exclusive:
|
|
fsc = 0x405;
|
|
break;
|
|
case ARMFault_ICacheMaint:
|
|
fsc = 0x4;
|
|
break;
|
|
case ARMFault_Background:
|
|
fsc = 0x0;
|
|
break;
|
|
case ARMFault_QEMU_NSCExec:
|
|
fsc = M_FAKE_FSR_NSC_EXEC;
|
|
break;
|
|
case ARMFault_QEMU_SFault:
|
|
fsc = M_FAKE_FSR_SFAULT;
|
|
break;
|
|
default:
|
|
/* Other faults can't occur in a context that requires a
|
|
* short-format status code.
|
|
*/
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
fsc |= (fi->domain << 4);
|
|
return fsc;
|
|
}
|
|
|
|
/**
|
|
* arm_fi_to_lfsc: Convert fault info struct to long-format FSC
|
|
* Compare pseudocode EncodeLDFSC(), though unlike that function
|
|
* we fill in also the LPAE bit 9 of a DFSR format.
|
|
*/
|
|
static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
|
|
{
|
|
uint32_t fsc;
|
|
|
|
switch (fi->type) {
|
|
case ARMFault_None:
|
|
return 0;
|
|
case ARMFault_AddressSize:
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
if (fi->level < 0) {
|
|
fsc = 0b101001;
|
|
} else {
|
|
fsc = fi->level;
|
|
}
|
|
break;
|
|
case ARMFault_AccessFlag:
|
|
assert(fi->level >= 0 && fi->level <= 3);
|
|
fsc = 0b001000 | fi->level;
|
|
break;
|
|
case ARMFault_Permission:
|
|
assert(fi->level >= 0 && fi->level <= 3);
|
|
fsc = 0b001100 | fi->level;
|
|
break;
|
|
case ARMFault_Translation:
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
if (fi->level < 0) {
|
|
fsc = 0b101011;
|
|
} else {
|
|
fsc = 0b000100 | fi->level;
|
|
}
|
|
break;
|
|
case ARMFault_SyncExternal:
|
|
fsc = 0x10 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_SyncExternalOnWalk:
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
if (fi->level < 0) {
|
|
fsc = 0b010011;
|
|
} else {
|
|
fsc = 0b010100 | fi->level;
|
|
}
|
|
fsc |= fi->ea << 12;
|
|
break;
|
|
case ARMFault_SyncParity:
|
|
fsc = 0x18;
|
|
break;
|
|
case ARMFault_SyncParityOnWalk:
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
if (fi->level < 0) {
|
|
fsc = 0b011011;
|
|
} else {
|
|
fsc = 0b011100 | fi->level;
|
|
}
|
|
break;
|
|
case ARMFault_AsyncParity:
|
|
fsc = 0x19;
|
|
break;
|
|
case ARMFault_AsyncExternal:
|
|
fsc = 0x11 | (fi->ea << 12);
|
|
break;
|
|
case ARMFault_Alignment:
|
|
fsc = 0x21;
|
|
break;
|
|
case ARMFault_Debug:
|
|
fsc = 0x22;
|
|
break;
|
|
case ARMFault_TLBConflict:
|
|
fsc = 0x30;
|
|
break;
|
|
case ARMFault_UnsuppAtomicUpdate:
|
|
fsc = 0x31;
|
|
break;
|
|
case ARMFault_Lockdown:
|
|
fsc = 0x34;
|
|
break;
|
|
case ARMFault_Exclusive:
|
|
fsc = 0x35;
|
|
break;
|
|
case ARMFault_GPCFOnWalk:
|
|
assert(fi->level >= -1 && fi->level <= 3);
|
|
if (fi->level < 0) {
|
|
fsc = 0b100011;
|
|
} else {
|
|
fsc = 0b100100 | fi->level;
|
|
}
|
|
break;
|
|
case ARMFault_GPCFOnOutput:
|
|
fsc = 0b101000;
|
|
break;
|
|
default:
|
|
/* Other faults can't occur in a context that requires a
|
|
* long-format status code.
|
|
*/
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
fsc |= 1 << 9;
|
|
return fsc;
|
|
}
|
|
|
|
static inline bool arm_extabort_type(MemTxResult result)
|
|
{
|
|
/* The EA bit in syndromes and fault status registers is an
|
|
* IMPDEF classification of external aborts. ARM implementations
|
|
* usually use this to indicate AXI bus Decode error (0) or
|
|
* Slave error (1); in QEMU we follow that.
