qemu/target-arm/op_neon.h
pbrook 9ee6e8bb85 ARMv7 support.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3572 c046a42c-6fe2-441c-8c8c-71466251a162
2007-11-11 00:04:49 +00:00

1755 lines
36 KiB
C

/*
* ARM NEON vector operations.
*
* Copyright (c) 2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licenced under the GPL.
*/
/* Note that for NEON an "l" prefix means it is a wide operation, unlike
scalar arm ops where it means a word size operation. */
/* ??? NEON ops should probably have their own float status. */
#define NFS &env->vfp.fp_status
#define NEON_OP(name) void OPPROTO op_neon_##name (void)
NEON_OP(getreg_T0)
{
T0 = *(uint32_t *)((char *) env + PARAM1);
}
NEON_OP(getreg_T1)
{
T1 = *(uint32_t *)((char *) env + PARAM1);
}
NEON_OP(getreg_T2)
{
T2 = *(uint32_t *)((char *) env + PARAM1);
}
NEON_OP(setreg_T0)
{
*(uint32_t *)((char *) env + PARAM1) = T0;
}
NEON_OP(setreg_T1)
{
*(uint32_t *)((char *) env + PARAM1) = T1;
}
NEON_OP(setreg_T2)
{
*(uint32_t *)((char *) env + PARAM1) = T2;
}
#define NEON_TYPE1(name, type) \
typedef struct \
{ \
type v1; \
} neon_##name;
#ifdef WORDS_BIGENDIAN
#define NEON_TYPE2(name, type) \
typedef struct \
{ \
type v2; \
type v1; \
} neon_##name;
#define NEON_TYPE4(name, type) \
typedef struct \
{ \
type v4; \
type v3; \
type v2; \
type v1; \
} neon_##name;
#else
#define NEON_TYPE2(name, type) \
typedef struct \
{ \
type v1; \
type v2; \
} neon_##name;
#define NEON_TYPE4(name, type) \
typedef struct \
{ \
type v1; \
type v2; \
type v3; \
type v4; \
} neon_##name;
#endif
NEON_TYPE4(s8, int8_t)
NEON_TYPE4(u8, uint8_t)
NEON_TYPE2(s16, int16_t)
NEON_TYPE2(u16, uint16_t)
NEON_TYPE1(s32, int32_t)
NEON_TYPE1(u32, uint32_t)
#undef NEON_TYPE4
#undef NEON_TYPE2
#undef NEON_TYPE1
/* Copy from a uint32_t to a vector structure type. */
#define NEON_UNPACK(vtype, dest, val) do { \
union { \
vtype v; \
uint32_t i; \
} conv_u; \
conv_u.i = (val); \
dest = conv_u.v; \
} while(0)
/* Copy from a vector structure type to a uint32_t. */
#define NEON_PACK(vtype, dest, val) do { \
union { \
vtype v; \
uint32_t i; \
} conv_u; \
conv_u.v = (val); \
dest = conv_u.i; \
} while(0)
#define NEON_DO1 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
#define NEON_DO2 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
#define NEON_DO4 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
#define NEON_VOP(name, vtype, n) \
NEON_OP(name) \
{ \
vtype vsrc1; \
vtype vsrc2; \
vtype vdest; \
NEON_UNPACK(vtype, vsrc1, T0); \
NEON_UNPACK(vtype, vsrc2, T1); \
NEON_DO##n; \
NEON_PACK(vtype, T0, vdest); \
FORCE_RET(); \
}
#define NEON_VOP1(name, vtype, n) \
NEON_OP(name) \
{ \
vtype vsrc1; \
vtype vdest; \
NEON_UNPACK(vtype, vsrc1, T0); \
NEON_DO##n; \
NEON_PACK(vtype, T0, vdest); \
FORCE_RET(); \
}
/* Pairwise operations. */
/* For 32-bit elements each segment only contains a single element, so
the elementwise and pairwise operations are the same. */
