qemu/cpu-all.h
Anthony Liguori 4a1418e07b Unbreak large mem support by removing kqemu
kqemu introduces a number of restrictions on the i386 target.  The worst is that
it prevents large memory from working in the default build.

Furthermore, kqemu is fundamentally flawed in a number of ways.  It relies on
the TSC as a time source which will not be reliable on a multiple processor
system in userspace.  Since most modern processors are multicore, this severely
limits the utility of kqemu.

kvm is a viable alternative for people looking to accelerate qemu and has the
benefit of being supported by the upstream Linux kernel.  If someone can
implement work arounds to remove the restrictions introduced by kqemu, I'm
happy to avoid and/or revert this patch.

N.B. kqemu will still function in the 0.11 series but this patch removes it from
the 0.12 series.

Paul, please Ack or Nack this patch.

Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-08-24 08:02:55 -05:00

1067 lines
26 KiB
C

/*
* defines common to all virtual CPUs
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
#include "qemu-common.h"
#include "cpu-common.h"
/* some important defines:
*
* WORDS_ALIGNED : if defined, the host cpu can only make word aligned
* memory accesses.
*
* HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
* otherwise little endian.
*
* (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
*
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
#include "softfloat.h"
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif
#ifdef BSWAP_NEEDED
static inline uint16_t tswap16(uint16_t s)
{
return bswap16(s);
}
static inline uint32_t tswap32(uint32_t s)
{
return bswap32(s);
}
static inline uint64_t tswap64(uint64_t s)
{
return bswap64(s);
}
static inline void tswap16s(uint16_t *s)
{
*s = bswap16(*s);
}
static inline void tswap32s(uint32_t *s)
{
*s = bswap32(*s);
}
static inline void tswap64s(uint64_t *s)
{
*s = bswap64(*s);
}
#else
static inline uint16_t tswap16(uint16_t s)
{
return s;
}
static inline uint32_t tswap32(uint32_t s)
{
return s;
}
static inline uint64_t tswap64(uint64_t s)
{
return s;
}
static inline void tswap16s(uint16_t *s)
{
}
static inline void tswap32s(uint32_t *s)
{
}
static inline void tswap64s(uint64_t *s)
{
}
#endif
#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
#define bswaptls(s) bswap32s(s)
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
#define bswaptls(s) bswap64s(s)
#endif
typedef union {
float32 f;
uint32_t l;
} CPU_FloatU;
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
endian ! */
typedef union {
float64 d;
#if defined(HOST_WORDS_BIGENDIAN) \
|| (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
struct {
uint32_t upper;
uint32_t lower;
} l;
#else
struct {
uint32_t lower;
uint32_t upper;
} l;
#endif
uint64_t ll;
} CPU_DoubleU;
#ifdef TARGET_SPARC
typedef union {
float128 q;
#if defined(HOST_WORDS_BIGENDIAN) \
|| (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
struct {
uint32_t upmost;
uint32_t upper;
uint32_t lower;
uint32_t lowest;
} l;
struct {
uint64_t upper;
uint64_t lower;
} ll;
#else
struct {
uint32_t lowest;
uint32_t lower;
uint32_t upper;
uint32_t upmost;
} l;
struct {
uint64_t lower;
uint64_t upper;
} ll;
#endif
} CPU_QuadU;
#endif
/* CPU memory access without any memory or io remapping */
/*
* the generic syntax for the memory accesses is:
*
* load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
*
* store: st{type}{size}{endian}_{access_type}(ptr, val)
*
* type is:
* (empty): integer access
* f : float access
*
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* s : signed
*
* size is:
* b: 8 bits
* w: 16 bits
* l: 32 bits
* q: 64 bits
*
* endian is:
* (empty): target cpu endianness or 8 bit access
* r : reversed target cpu endianness (not implemented yet)
* be : big endian (not implemented yet)
* le : little endian (not implemented yet)
*
* access_type is:
* raw : host memory access
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
static inline int ldsb_p(const void *ptr)
{
return *(int8_t *)ptr;
}
static inline void stb_p(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
kernel handles unaligned load/stores may give better results, but
it is a system wide setting : bad */
#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
/* conservative code for little endian unaligned accesses */
static inline int lduw_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
const uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
static inline int ldsw_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
const uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
static inline int ldl_le_p(const void *ptr)
{
#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
const uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
static inline uint64_t ldq_le_p(const void *ptr)
{
const uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl_le_p(p);
v2 = ldl_le_p(p + 4);
return v1 | ((uint64_t)v2 << 32);
}
static inline void stw_le_p(void *ptr, int v)
{
#ifdef _ARCH_PPC
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
#endif
}
static inline void stl_le_p(void *ptr, int v)
{
#ifdef _ARCH_PPC
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
p[0] = v;
p[1] = v >> 8;
p[2] = v >> 16;
p[3] = v >> 24;
#endif
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
uint8_t *p = ptr;
stl_le_p(p, (uint32_t)v);
stl_le_p(p + 4, v >> 32);
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = ldl_le_p(ptr);
return u.f;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
stl_le_p(ptr, u.i);
}
static inline float64 ldfq_le_p(const void *ptr)
{
CPU_DoubleU u;
u.l.lower = ldl_le_p(ptr);
u.l.upper = ldl_le_p(ptr + 4);
return u.d;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stl_le_p(ptr, u.l.lower);
stl_le_p(ptr + 4, u.l.upper);
}
#else
static inline int lduw_le_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_le_p(const void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_le_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_le_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_le_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_le_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float32 ldfl_le_p(const void *ptr)
{
return *(float32 *)ptr;
}
static inline float64 ldfq_le_p(const void *ptr)
{
return *(float64 *)ptr;
}
static inline void stfl_le_p(void *ptr, float32 v)
{
*(float32 *)ptr = v;
}
static inline void stfq_le_p(void *ptr, float64 v)
{
*(float64 *)ptr = v;
}
#endif
#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
static inline int lduw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return val;
#else
const uint8_t *b = ptr;
return ((b[0] << 8) | b[1]);
#endif
}
static inline int ldsw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
asm volatile ("movzwl %1, %0\n"
"xchgb %b0, %h0\n"
: "=q" (val)
: "m" (*(uint16_t *)ptr));
return (int16_t)val;
#else
const uint8_t *b = ptr;
return (int16_t)((b[0] << 8) | b[1]);
#endif
}
static inline int ldl_be_p(const void *ptr)
{
#if defined(__i386__) || defined(__x86_64__)
int val;
asm volatile ("movl %1, %0\n"
"bswap %0\n"
: "=r" (val)
: "m" (*(uint32_t *)ptr));
return val;
#else
const uint8_t *b = ptr;
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}
static inline uint64_t ldq_be_p(const void *ptr)
{
uint32_t a,b;
a = ldl_be_p(ptr);
b = ldl_be_p((uint8_t *)ptr + 4);
return (((uint64_t)a<<32)|b);
}
static inline void stw_be_p(void *ptr, int v)
{
#if defined(__i386__)
asm volatile ("xchgb %b0, %h0\n"
"movw %w0, %1\n"
: "=q" (v)
: "m" (*(uint16_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 8;
d[1] = v;
#endif
}
static inline void stl_be_p(void *ptr, int v)
{
#if defined(__i386__) || defined(__x86_64__)
asm volatile ("bswap %0\n"
"movl %0, %1\n"
: "=r" (v)
: "m" (*(uint32_t *)ptr), "0" (v));
#else
uint8_t *d = (uint8_t *) ptr;
d[0] = v >> 24;
d[1] = v >> 16;
d[2] = v >> 8;
d[3] = v;
#endif
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
stl_be_p(ptr, v >> 32);
stl_be_p((uint8_t *)ptr + 4, v);
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
union {
float32 f;
uint32_t i;
} u;
u.i = ldl_be_p(ptr);
return u.f;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
union {
float32 f;
uint32_t i;
} u;
u.f = v;
stl_be_p(ptr, u.i);
}
static inline float64 ldfq_be_p(const void *ptr)
{
CPU_DoubleU u;
u.l.upper = ldl_be_p(ptr);
u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
return u.d;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
stl_be_p(ptr, u.l.upper);
stl_be_p((uint8_t *)ptr + 4, u.l.lower);
}
#else
static inline int lduw_be_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
static inline int ldsw_be_p(const void *ptr)
{
return *(int16_t *)ptr;
}
static inline int ldl_be_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
static inline uint64_t ldq_be_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
static inline void stw_be_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