|
|
*/
|
|
return result != MEMTX_DECODE_ERROR;
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
|
|
MMUAccessType access_type,
|
|
bool maperr, uintptr_t ra);
|
|
void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
|
|
MMUAccessType access_type, uintptr_t ra);
|
|
#else
|
|
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
|
|
MMUAccessType access_type, int mmu_idx,
|
|
bool probe, uintptr_t retaddr);
|
|
#endif
|
|
|
|
static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
|
|
{
|
|
return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
|
|
}
|
|
|
|
static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return mmu_idx | ARM_MMU_IDX_M;
|
|
} else {
|
|
return mmu_idx | ARM_MMU_IDX_A;
|
|
}
|
|
}
|
|
|
|
static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
|
|
{
|
|
/* AArch64 is always a-profile. */
|
|
return mmu_idx | ARM_MMU_IDX_A;
|
|
}
|
|
|
|
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
|
|
|
|
/* Return the MMU index for a v7M CPU in the specified security state */
|
|
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
|
|
|
|
/*
|
|
* Return true if the stage 1 translation regime is using LPAE
|
|
* format page tables
|
|
*/
|
|
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
|
|
|
|
/* Raise a data fault alignment exception for the specified virtual address */
|
|
G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr);
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* arm_cpu_do_transaction_failed: handle a memory system error response
|
|
* (eg "no device/memory present at address") by raising an external abort
|
|
* exception
|
|
*/
|
|
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
|
|
vaddr addr, unsigned size,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, MemTxAttrs attrs,
|
|
MemTxResult response, uintptr_t retaddr);
|
|
#endif
|
|
|
|
/* Call any registered EL change hooks */
|
|
static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
|
|
{
|
|
ARMELChangeHook *hook, *next;
|
|
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
|
|
hook->hook(cpu, hook->opaque);
|
|
}
|
|
}
|
|
static inline void arm_call_el_change_hook(ARMCPU *cpu)
|
|
{
|
|
ARMELChangeHook *hook, *next;
|
|
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
|
|
hook->hook(cpu, hook->opaque);
|
|
}
|
|
}
|
|
|
|
/* Return true if this address translation regime has two ranges. */
|
|
static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_Stage1_E0:
|
|
case ARMMMUIdx_Stage1_E1:
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
|
|
{
|
|
return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
|
|
}
|
|
|
|
/* Return the exception level which controls this address translation regime */
|
|
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
case ARMMMUIdx_Stage2:
|
|
case ARMMMUIdx_Stage2_S:
|
|
case ARMMMUIdx_E2:
|
|
return 2;
|
|
case ARMMMUIdx_E3:
|
|
return 3;
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_Stage1_E0:
|
|
return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
|
|
case ARMMMUIdx_Stage1_E1:
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
case ARMMMUIdx_MPrivNegPri:
|
|
case ARMMMUIdx_MUserNegPri:
|
|
case ARMMMUIdx_MPriv:
|
|
case ARMMMUIdx_MUser:
|
|
case ARMMMUIdx_MSPrivNegPri:
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
case ARMMMUIdx_MSPriv:
|
|
case ARMMMUIdx_MSUser:
|
|
return 1;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_Stage1_E0:
|
|
case ARMMMUIdx_MUser:
|
|
case ARMMMUIdx_MSUser:
|
|
case ARMMMUIdx_MUserNegPri:
|
|
case ARMMMUIdx_MSUserNegPri:
|
|
return true;
|
|
default:
|
|
return false;
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Return the SCTLR value which controls this address translation regime */
|
|
static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
|
|
}
|
|
|
|
/*
|
|
* These are the fields in VTCR_EL2 which affect both the Secure stage 2
|
|
* and the Non-Secure stage 2 translation regimes (and hence which are
|
|
* not present in VSTCR_EL2).
|
|
*/
|
|
#define VTCR_SHARED_FIELD_MASK \
|
|
(R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
|
|
R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
|
|
R_VTCR_DS_MASK)
|
|
|
|
/* Return the value of the TCR controlling this translation regime */
|
|
static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (mmu_idx == ARMMMUIdx_Stage2) {
|
|
return env->cp15.vtcr_el2;
|
|
}
|
|
if (mmu_idx == ARMMMUIdx_Stage2_S) {
|
|
/*
|
|
* Secure stage 2 shares fields from VTCR_EL2. We merge those
|
|
* in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
|
|
* value so the callers don't need to special case this.
|
|
*
|
|
* If a future architecture change defines bits in VSTCR_EL2 that
|
|
* overlap with these VTCR_EL2 fields we may need to revisit this.