#define NEON_PDO2 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
#define NEON_PDO4 \
NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
#define NEON_POP(name, vtype, n) \
NEON_OP(name) \
{ \
vtype vsrc1; \
vtype vsrc2; \
vtype vdest; \
NEON_UNPACK(vtype, vsrc1, T0); \
NEON_UNPACK(vtype, vsrc2, T1); \
NEON_PDO##n; \
NEON_PACK(vtype, T0, vdest); \
FORCE_RET(); \
}
#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
NEON_VOP(hadd_s8, neon_s8, 4)
NEON_VOP(hadd_u8, neon_u8, 4)
NEON_VOP(hadd_s16, neon_s16, 2)
NEON_VOP(hadd_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(hadd_s32)
{
int32_t src1 = T0;
int32_t src2 = T1;
int32_t dest;
dest = (src1 >> 1) + (src2 >> 1);
if (src1 & src2 & 1)
dest++;
T0 = dest;
FORCE_RET();
}
NEON_OP(hadd_u32)
{
uint32_t src1 = T0;
uint32_t src2 = T1;
uint32_t dest;
dest = (src1 >> 1) + (src2 >> 1);
if (src1 & src2 & 1)
dest++;
T0 = dest;
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
NEON_VOP(rhadd_s8, neon_s8, 4)
NEON_VOP(rhadd_u8, neon_u8, 4)
NEON_VOP(rhadd_s16, neon_s16, 2)
NEON_VOP(rhadd_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(rhadd_s32)
{
int32_t src1 = T0;
int32_t src2 = T1;
int32_t dest;
dest = (src1 >> 1) + (src2 >> 1);
if ((src1 | src2) & 1)
dest++;
T0 = dest;
FORCE_RET();
}
NEON_OP(rhadd_u32)
{
uint32_t src1 = T0;
uint32_t src2 = T1;
uint32_t dest;
dest = (src1 >> 1) + (src2 >> 1);
if ((src1 | src2) & 1)
dest++;
T0 = dest;
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
NEON_VOP(hsub_s8, neon_s8, 4)
NEON_VOP(hsub_u8, neon_u8, 4)
NEON_VOP(hsub_s16, neon_s16, 2)
NEON_VOP(hsub_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(hsub_s32)
{
int32_t src1 = T0;
int32_t src2 = T1;
int32_t dest;
dest = (src1 >> 1) - (src2 >> 1);
if ((~src1) & src2 & 1)
dest--;
T0 = dest;
FORCE_RET();
}
NEON_OP(hsub_u32)
{
uint32_t src1 = T0;
uint32_t src2 = T1;
uint32_t dest;
dest = (src1 >> 1) - (src2 >> 1);
if ((~src1) & src2 & 1)
dest--;
T0 = dest;
FORCE_RET();
}
/* ??? bsl, bif and bit are all the same op, just with the oparands in a
differnet order. It's currently easier to have 3 differnt ops than
rearange the operands. */
/* Bitwise Select. */
NEON_OP(bsl)
{
T0 = (T0 & T2) | (T1 & ~T2);
}
/* Bitwise Insert If True. */
NEON_OP(bit)
{
T0 = (T0 & T1) | (T2 & ~T1);
}
/* Bitwise Insert If False. */
NEON_OP(bif)
{
T0 = (T2 & T1) | (T0 & ~T1);
}
#define NEON_USAT(dest, src1, src2, type) do { \
uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
if (tmp != (type)tmp) { \
env->QF = 1; \
dest = ~0; \
} else { \
dest = tmp; \
}} while(0)
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
NEON_VOP(qadd_u8, neon_u8, 4)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
NEON_VOP(qadd_u16, neon_u16, 2)
#undef NEON_FN
#undef NEON_USAT
#define NEON_SSAT(dest, src1, src2, type) do { \
int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
if (tmp != (type)tmp) { \
env->QF = 1; \
if (src2 > 0) { \
tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
} else { \
tmp = 1 << (sizeof(type) * 8 - 1); \
} \
} \
dest = tmp; \
} while(0)
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
NEON_VOP(qadd_s8, neon_s8, 4)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
NEON_VOP(qadd_s16, neon_s16, 2)
#undef NEON_FN
#undef NEON_SSAT
#define NEON_USAT(dest, src1, src2, type) do { \
uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
if (tmp != (type)tmp) { \
env->QF = 1; \
dest = 0; \
} else { \
dest = tmp; \
}} while(0)
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
NEON_VOP(qsub_u8, neon_u8, 4)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
NEON_VOP(qsub_u16, neon_u16, 2)
#undef NEON_FN
#undef NEON_USAT
#define NEON_SSAT(dest, src1, src2, type) do { \
int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
if (tmp != (type)tmp) { \
env->QF = 1; \
if (src2 < 0) { \
tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
} else { \
tmp = 1 << (sizeof(type) * 8 - 1); \
} \
} \
dest = tmp; \
} while(0)
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
NEON_VOP(qsub_s8, neon_s8, 4)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
NEON_VOP(qsub_s16, neon_s16, 2)
#undef NEON_FN
#undef NEON_SSAT
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
NEON_VOP(cgt_s8, neon_s8, 4)
NEON_VOP(cgt_u8, neon_u8, 4)
NEON_VOP(cgt_s16, neon_s16, 2)
NEON_VOP(cgt_u16, neon_u16, 2)
NEON_VOP(cgt_s32, neon_s32, 1)
NEON_VOP(cgt_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
NEON_VOP(cge_s8, neon_s8, 4)
NEON_VOP(cge_u8, neon_u8, 4)
NEON_VOP(cge_s16, neon_s16, 2)
NEON_VOP(cge_u16, neon_u16, 2)
NEON_VOP(cge_s32, neon_s32, 1)
NEON_VOP(cge_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src2; \
if (tmp < 0) { \
dest = src1 >> -tmp; \
} else { \
dest = src1 << tmp; \
}} while (0)
NEON_VOP(shl_s8, neon_s8, 4)
NEON_VOP(shl_u8, neon_u8, 4)
NEON_VOP(shl_s16, neon_s16, 2)
NEON_VOP(shl_u16, neon_u16, 2)
NEON_VOP(shl_s32, neon_s32, 1)
NEON_VOP(shl_u32, neon_u32, 1)
#undef NEON_FN
NEON_OP(shl_u64)
{
int8_t shift = T2;
uint64_t val = T0 | ((uint64_t)T1 << 32);
if (shift < 0) {
val >>= -shift;
} else {
val <<= shift;
}
T0 = val;
T1 = val >> 32;
FORCE_RET();
}
NEON_OP(shl_s64)
{
int8_t shift = T2;
int64_t val = T0 | ((uint64_t)T1 << 32);
if (shift < 0) {
val >>= -shift;
} else {
val <<= shift;
}
T0 = val;
T1 = val >> 32;
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src1; \
if (tmp < 0) { \
dest = (src2 + (1 << (-1 - tmp))) >> -tmp; \
} else { \
dest = src2 << tmp; \
}} while (0)
NEON_VOP(rshl_s8, neon_s8, 4)
NEON_VOP(rshl_u8, neon_u8, 4)
NEON_VOP(rshl_s16, neon_s16, 2)
NEON_VOP(rshl_u16, neon_u16, 2)
NEON_VOP(rshl_s32, neon_s32, 1)
NEON_VOP(rshl_u32, neon_u32, 1)
#undef NEON_FN
NEON_OP(rshl_u64)
{
int8_t shift = T2;
uint64_t val = T0 | ((uint64_t)T1 << 32);
if (shift < 0) {
val = (val + ((uint64_t)1 << (-1 - shift))) >> -shift;
val >>= -shift;
} else {