static inline void stl_be_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
static inline float32 ldfl_be_p(const void *ptr)
{
return *(float32 *)ptr;
}
static inline float64 ldfq_be_p(const void *ptr)
{
return *(float64 *)ptr;
}
static inline void stfl_be_p(void *ptr, float32 v)
{
*(float32 *)ptr = v;
}
static inline void stfq_be_p(void *ptr, float64 v)
{
*(float64 *)ptr = v;
}
#endif
/* target CPU memory access functions */
#if defined(TARGET_WORDS_BIGENDIAN)
#define lduw_p(p) lduw_be_p(p)
#define ldsw_p(p) ldsw_be_p(p)
#define ldl_p(p) ldl_be_p(p)
#define ldq_p(p) ldq_be_p(p)
#define ldfl_p(p) ldfl_be_p(p)
#define ldfq_p(p) ldfq_be_p(p)
#define stw_p(p, v) stw_be_p(p, v)
#define stl_p(p, v) stl_be_p(p, v)
#define stq_p(p, v) stq_be_p(p, v)
#define stfl_p(p, v) stfl_be_p(p, v)
#define stfq_p(p, v) stfq_be_p(p, v)
#else
#define lduw_p(p) lduw_le_p(p)
#define ldsw_p(p) ldsw_le_p(p)
#define ldl_p(p) ldl_le_p(p)
#define ldq_p(p) ldq_le_p(p)
#define ldfl_p(p) ldfl_le_p(p)
#define ldfq_p(p) ldfq_le_p(p)
#define stw_p(p, v) stw_le_p(p, v)
#define stl_p(p, v) stl_le_p(p, v)
#define stq_p(p, v) stq_le_p(p, v)
#define stfl_p(p, v) stfl_le_p(p, v)
#define stfq_p(p, v) stfq_le_p(p, v)
#endif
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
#include <assert.h>
#include "qemu-types.h"
/* On some host systems the guest address space is reserved on the host.
* This allows the guest address space to be offset to a convenient location.
*/
#if defined(CONFIG_USE_GUEST_BASE)
extern unsigned long guest_base;
extern int have_guest_base;
#define GUEST_BASE guest_base
#else
#define GUEST_BASE 0ul
#endif
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
#define h2g(x) ({ \
unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
/* Check if given address fits target address space */ \
assert(__ret == (abi_ulong)__ret); \
(abi_ulong)__ret; \
})
#define h2g_valid(x) ({ \
unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
(__guest == (abi_ulong)__guest); \
})
#define saddr(x) g2h(x)
#define laddr(x) g2h(x)
#else /* !CONFIG_USER_ONLY */
/* NOTE: we use double casts if pointers and target_ulong have
different sizes */
#define saddr(x) (uint8_t *)(long)(x)
#define laddr(x) (uint8_t *)(long)(x)
#endif
#define ldub_raw(p) ldub_p(laddr((p)))
#define ldsb_raw(p) ldsb_p(laddr((p)))
#define lduw_raw(p) lduw_p(laddr((p)))
#define ldsw_raw(p) ldsw_p(laddr((p)))
#define ldl_raw(p) ldl_p(laddr((p)))
#define ldq_raw(p) ldq_p(laddr((p)))
#define ldfl_raw(p) ldfl_p(laddr((p)))
#define ldfq_raw(p) ldfq_p(laddr((p)))
#define stb_raw(p, v) stb_p(saddr((p)), v)
#define stw_raw(p, v) stw_p(saddr((p)), v)
#define stl_raw(p, v) stl_p(saddr((p)), v)
#define stq_raw(p, v) stq_p(saddr((p)), v)
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
#if defined(CONFIG_USER_ONLY)
/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define ldsb(p) ldsb_raw(p)
#define lduw(p) lduw_raw(p)
#define ldsw(p) ldsw_raw(p)
#define ldl(p) ldl_raw(p)
#define ldq(p) ldq_raw(p)
#define ldfl(p) ldfl_raw(p)
#define ldfq(p) ldfq_raw(p)
#define stb(p, v) stb_raw(p, v)
#define stw(p, v) stw_raw(p, v)
#define stl(p, v) stl_raw(p, v)
#define stq(p, v) stq_raw(p, v)
#define stfl(p, v) stfl_raw(p, v)
#define stfq(p, v) stfq_raw(p, v)
#define ldub_code(p) ldub_raw(p)
#define ldsb_code(p) ldsb_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
#define ldq_code(p) ldq_raw(p)
#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
#define ldq_kernel(p) ldq_raw(p)
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
#define stb_kernel(p, v) stb_raw(p, v)
#define stw_kernel(p, v) stw_raw(p, v)
#define stl_kernel(p, v) stl_raw(p, v)
#define stq_kernel(p, v) stq_raw(p, v)
#define stfl_kernel(p, v) stfl_raw(p, v)
#define stfq_kernel(p, vt) stfq_raw(p, v)
#endif /* defined(CONFIG_USER_ONLY) */
/* page related stuff */
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
/* ??? These should be the larger of unsigned long and target_ulong. */
extern unsigned long qemu_real_host_page_size;
extern unsigned long qemu_host_page_bits;
extern unsigned long qemu_host_page_size;
extern unsigned long qemu_host_page_mask;
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_WRITE 0x0002
#define PAGE_EXEC 0x0004
#define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
#define PAGE_RESERVED 0x0020
void page_dump(FILE *f);
int walk_memory_regions(void *,
int (*fn)(void *, unsigned long, unsigned long, unsigned long));