|
|
*/
|
|
uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
|
|
v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
|
|
return v;
|
|
}
|
|
return env->cp15.tcr_el[regime_el(env, mmu_idx)];
|
|
}
|
|
|
|
/* Return true if the translation regime is using LPAE format page tables */
|
|
static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
int el = regime_el(env, mmu_idx);
|
|
if (el == 2 || arm_el_is_aa64(env, el)) {
|
|
return true;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
return true;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)
|
|
&& (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* arm_num_brps: Return number of implemented breakpoints.
|
|
* Note that the ID register BRPS field is "number of bps - 1",
|
|
* and we return the actual number of breakpoints.
|
|
*/
|
|
static inline int arm_num_brps(ARMCPU *cpu)
|
|
{
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
|
|
} else {
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_num_wrps: Return number of implemented watchpoints.
|
|
* Note that the ID register WRPS field is "number of wps - 1",
|
|
* and we return the actual number of watchpoints.
|
|
*/
|
|
static inline int arm_num_wrps(ARMCPU *cpu)
|
|
{
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
|
|
} else {
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_num_ctx_cmps: Return number of implemented context comparators.
|
|
* Note that the ID register CTX_CMPS field is "number of cmps - 1",
|
|
* and we return the actual number of comparators.
|
|
*/
|
|
static inline int arm_num_ctx_cmps(ARMCPU *cpu)
|
|
{
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
|
|
} else {
|
|
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* v7m_using_psp: Return true if using process stack pointer
|
|
* Return true if the CPU is currently using the process stack
|
|
* pointer, or false if it is using the main stack pointer.
|
|
*/
|
|
static inline bool v7m_using_psp(CPUARMState *env)
|
|
{
|
|
/* Handler mode always uses the main stack; for thread mode
|
|
* the CONTROL.SPSEL bit determines the answer.
|
|
* Note that in v7M it is not possible to be in Handler mode with
|
|
* CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
|
|
*/
|
|
return !arm_v7m_is_handler_mode(env) &&
|
|
env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
|
|
}
|
|
|
|
/**
|
|
* v7m_sp_limit: Return SP limit for current CPU state
|
|
* Return the SP limit value for the current CPU security state
|
|
* and stack pointer.
|
|
*/
|
|
static inline uint32_t v7m_sp_limit(CPUARMState *env)
|
|
{
|
|
if (v7m_using_psp(env)) {
|
|
return env->v7m.psplim[env->v7m.secure];
|
|
} else {
|
|
return env->v7m.msplim[env->v7m.secure];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* v7m_cpacr_pass:
|
|
* Return true if the v7M CPACR permits access to the FPU for the specified
|
|
* security state and privilege level.
|
|
*/
|
|
static inline bool v7m_cpacr_pass(CPUARMState *env,
|
|
bool is_secure, bool is_priv)
|
|
{
|
|
switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
|
|
case 0:
|
|
case 2: /* UNPREDICTABLE: we treat like 0 */
|
|
return false;
|
|
case 1:
|
|
return is_priv;
|
|
case 3:
|
|
return true;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* aarch32_mode_name(): Return name of the AArch32 CPU mode
|
|
* @psr: Program Status Register indicating CPU mode
|
|
*
|
|
* Returns, for debug logging purposes, a printable representation
|
|
* of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
|
|
* the low bits of the specified PSR.
|
|
*/
|
|
static inline const char *aarch32_mode_name(uint32_t psr)
|
|
{
|
|
static const char cpu_mode_names[16][4] = {
|
|
"usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
|
|
"???", "???", "hyp", "und", "???", "???", "???", "sys"
|
|
};
|
|
|
|
return cpu_mode_names[psr & 0xf];
|
|
}
|
|
|
|
/**
|
|
* arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
|
|
*
|
|
* Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
|
|
* a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
|
|
* Must be called with the BQL held.
|
|
*/
|
|
void arm_cpu_update_virq(ARMCPU *cpu);
|
|
|
|
/**
|
|
* arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
|
|
*
|
|
* Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
|
|
* a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
|
|
* Must be called with the BQL held.
|
|
*/
|
|
void arm_cpu_update_vfiq(ARMCPU *cpu);
|
|
|
|
/**
|
|
* arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
|
|
*
|
|
* Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
|
|
* a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
|
|
* Must be called with the BQL held.