val <<= shift;
}
T0 = val;
T1 = val >> 32;
FORCE_RET();
}
NEON_OP(rshl_s64)
{
int8_t shift = T2;
int64_t val = T0 | ((uint64_t)T1 << 32);
if (shift < 0) {
val = (val + ((int64_t)1 << (-1 - shift))) >> -shift;
} else {
val <<= shift;
}
T0 = val;
T1 = val >> 32;
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src1; \
if (tmp < 0) { \
dest = src2 >> -tmp; \
} else { \
dest = src2 << tmp; \
if ((dest >> tmp) != src2) { \
env->QF = 1; \
dest = ~0; \
} \
}} while (0)
NEON_VOP(qshl_s8, neon_s8, 4)
NEON_VOP(qshl_s16, neon_s16, 2)
NEON_VOP(qshl_s32, neon_s32, 1)
#undef NEON_FN
NEON_OP(qshl_s64)
{
int8_t shift = T2;
int64_t val = T0 | ((uint64_t)T1 << 32);
if (shift < 0) {
val >>= -shift;
} else {
int64_t tmp = val;
val <<= shift;
if ((val >> shift) != tmp) {
env->QF = 1;
val = (tmp >> 63) ^ 0x7fffffffffffffffULL;
}
}
T0 = val;
T1 = val >> 32;
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src1; \
if (tmp < 0) { \
dest = src2 >> -tmp; \
} else { \
dest = src2 << tmp; \
if ((dest >> tmp) != src2) { \
env->QF = 1; \
dest = src2 >> 31; \
} \
}} while (0)
NEON_VOP(qshl_u8, neon_u8, 4)
NEON_VOP(qshl_u16, neon_u16, 2)
NEON_VOP(qshl_u32, neon_u32, 1)
#undef NEON_FN
NEON_OP(qshl_u64)
{
int8_t shift = T2;
uint64_t val = T0 | ((uint64_t)T1 << 32);
if (shift < 0) {
val >>= -shift;
} else {
uint64_t tmp = val;
val <<= shift;
if ((val >> shift) != tmp) {
env->QF = 1;
val = ~(uint64_t)0;
}
}
T0 = val;
T1 = val >> 32;
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src1; \
if (tmp < 0) { \
dest = (src2 + (1 << (-1 - tmp))) >> -tmp; \
} else { \
dest = src2 << tmp; \
if ((dest >> tmp) != src2) { \
dest = ~0; \
} \
}} while (0)
NEON_VOP(qrshl_s8, neon_s8, 4)
NEON_VOP(qrshl_s16, neon_s16, 2)
NEON_VOP(qrshl_s32, neon_s32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) do { \
int8_t tmp; \
tmp = (int8_t)src1; \
if (tmp < 0) { \
dest = (src2 + (1 << (-1 - tmp))) >> -tmp; \
} else { \
dest = src2 << tmp; \
if ((dest >> tmp) != src2) { \
env->QF = 1; \
dest = src2 >> 31; \
} \
}} while (0)
NEON_VOP(qrshl_u8, neon_u8, 4)
NEON_VOP(qrshl_u16, neon_u16, 2)
NEON_VOP(qrshl_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
NEON_VOP(max_s8, neon_s8, 4)
NEON_VOP(max_u8, neon_u8, 4)
NEON_VOP(max_s16, neon_s16, 2)
NEON_VOP(max_u16, neon_u16, 2)
NEON_VOP(max_s32, neon_s32, 1)
NEON_VOP(max_u32, neon_u32, 1)
NEON_POP(pmax_s8, neon_s8, 4)
NEON_POP(pmax_u8, neon_u8, 4)
NEON_POP(pmax_s16, neon_s16, 2)
NEON_POP(pmax_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(max_f32)
{
float32 f0 = vfp_itos(T0);
float32 f1 = vfp_itos(T1);
T0 = (float32_compare_quiet(f0, f1, NFS) == 1) ? T0 : T1;
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
NEON_VOP(min_s8, neon_s8, 4)
NEON_VOP(min_u8, neon_u8, 4)
NEON_VOP(min_s16, neon_s16, 2)
NEON_VOP(min_u16, neon_u16, 2)
NEON_VOP(min_s32, neon_s32, 1)
NEON_VOP(min_u32, neon_u32, 1)
NEON_POP(pmin_s8, neon_s8, 4)
NEON_POP(pmin_u8, neon_u8, 4)