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
int page_check_range(target_ulong start, target_ulong len, int flags);
void cpu_exec_init_all(unsigned long tb_size);
CPUState *cpu_copy(CPUState *env);
CPUState *qemu_get_cpu(int cpu);
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags);
void cpu_dump_statistics (CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags);
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
__attribute__ ((__format__ (__printf__, 2, 3)));
extern CPUState *first_cpu;
extern CPUState *cpu_single_env;
extern int64_t qemu_icount;
extern int use_icount;
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
#define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
#define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
#define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
void cpu_interrupt(CPUState *s, int mask);
void cpu_reset_interrupt(CPUState *env, int mask);
void cpu_exit(CPUState *s);
int qemu_cpu_has_work(CPUState *env);
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ 0x01
#define BP_MEM_WRITE 0x02
#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
#define BP_STOP_BEFORE_ACCESS 0x04
#define BP_WATCHPOINT_HIT 0x08
#define BP_GDB 0x10
#define BP_CPU 0x20
int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
CPUBreakpoint **breakpoint);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
void cpu_breakpoint_remove_all(CPUState *env, int mask);
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint);
int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
target_ulong len, int flags);
void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
void cpu_watchpoint_remove_all(CPUState *env, int mask);
#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
#define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */
void cpu_single_step(CPUState *env, int enabled);
void cpu_reset(CPUState *s);
/* Return the physical page corresponding to a virtual one. Use it
only for debugging because no protection checks are done. Return -1
if no page found. */
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
#define CPU_LOG_TB_OUT_ASM (1 << 0)
#define CPU_LOG_TB_IN_ASM (1 << 1)
#define CPU_LOG_TB_OP (1 << 2)
#define CPU_LOG_TB_OP_OPT (1 << 3)
#define CPU_LOG_INT (1 << 4)
#define CPU_LOG_EXEC (1 << 5)
#define CPU_LOG_PCALL (1 << 6)
#define CPU_LOG_IOPORT (1 << 7)
#define CPU_LOG_TB_CPU (1 << 8)
#define CPU_LOG_RESET (1 << 9)
/* define log items */
typedef struct CPULogItem {
int mask;
const char *name;
const char *help;
} CPULogItem;
extern const CPULogItem cpu_log_items[];
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
int cpu_str_to_log_mask(const char *str);
/* IO ports API */
#include "ioport.h"
/* memory API */
extern int phys_ram_fd;
extern uint8_t *phys_ram_dirty;
extern ram_addr_t ram_size;
extern ram_addr_t last_ram_offset;
/* physical memory access */
/* MMIO pages are identified by a combination of an IO device index and
3 flags. The ROMD code stores the page ram offset in iotlb entry,
so only a limited number of ids are avaiable. */
#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
/* Flags stored in the low bits of the TLB virtual address. These are
defined so that fast path ram access is all zeros. */
/* Zero if TLB entry is valid. */
#define TLB_INVALID_MASK (1 << 3)
/* Set if TLB entry references a clean RAM page. The iotlb entry will
contain the page physical address. */
#define TLB_NOTDIRTY (1 << 4)
/* Set if TLB entry is an IO callback. */
#define TLB_MMIO (1 << 5)
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write);
#define VGA_DIRTY_FLAG 0x01
#define CODE_DIRTY_FLAG 0x02
#define MIGRATION_DIRTY_FLAG 0x08
/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
{
return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
int dirty_flags)
{
return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
}
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
{
phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
}
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags);
void cpu_tlb_update_dirty(CPUState *env);
int cpu_physical_memory_set_dirty_tracking(int enable);
int cpu_physical_memory_get_dirty_tracking(void);
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
target_phys_addr_t end_addr);
void dump_exec_info(FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
/* Coalesced MMIO regions are areas where write operations can be reordered.