|
|
*/
|
|
void arm_cpu_update_vinmi(ARMCPU *cpu);
|
|
|
|
/**
|
|
* arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
|
|
*
|
|
* Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
|
|
* a change to the HCRX_EL2.VFNMI.
|
|
* Must be called with the BQL held.
|
|
*/
|
|
void arm_cpu_update_vfnmi(ARMCPU *cpu);
|
|
|
|
/**
|
|
* arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
|
|
*
|
|
* Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
|
|
* following a change to the HCR_EL2.VSE bit.
|
|
*/
|
|
void arm_cpu_update_vserr(ARMCPU *cpu);
|
|
|
|
/**
|
|
* arm_mmu_idx_el:
|
|
* @env: The cpu environment
|
|
* @el: The EL to use.
|
|
*
|
|
* Return the full ARMMMUIdx for the translation regime for EL.
|
|
*/
|
|
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
|
|
|
|
/**
|
|
* arm_mmu_idx:
|
|
* @env: The cpu environment
|
|
*
|
|
* Return the full ARMMMUIdx for the current translation regime.
|
|
*/
|
|
ARMMMUIdx arm_mmu_idx(CPUARMState *env);
|
|
|
|
/**
|
|
* arm_stage1_mmu_idx:
|
|
* @env: The cpu environment
|
|
*
|
|
* Return the ARMMMUIdx for the stage1 traversal for the current regime.
|
|
*/
|
|
#ifdef CONFIG_USER_ONLY
|
|
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
|
|
{
|
|
return ARMMMUIdx_Stage1_E0;
|
|
}
|
|
static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
|
|
{
|
|
return ARMMMUIdx_Stage1_E0;
|
|
}
|
|
#else
|
|
ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
|
|
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
|
|
#endif
|
|
|
|
/**
|
|
* arm_mmu_idx_is_stage1_of_2:
|
|
* @mmu_idx: The ARMMMUIdx to test
|
|
*
|
|
* Return true if @mmu_idx is a NOTLB mmu_idx that is the
|
|
* first stage of a two stage regime.
|
|
*/
|
|
static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_Stage1_E0:
|
|
case ARMMMUIdx_Stage1_E1:
|
|
case ARMMMUIdx_Stage1_E1_PAN:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
|
|
const ARMISARegisters *id)
|
|
{
|
|
uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
|
|
|
|
if ((features >> ARM_FEATURE_V4T) & 1) {
|
|
valid |= CPSR_T;
|
|
}
|
|
if ((features >> ARM_FEATURE_V5) & 1) {
|
|
valid |= CPSR_Q; /* V5TE in reality*/
|
|
}
|
|
if ((features >> ARM_FEATURE_V6) & 1) {
|
|
valid |= CPSR_E | CPSR_GE;
|
|
}
|
|
if ((features >> ARM_FEATURE_THUMB2) & 1) {
|
|
valid |= CPSR_IT;
|
|
}
|
|
if (isar_feature_aa32_jazelle(id)) {
|
|
valid |= CPSR_J;
|
|
}
|
|
if (isar_feature_aa32_pan(id)) {
|
|
valid |= CPSR_PAN;
|
|
}
|
|
if (isar_feature_aa32_dit(id)) {
|
|
valid |= CPSR_DIT;
|
|
}
|
|
if (isar_feature_aa32_ssbs(id)) {
|
|
valid |= CPSR_SSBS;
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
|
|
{
|
|
uint32_t valid;
|
|
|
|
valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
|
|
if (isar_feature_aa64_bti(id)) {
|
|
valid |= PSTATE_BTYPE;
|
|
}
|
|
if (isar_feature_aa64_pan(id)) {
|
|
valid |= PSTATE_PAN;
|
|
}
|
|
if (isar_feature_aa64_uao(id)) {
|
|
valid |= PSTATE_UAO;
|
|
}
|
|
if (isar_feature_aa64_dit(id)) {
|
|
valid |= PSTATE_DIT;
|
|
}
|
|
if (isar_feature_aa64_ssbs(id)) {
|
|
valid |= PSTATE_SSBS;
|
|
}
|
|
if (isar_feature_aa64_mte(id)) {
|
|
valid |= PSTATE_TCO;
|
|
}
|
|
if (isar_feature_aa64_nmi(id)) {
|
|
valid |= PSTATE_ALLINT;
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
/* Granule size (i.e. page size) */
|
|
typedef enum ARMGranuleSize {
|
|
/* Same order as TG0 encoding */
|
|
Gran4K,
|
|
Gran64K,
|
|
Gran16K,
|
|
GranInvalid,
|
|
} ARMGranuleSize;
|
|
|
|
/**
|
|
* arm_granule_bits: Return address size of the granule in bits
|
|
*
|
|
* Return the address size of the granule in bits. This corresponds
|
|
* to the pseudocode TGxGranuleBits().