NEON_POP(pmin_s16, neon_s16, 2)
NEON_POP(pmin_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(min_f32)
{
float32 f0 = vfp_itos(T0);
float32 f1 = vfp_itos(T1);
T0 = (float32_compare_quiet(f0, f1, NFS) == -1) ? T0 : T1;
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) \
dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
NEON_VOP(abd_s8, neon_s8, 4)
NEON_VOP(abd_u8, neon_u8, 4)
NEON_VOP(abd_s16, neon_s16, 2)
NEON_VOP(abd_u16, neon_u16, 2)
NEON_VOP(abd_s32, neon_s32, 1)
NEON_VOP(abd_u32, neon_u32, 1)
#undef NEON_FN
NEON_OP(abd_f32)
{
float32 f0 = vfp_itos(T0);
float32 f1 = vfp_itos(T1);
T0 = vfp_stoi((float32_compare_quiet(f0, f1, NFS) == 1)
? float32_sub(f0, f1, NFS)
: float32_sub(f1, f0, NFS));
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) dest = src1 + src2
NEON_VOP(add_u8, neon_u8, 4)
NEON_VOP(add_u16, neon_u16, 2)
NEON_POP(padd_u8, neon_u8, 4)
NEON_POP(padd_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(add_f32)
{
T0 = vfp_stoi(float32_add(vfp_itos(T0), vfp_itos(T1), NFS));
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) dest = src1 - src2
NEON_VOP(sub_u8, neon_u8, 4)
NEON_VOP(sub_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(sub_f32)
{
T0 = vfp_stoi(float32_sub(vfp_itos(T0), vfp_itos(T1), NFS));
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) dest = src2 - src1
NEON_VOP(rsb_u8, neon_u8, 4)
NEON_VOP(rsb_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(rsb_f32)
{
T0 = vfp_stoi(float32_sub(vfp_itos(T1), vfp_itos(T0), NFS));
FORCE_RET();
}
#define NEON_FN(dest, src1, src2) dest = src1 * src2
NEON_VOP(mul_u8, neon_u8, 4)
NEON_VOP(mul_u16, neon_u16, 2)
#undef NEON_FN
NEON_OP(mul_f32)
{
T0 = vfp_stoi(float32_mul(vfp_itos(T0), vfp_itos(T1), NFS));
FORCE_RET();
}
NEON_OP(mul_p8)
{
T0 = helper_neon_mul_p8(T0, T1);
}
#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
NEON_VOP(tst_u8, neon_u8, 4)
NEON_VOP(tst_u16, neon_u16, 2)
NEON_VOP(tst_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
NEON_VOP(ceq_u8, neon_u8, 4)
NEON_VOP(ceq_u16, neon_u16, 2)
NEON_VOP(ceq_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_QDMULH16(dest, src1, src2, round) do { \
uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
env->QF = 1; \
tmp = (tmp >> 31) ^ ~SIGNBIT; \
} \
tmp <<= 1; \
if (round) { \
int32_t old = tmp; \
tmp += 1 << 15; \
if ((int32_t)tmp < old) { \
env->QF = 1; \
tmp = SIGNBIT - 1; \
} \
} \
dest = tmp >> 16; \
} while(0)
#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
NEON_VOP(qdmulh_s16, neon_s16, 2)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
NEON_VOP(qrdmulh_s16, neon_s16, 2)
#undef NEON_FN
#undef NEON_QDMULH16
#define SIGNBIT64 ((uint64_t)1 << 63)
#define NEON_QDMULH32(dest, src1, src2, round) do { \
uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
env->QF = 1; \
tmp = (tmp >> 63) ^ ~SIGNBIT64; \
} else { \
tmp <<= 1; \
} \
if (round) { \
int64_t old = tmp; \