* This usually implies that write operations are side-effect free. This allows
* batching which can make a major impact on performance when using
* virtualization.
*/
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
/*******************************************/
/* host CPU ticks (if available) */
#if defined(_ARCH_PPC)
static inline int64_t cpu_get_real_ticks(void)
{
int64_t retval;
#ifdef _ARCH_PPC64
/* This reads timebase in one 64bit go and includes Cell workaround from:
http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
*/
__asm__ __volatile__ (
"mftb %0\n\t"
"cmpwi %0,0\n\t"
"beq- $-8"
: "=r" (retval));
#else
/* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
unsigned long junk;
__asm__ __volatile__ (
"mftbu %1\n\t"
"mftb %L0\n\t"
"mftbu %0\n\t"
"cmpw %0,%1\n\t"
"bne $-16"
: "=r" (retval), "=r" (junk));
#endif
return retval;
}
#elif defined(__i386__)
static inline int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm volatile ("rdtsc" : "=A" (val));
return val;
}
#elif defined(__x86_64__)
static inline int64_t cpu_get_real_ticks(void)
{
uint32_t low,high;
int64_t val;
asm volatile("rdtsc" : "=a" (low), "=d" (high));
val = high;
val <<= 32;
val |= low;
return val;
}
#elif defined(__hppa__)
static inline int64_t cpu_get_real_ticks(void)
{
int val;
asm volatile ("mfctl %%cr16, %0" : "=r"(val));
return val;
}
#elif defined(__ia64)
static inline int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
return val;
}
#elif defined(__s390__)
static inline int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
return val;
}
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
static inline int64_t cpu_get_real_ticks (void)
{
#if defined(_LP64)
uint64_t rval;
asm volatile("rd %%tick,%0" : "=r"(rval));
return rval;
#else
union {
uint64_t i64;
struct {
uint32_t high;
uint32_t low;
} i32;
} rval;
asm volatile("rd %%tick,%1; srlx %1,32,%0"
: "=r"(rval.i32.high), "=r"(rval.i32.low));
return rval.i64;
#endif
}
#elif defined(__mips__)
static inline int64_t cpu_get_real_ticks(void)
{
#if __mips_isa_rev >= 2
uint32_t count;
static uint32_t cyc_per_count = 0;
if (!cyc_per_count)
__asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
__asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
return (int64_t)(count * cyc_per_count);
#else
/* FIXME */
static int64_t ticks = 0;
return ticks++;
#endif
}
#else
/* The host CPU doesn't have an easily accessible cycle counter.
Just return a monotonically increasing value. This will be
totally wrong, but hopefully better than nothing. */
static inline int64_t cpu_get_real_ticks (void)
{
static int64_t ticks = 0;
return ticks++;
}
#endif
/* profiling */
#ifdef CONFIG_PROFILER
static inline int64_t profile_getclock(void)
{
return cpu_get_real_ticks();
}
extern int64_t qemu_time, qemu_time_start;
extern int64_t tlb_flush_time;
extern int64_t dev_time;
#endif
void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
uint64_t mcg_status, uint64_t addr, uint64_t misc);
#endif /* CPU_ALL_H */