|
|
*/
|
|
static inline int arm_granule_bits(ARMGranuleSize gran)
|
|
{
|
|
switch (gran) {
|
|
case Gran64K:
|
|
return 16;
|
|
case Gran16K:
|
|
return 14;
|
|
case Gran4K:
|
|
return 12;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parameters of a given virtual address, as extracted from the
|
|
* translation control register (TCR) for a given regime.
|
|
*/
|
|
typedef struct ARMVAParameters {
|
|
unsigned tsz : 8;
|
|
unsigned ps : 3;
|
|
unsigned sh : 2;
|
|
unsigned select : 1;
|
|
bool tbi : 1;
|
|
bool epd : 1;
|
|
bool hpd : 1;
|
|
bool tsz_oob : 1; /* tsz has been clamped to legal range */
|
|
bool ds : 1;
|
|
bool ha : 1;
|
|
bool hd : 1;
|
|
ARMGranuleSize gran : 2;
|
|
} ARMVAParameters;
|
|
|
|
/**
|
|
* aa64_va_parameters: Return parameters for an AArch64 virtual address
|
|
* @env: CPU
|
|
* @va: virtual address to look up
|
|
* @mmu_idx: determines translation regime to use
|
|
* @data: true if this is a data access
|
|
* @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
|
|
* (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
|
|
*/
|
|
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
|
|
ARMMMUIdx mmu_idx, bool data,
|
|
bool el1_is_aa32);
|
|
|
|
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
|
|
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
|
|
int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
|
|
|
|
/* Determine if allocation tags are available. */
|
|
static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
|
|
uint64_t sctlr)
|
|
{
|
|
if (el < 3
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !(env->cp15.scr_el3 & SCR_ATA)) {
|
|
return false;
|
|
}
|
|
if (el < 2 && arm_is_el2_enabled(env)) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
|
|
return false;
|
|
}
|
|
}
|
|
sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
|
|
return sctlr != 0;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
/* Security attributes for an address, as returned by v8m_security_lookup. */
|
|
typedef struct V8M_SAttributes {
|
|
bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
|
|
bool ns;
|
|
bool nsc;
|
|
uint8_t sregion;
|
|
bool srvalid;
|
|
uint8_t iregion;
|
|
bool irvalid;
|
|
} V8M_SAttributes;
|
|
|
|
void v8m_security_lookup(CPUARMState *env, uint32_t address,
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
|
bool secure, V8M_SAttributes *sattrs);
|
|
|
|
/* Cacheability and shareability attributes for a memory access */
|
|
typedef struct ARMCacheAttrs {
|
|
/*
|
|
* If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
|
|
* Otherwise, attrs is the same as the MAIR_EL1 8-bit format
|
|
*/
|
|
unsigned int attrs:8;
|
|
unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
|
|
bool is_s2_format:1;
|
|
} ARMCacheAttrs;
|
|
|
|
/* Fields that are valid upon success. */
|
|
typedef struct GetPhysAddrResult {
|
|
CPUTLBEntryFull f;
|
|
ARMCacheAttrs cacheattrs;
|
|
} GetPhysAddrResult;
|
|
|
|
/**
|
|
* get_phys_addr: get the physical address for a virtual address
|
|
* @env: CPUARMState
|
|
* @address: virtual address to get physical address for
|
|
* @access_type: 0 for read, 1 for write, 2 for execute
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
* @result: set on translation success.
|
|
* @fi: set to fault info if the translation fails
|
|
*
|
|
* Find the physical address corresponding to the given virtual address,
|
|
* by doing a translation table walk on MMU based systems or using the
|
|
* MPU state on MPU based systems.
|
|
*
|
|
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
|
|
* prot and page_size may not be filled in, and the populated fsr value provides
|
|
* information on why the translation aborted, in the format of a
|
|
* DFSR/IFSR fault register, with the following caveats:
|
|
* * we honour the short vs long DFSR format differences.
|
|
* * the WnR bit is never set (the caller must do this).
|
|
* * for PSMAv5 based systems we don't bother to return a full FSR format
|
|
* value.