tmp += (int64_t)1 << 31; \
if ((int64_t)tmp < old) { \
env->QF = 1; \
tmp = SIGNBIT64 - 1; \
} \
} \
dest = tmp >> 32; \
} while(0)
#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
NEON_VOP(qdmulh_s32, neon_s32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
NEON_VOP(qrdmulh_s32, neon_s32, 1)
#undef NEON_FN
#undef NEON_QDMULH32
NEON_OP(recps_f32)
{
T0 = vfp_stoi(helper_recps_f32(vfp_itos(T0), vfp_itos(T1)));
FORCE_RET();
}
NEON_OP(rsqrts_f32)
{
T0 = vfp_stoi(helper_rsqrts_f32(vfp_itos(T0), vfp_itos(T1)));
FORCE_RET();
}
/* Floating point comparisons produce an integer result. */
#define NEON_VOP_FCMP(name, cmp) \
NEON_OP(name) \
{ \
if (float32_compare_quiet(vfp_itos(T0), vfp_itos(T1), NFS) cmp 0) \
T0 = -1; \
else \
T0 = 0; \
FORCE_RET(); \
}
NEON_VOP_FCMP(ceq_f32, ==)
NEON_VOP_FCMP(cge_f32, >=)
NEON_VOP_FCMP(cgt_f32, >)
NEON_OP(acge_f32)
{
float32 f0 = float32_abs(vfp_itos(T0));
float32 f1 = float32_abs(vfp_itos(T1));
T0 = (float32_compare_quiet(f0, f1,NFS) >= 0) ? -1 : 0;
FORCE_RET();
}
NEON_OP(acgt_f32)
{
float32 f0 = float32_abs(vfp_itos(T0));
float32 f1 = float32_abs(vfp_itos(T1));
T0 = (float32_compare_quiet(f0, f1, NFS) > 0) ? -1 : 0;
FORCE_RET();
}
/* Narrowing instructions. The named type is the destination type. */
NEON_OP(narrow_u8)
{
T0 = (T0 & 0xff) | ((T0 >> 8) & 0xff00)
| ((T1 << 16) & 0xff0000) | (T1 << 24);
FORCE_RET();
}
NEON_OP(narrow_sat_u8)
{
neon_u16 src;
neon_u8 dest;
#define SAT8(d, s) \
if (s > 0xff) { \
d = 0xff; \
env->QF = 1; \
} else { \
d = s; \
}
NEON_UNPACK(neon_u16, src, T0);
SAT8(dest.v1, src.v1);
SAT8(dest.v2, src.v2);
NEON_UNPACK(neon_u16, src, T1);
SAT8(dest.v3, src.v1);
SAT8(dest.v4, src.v2);
NEON_PACK(neon_u8, T0, dest);
FORCE_RET();
#undef SAT8
}
NEON_OP(narrow_sat_s8)
{
neon_s16 src;
neon_s8 dest;
#define SAT8(d, s) \
if (s != (uint8_t)s) { \
d = (s >> 15) ^ 0x7f; \
env->QF = 1; \
} else { \
d = s; \
}
NEON_UNPACK(neon_s16, src, T0);
SAT8(dest.v1, src.v1);
SAT8(dest.v2, src.v2);
NEON_UNPACK(neon_s16, src, T1);
SAT8(dest.v3, src.v1);
SAT8(dest.v4, src.v2);
NEON_PACK(neon_s8, T0, dest);
FORCE_RET();
#undef SAT8
}
NEON_OP(narrow_u16)
{
T0 = (T0 & 0xffff) | (T1 << 16);
}
NEON_OP(narrow_sat_u16)
{
if (T0 > 0xffff) {
T0 = 0xffff;
env->QF = 1;
}
if (T1 > 0xffff) {
T1 = 0xffff;
env->QF = 1;
}
T0 |= T1 << 16;
FORCE_RET();
}
NEON_OP(narrow_sat_s16)
{
if ((int32_t)T0 != (int16_t)T0) {
T0 = ((int32_t)T0 >> 31) ^ 0x7fff;
env->QF = 1;
}
if ((int32_t)T1 != (int16_t) T1) {
T1 = ((int32_t)T1 >> 31) ^ 0x7fff;
env->QF = 1;
}
T0 = (uint16_t)T0 | (T1 << 16);
FORCE_RET();
}
NEON_OP(narrow_sat_u32)
{
if (T1) {
T0 = 0xffffffffu;
env->QF = 1;
}
FORCE_RET();
}
NEON_OP(narrow_sat_s32)
{
int32_t sign = (int32_t)T1 >> 31;
if ((int32_t)T1 != sign) {
T0 = sign ^ 0x7fffffff;
env->QF = 1;
}
FORCE_RET();
}
/* Narrowing instructions. Named type is the narrow type. */
NEON_OP(narrow_high_u8)
{
T0 = ((T0 >> 8) & 0xff) | ((T0 >> 16) & 0xff00)