|
|
*/
|
|
bool get_phys_addr(CPUARMState *env, target_ulong address,
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
|
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
|
|
__attribute__((nonnull));
|
|
|
|
/**
|
|
* get_phys_addr_with_space_nogpc: get the physical address for a virtual
|
|
* address
|
|
* @env: CPUARMState
|
|
* @address: virtual address to get physical address for
|
|
* @access_type: 0 for read, 1 for write, 2 for execute
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
* @space: security space for the access
|
|
* @result: set on translation success.
|
|
* @fi: set to fault info if the translation fails
|
|
*
|
|
* Similar to get_phys_addr, but use the given security space and don't perform
|
|
* a Granule Protection Check on the resulting address.
|
|
*/
|
|
bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
|
|
MMUAccessType access_type,
|
|
ARMMMUIdx mmu_idx, ARMSecuritySpace space,
|
|
GetPhysAddrResult *result,
|
|
ARMMMUFaultInfo *fi)
|
|
__attribute__((nonnull));
|
|
|
|
bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
|
bool is_secure, GetPhysAddrResult *result,
|
|
ARMMMUFaultInfo *fi, uint32_t *mregion);
|
|
|
|
void arm_log_exception(CPUState *cs);
|
|
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
/*
|
|
* SVE predicates are 1/8 the size of SVE vectors, and cannot use
|
|
* the same simd_desc() encoding due to restrictions on size.
|
|
* Use these instead.
|
|
*/
|
|
FIELD(PREDDESC, OPRSZ, 0, 6)
|
|
FIELD(PREDDESC, ESZ, 6, 2)
|
|
FIELD(PREDDESC, DATA, 8, 24)
|
|
|
|
/*
|
|
* The SVE simd_data field, for memory ops, contains either
|
|
* rd (5 bits) or a shift count (2 bits).
|
|
*/
|
|
#define SVE_MTEDESC_SHIFT 5
|
|
|
|
/* Bits within a descriptor passed to the helper_mte_check* functions. */
|
|
FIELD(MTEDESC, MIDX, 0, 4)
|
|
FIELD(MTEDESC, TBI, 4, 2)
|
|
FIELD(MTEDESC, TCMA, 6, 2)
|
|
FIELD(MTEDESC, WRITE, 8, 1)
|
|
FIELD(MTEDESC, ALIGN, 9, 3)
|
|
FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12) /* size - 1 */
|
|
|
|
bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
|
|
uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
|
|
|
|
/**
|
|
* mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
|
|
* @env: CPU env
|
|
* @ptr: start address of memory region (dirty pointer)
|
|
* @size: length of region (guaranteed not to cross a page boundary)
|
|
* @desc: MTEDESC descriptor word (0 means no MTE checks)
|
|
* Returns: the size of the region that can be copied without hitting
|
|
* an MTE tag failure
|
|
*
|
|
* Note that we assume that the caller has already checked the TBI
|
|
* and TCMA bits with mte_checks_needed() and an MTE check is definitely
|
|
* required.
|
|
*/
|
|
uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
|
|
uint32_t desc);
|
|
|
|
/**
|
|
* mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
|
|
* operation going in the reverse direction
|
|
* @env: CPU env
|
|
* @ptr: *end* address of memory region (dirty pointer)
|
|
* @size: length of region (guaranteed not to cross a page boundary)
|
|
* @desc: MTEDESC descriptor word (0 means no MTE checks)
|
|
* Returns: the size of the region that can be copied without hitting
|
|
* an MTE tag failure
|
|
*
|
|
* Note that we assume that the caller has already checked the TBI
|
|
* and TCMA bits with mte_checks_needed() and an MTE check is definitely
|
|
* required.
|
|
*/
|
|
uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
|
|
uint32_t desc);
|
|
|
|
/**
|
|
* mte_check_fail: Record an MTE tag check failure
|
|
* @env: CPU env
|
|
* @desc: MTEDESC descriptor word
|
|
* @dirty_ptr: Failing dirty address
|
|
* @ra: TCG retaddr
|
|
*
|
|
* This may never return (if the MTE tag checks are configured to fault).
|
|
*/
|
|
void mte_check_fail(CPUARMState *env, uint32_t desc,
|
|
uint64_t dirty_ptr, uintptr_t ra);
|
|
|
|
/**
|
|
* mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
|
|
* @env: CPU env
|
|
* @dirty_ptr: Start address of memory region (dirty pointer)
|
|
* @size: length of region (guaranteed not to cross page boundary)
|
|
* @desc: MTEDESC descriptor word
|
|
*/
|
|
void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
|
|
uint32_t desc);
|
|
|
|
static inline int allocation_tag_from_addr(uint64_t ptr)
|
|
{
|
|
return extract64(ptr, 56, 4);
|
|
}
|
|
|
|
static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
|
|
{
|
|
return deposit64(ptr, 56, 4, rtag);
|
|
}
|
|
|
|
/* Return true if tbi bits mean that the access is checked. */
|
|
static inline bool tbi_check(uint32_t desc, int bit55)
|
|
{
|
|
return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
|
|
}
|
|
|
|
/* Return true if tcma bits mean that the access is unchecked. */
|
|
static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
|
|
{
|
|
/*
|
|
* We had extracted bit55 and ptr_tag for other reasons, so fold
|
|
* (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
|
|
*/
|
|
bool match = ((ptr_tag + bit55) & 0xf) == 0;
|
|
bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
|
|
return tcma && match;
|
|
}
|
|
|
|
/*
|
|
* For TBI, ideally, we would do nothing. Proper behaviour on fault is
|
|
* for the tag to be present in the FAR_ELx register. But for user-only
|
|
* mode, we do not have a TLB with which to implement this, so we must
|
|
* remove the top byte.
|
|
*/
|
|
static inline uint64_t useronly_clean_ptr(uint64_t ptr)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* TBI0 is known to be enabled, while TBI1 is disabled. */
|
|
ptr &= sextract64(ptr, 0, 56);
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
int64_t clean_ptr = sextract64(ptr, 0, 56);
|
|
if (tbi_check(desc, clean_ptr < 0)) {
|
|
ptr = clean_ptr;
|
|
}
|
|
#endif
|
|
return ptr;
|
|
}
|
|
|
|
/* Values for M-profile PSR.ECI for MVE insns */
|
|
enum MVEECIState {
|
|
ECI_NONE = 0, /* No completed beats */
|
|
ECI_A0 = 1, /* Completed: A0 */
|
|
ECI_A0A1 = 2, /* Completed: A0, A1 */
|
|
/* 3 is reserved */
|
|
ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
|
|
ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
|
|
/* All other values reserved */
|
|
};
|
|
|
|
/* Definitions for the PMU registers */
|
|
#define PMCRN_MASK 0xf800
|
|
#define PMCRN_SHIFT 11
|
|
#define PMCRLP 0x80
|
|
#define PMCRLC 0x40
|
|
#define PMCRDP 0x20
|
|
#define PMCRX 0x10
|
|
#define PMCRD 0x8
|
|
#define PMCRC 0x4
|
|
#define PMCRP 0x2
|
|
#define PMCRE 0x1
|
|
/*
|
|
* Mask of PMCR bits writable by guest (not including WO bits like C, P,
|
|
* which can be written as 1 to trigger behaviour but which stay RAZ).
|
|
*/
|
|
#define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
|
|
|
|
#define PMXEVTYPER_P 0x80000000
|
|
#define PMXEVTYPER_U 0x40000000
|
|
#define PMXEVTYPER_NSK 0x20000000
|
|
#define PMXEVTYPER_NSU 0x10000000
|
|
#define PMXEVTYPER_NSH 0x08000000
|
|
#define PMXEVTYPER_M 0x04000000
|
|
#define PMXEVTYPER_MT 0x02000000
|
|
#define PMXEVTYPER_EVTCOUNT 0x0000ffff
|
|
#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
|
|
PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
|
|
PMXEVTYPER_M | PMXEVTYPER_MT | \
|
|
PMXEVTYPER_EVTCOUNT)
|
|
|
|
#define PMCCFILTR 0xf8000000
|
|
#define PMCCFILTR_M PMXEVTYPER_M
|
|
#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
|
|
|
|
static inline uint32_t pmu_num_counters(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
|
|
}
|
|
|
|
/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
|
|
static inline uint64_t pmu_counter_mask(CPUARMState *env)
|
|
{
|
|
return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
|
|
int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
|
|
int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
|
|
int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
|
|
int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
|
|
int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
|
|
int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
|
|
void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
|
|
void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
|
|
void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
|
|
void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
|
|
void aarch64_max_tcg_initfn(Object *obj);
|
|
void aarch64_add_pauth_properties(Object *obj);
|
|
void aarch64_add_sve_properties(Object *obj);
|
|
void aarch64_add_sme_properties(Object *obj);
|
|
#endif
|
|
|
|
/* Read the CONTROL register as the MRS instruction would. */
|
|
uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
|
|
|
|
/*
|
|
* Return a pointer to the location where we currently store the
|
|
* stack pointer for the requested security state and thread mode.