| ((T1 << 8) & 0xff0000) | (T1 & 0xff000000);
FORCE_RET();
}
NEON_OP(narrow_high_u16)
{
T0 = (T0 >> 16) | (T1 & 0xffff0000);
FORCE_RET();
}
NEON_OP(narrow_high_round_u8)
{
T0 = (((T0 + 0x80) >> 8) & 0xff) | (((T0 + 0x800000) >> 16) & 0xff00)
| (((T1 + 0x80) << 8) & 0xff0000) | ((T1 + 0x800000) & 0xff000000);
FORCE_RET();
}
NEON_OP(narrow_high_round_u16)
{
T0 = ((T0 + 0x8000) >> 16) | ((T1 + 0x8000) & 0xffff0000);
FORCE_RET();
}
NEON_OP(narrow_high_round_u32)
{
if (T0 >= 0x80000000u)
T0 = T1 + 1;
else
T0 = T1;
FORCE_RET();
}
/* Widening instructions. Named type is source type. */
NEON_OP(widen_s8)
{
uint32_t src;
src = T0;
T0 = (uint16_t)(int8_t)src | ((int8_t)(src >> 8) << 16);
T1 = (uint16_t)(int8_t)(src >> 16) | ((int8_t)(src >> 24) << 16);
}
NEON_OP(widen_u8)
{
T1 = ((T0 >> 8) & 0xff0000) | ((T0 >> 16) & 0xff);
T0 = ((T0 << 8) & 0xff0000) | (T0 & 0xff);
}
NEON_OP(widen_s16)
{
int32_t src;
src = T0;
T0 = (int16_t)src;
T1 = src >> 16;
}
NEON_OP(widen_u16)
{
T1 = T0 >> 16;
T0 &= 0xffff;
}
NEON_OP(widen_s32)
{
T1 = (int32_t)T0 >> 31;
FORCE_RET();
}
NEON_OP(widen_high_u8)
{
T1 = (T0 & 0xff000000) | ((T0 >> 8) & 0xff00);
T0 = ((T0 << 16) & 0xff000000) | ((T0 << 8) & 0xff00);
}
NEON_OP(widen_high_u16)
{
T1 = T0 & 0xffff0000;
T0 <<= 16;
}
/* Long operations. The type is the wide type. */
NEON_OP(shll_u16)
{
int shift = PARAM1;
uint32_t mask;
mask = 0xffff >> (16 - shift);
mask |= mask << 16;
mask = ~mask;
T0 = (T0 << shift) & mask;
T1 = (T1 << shift) & mask;
FORCE_RET();
}
NEON_OP(shll_u64)
{
int shift = PARAM1;
T1 <<= shift;
T1 |= T0 >> (32 - shift);
T0 <<= shift;
FORCE_RET();
}
NEON_OP(addl_u16)
{
uint32_t tmp;
uint32_t high;
tmp = env->vfp.scratch[0];
high = (T0 >> 16) + (tmp >> 16);
T0 = (uint16_t)(T0 + tmp);
T0 |= (high << 16);
tmp = env->vfp.scratch[1];
high = (T1 >> 16) + (tmp >> 16);
T1 = (uint16_t)(T1 + tmp);
T1 |= (high << 16);
FORCE_RET();
}
NEON_OP(addl_u32)
{
T0 += env->vfp.scratch[0];
T1 += env->vfp.scratch[1];
FORCE_RET();
}
NEON_OP(addl_u64)
{
uint64_t tmp;
tmp = T0 | ((uint64_t)T1 << 32);
tmp += env->vfp.scratch[0];
tmp += (uint64_t)env->vfp.scratch[1] << 32;
T0 = tmp;
T1 = tmp >> 32;
FORCE_RET();
}
NEON_OP(subl_u16)
{
uint32_t tmp;
uint32_t high;
tmp = env->vfp.scratch[0];
high = (T0 >> 16) - (tmp >> 16);
T0 = (uint16_t)(T0 - tmp);
T0 |= (high << 16);
tmp = env->vfp.scratch[1];
high = (T1 >> 16) - (tmp >> 16);
T1 = (uint16_t)(T1 - tmp);
T1 |= (high << 16);
FORCE_RET();
}
NEON_OP(subl_u32)
{
T0 -= env->vfp.scratch[0];
T1 -= env->vfp.scratch[1];
FORCE_RET();
}
NEON_OP(subl_u64)
{
uint64_t tmp;
tmp = T0 | ((uint64_t)T1 << 32);
tmp -= env->vfp.scratch[0];
tmp -= (uint64_t)env->vfp.scratch[1] << 32;
T0 = tmp;
T1 = tmp >> 32;
FORCE_RET();
}
#define DO_ABD(dest, x, y, type) do { \
type tmp_x = x; \
type tmp_y = y; \
dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
} while(0)
NEON_OP(abdl_u16)
{
uint32_t tmp;
uint32_t low;
uint32_t high;