|
|
* This pointer will become invalid if the CPU state is updated
|
|
* such that the stack pointers are switched around (eg changing
|
|
* the SPSEL control bit).
|
|
*/
|
|
uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
|
|
bool threadmode, bool spsel);
|
|
|
|
bool el_is_in_host(CPUARMState *env, int el);
|
|
|
|
void aa32_max_features(ARMCPU *cpu);
|
|
int exception_target_el(CPUARMState *env);
|
|
bool arm_singlestep_active(CPUARMState *env);
|
|
bool arm_generate_debug_exceptions(CPUARMState *env);
|
|
|
|
/**
|
|
* pauth_ptr_mask:
|
|
* @param: parameters defining the MMU setup
|
|
*
|
|
* Return a mask of the address bits that contain the authentication code,
|
|
* given the MMU config defined by @param.
|
|
*/
|
|
static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
|
|
{
|
|
int bot_pac_bit = 64 - param.tsz;
|
|
int top_pac_bit = 64 - 8 * param.tbi;
|
|
|
|
return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
|
|
}
|
|
|
|
/* Add the cpreg definitions for debug related system registers */
|
|
void define_debug_regs(ARMCPU *cpu);
|
|
|
|
/* Effective value of MDCR_EL2 */
|
|
static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
|
|
{
|
|
return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
|
|
}
|
|
|
|
/* Powers of 2 for sve_vq_map et al. */
|
|
#define SVE_VQ_POW2_MAP \
|
|
((1 << (1 - 1)) | (1 << (2 - 1)) | \
|
|
(1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
|
|
|
|
/*
|
|
* Return true if it is possible to take a fine-grained-trap to EL2.
|
|
*/
|
|
static inline bool arm_fgt_active(CPUARMState *env, int el)
|
|
{
|
|
/*
|
|
* The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
|
|
* that can affect EL0, but it is harmless to do the test also for
|
|
* traps on registers that are only accessible at EL1 because if the test
|
|
* returns true then we can't be executing at EL1 anyway.
|
|
* FGT traps only happen when EL2 is enabled and EL1 is AArch64;
|
|
* traps from AArch32 only happen for the EL0 is AArch32 case.
|
|
*/
|
|
return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
|
|
el < 2 && arm_is_el2_enabled(env) &&
|
|
arm_el_is_aa64(env, 1) &&
|
|
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
|
|
(!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
|
|
}
|
|
|
|
void assert_hflags_rebuild_correctly(CPUARMState *env);
|
|
|
|
/*
|
|
* Although the ARM implementation of hardware assisted debugging
|
|
* allows for different breakpoints per-core, the current GDB
|
|
* interface treats them as a global pool of registers (which seems to
|
|
* be the case for x86, ppc and s390). As a result we store one copy
|
|
* of registers which is used for all active cores.
|
|
*
|
|
* Write access is serialised by virtue of the GDB protocol which
|
|
* updates things. Read access (i.e. when the values are copied to the
|
|
* vCPU) is also gated by GDB's run control.
|
|
*
|
|
* This is not unreasonable as most of the time debugging kernels you
|
|
* never know which core will eventually execute your function.
|
|
*/
|
|
|
|
typedef struct {
|
|
uint64_t bcr;
|
|
uint64_t bvr;
|
|
} HWBreakpoint;
|
|
|
|
/*
|
|
* The watchpoint registers can cover more area than the requested
|
|
* watchpoint so we need to store the additional information
|
|
* somewhere. We also need to supply a CPUWatchpoint to the GDB stub
|
|
* when the watchpoint is hit.
|
|
*/
|
|
typedef struct {
|
|
uint64_t wcr;
|
|
uint64_t wvr;
|
|
CPUWatchpoint details;
|
|
} HWWatchpoint;
|
|
|
|
/* Maximum and current break/watch point counts */
|
|
extern int max_hw_bps, max_hw_wps;
|
|
extern GArray *hw_breakpoints, *hw_watchpoints;
|
|
|
|
#define cur_hw_wps (hw_watchpoints->len)
|
|
#define cur_hw_bps (hw_breakpoints->len)
|
|
#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
|
|
#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
|
|
|
|
bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
|
|
int insert_hw_breakpoint(target_ulong pc);
|
|
int delete_hw_breakpoint(target_ulong pc);
|
|
|
|
bool check_watchpoint_in_range(int i, target_ulong addr);
|
|
CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
|
|
int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
|
|
int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
|
|
#endif
|