DO_ABD(low, T0, T1, uint8_t);
DO_ABD(tmp, T0 >> 8, T1 >> 8, uint8_t);
low |= tmp << 16;
DO_ABD(high, T0 >> 16, T1 >> 16, uint8_t);
DO_ABD(tmp, T0 >> 24, T1 >> 24, uint8_t);
high |= tmp << 16;
T0 = low;
T1 = high;
FORCE_RET();
}
NEON_OP(abdl_s16)
{
uint32_t tmp;
uint32_t low;
uint32_t high;
DO_ABD(low, T0, T1, int8_t);
DO_ABD(tmp, T0 >> 8, T1 >> 8, int8_t);
low |= tmp << 16;
DO_ABD(high, T0 >> 16, T1 >> 16, int8_t);
DO_ABD(tmp, T0 >> 24, T1 >> 24, int8_t);
high |= tmp << 16;
T0 = low;
T1 = high;
FORCE_RET();
}
NEON_OP(abdl_u32)
{
uint32_t low;
uint32_t high;
DO_ABD(low, T0, T1, uint16_t);
DO_ABD(high, T0 >> 16, T1 >> 16, uint16_t);
T0 = low;
T1 = high;
FORCE_RET();
}
NEON_OP(abdl_s32)
{
uint32_t low;
uint32_t high;
DO_ABD(low, T0, T1, int16_t);
DO_ABD(high, T0 >> 16, T1 >> 16, int16_t);
T0 = low;
T1 = high;
FORCE_RET();
}
NEON_OP(abdl_u64)
{
DO_ABD(T0, T0, T1, uint32_t);
T1 = 0;
}
NEON_OP(abdl_s64)
{
DO_ABD(T0, T0, T1, int32_t);
T1 = 0;
}
#undef DO_ABD
/* Widening multiple. Named type is the source type. */
#define DO_MULL(dest, x, y, type1, type2) do { \
type1 tmp_x = x; \
type1 tmp_y = y; \
dest = (type2)((type2)tmp_x * (type2)tmp_y); \
} while(0)
NEON_OP(mull_u8)
{
uint32_t tmp;
uint32_t low;
uint32_t high;
DO_MULL(low, T0, T1, uint8_t, uint16_t);
DO_MULL(tmp, T0 >> 8, T1 >> 8, uint8_t, uint16_t);
low |= tmp << 16;
DO_MULL(high, T0 >> 16, T1 >> 16, uint8_t, uint16_t);
DO_MULL(tmp, T0 >> 24, T1 >> 24, uint8_t, uint16_t);
high |= tmp << 16;
T0 = low;
T1 = high;
FORCE_RET();
}
NEON_OP(mull_s8)
{
uint32_t tmp;
uint32_t low;
uint32_t high;
DO_MULL(low, T0, T1, int8_t, uint16_t);
DO_MULL(tmp, T0 >> 8, T1 >> 8, int8_t, uint16_t);
low |= tmp << 16;
DO_MULL(high, T0 >> 16, T1 >> 16, int8_t, uint16_t);
DO_MULL(tmp, T0 >> 24, T1 >> 24, int8_t, uint16_t);
high |= tmp << 16;
T0 = low;
T1 = high;
FORCE_RET();
}
NEON_OP(mull_u16)
{
uint32_t low;
uint32_t high;
DO_MULL(low, T0, T1, uint16_t, uint32_t);
DO_MULL(high, T0 >> 16, T1 >> 16, uint16_t, uint32_t);
T0 = low;
T1 = high;
FORCE_RET();
}
NEON_OP(mull_s16)
{
uint32_t low;
uint32_t high;
DO_MULL(low, T0, T1, int16_t, uint32_t);
DO_MULL(high, T0 >> 16, T1 >> 16, int16_t, uint32_t);
T0 = low;
T1 = high;
FORCE_RET();
}
NEON_OP(addl_saturate_s32)
{
uint32_t tmp;
uint32_t res;
tmp = env->vfp.scratch[0];
res = T0 + tmp;
if (((res ^ T0) & SIGNBIT) && !((T0 ^ tmp) & SIGNBIT)) {
env->QF = 1;
T0 = (T0 >> 31) ^ 0x7fffffff;
} else {
T0 = res;
}
tmp = env->vfp.scratch[1];
res = T1 + tmp;
if (((res ^ T1) & SIGNBIT) && !((T1 ^ tmp) & SIGNBIT)) {
env->QF = 1;
T1 = (T1 >> 31) ^ 0x7fffffff;
} else {
T1 = res;
}
FORCE_RET();
}
NEON_OP(addl_saturate_s64)
{
uint64_t src1;
uint64_t src2;
uint64_t res;
src1 = T0 + ((uint64_t)T1 << 32);
src2 = env->vfp.scratch[0] + ((uint64_t)env->vfp.scratch[1] << 32);
res = src1 + src2;
if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
env->QF = 1;
T0 = ~(int64_t)src1 >> 63;
T1 = T0 ^ 0x80000000;
} else {
T0 = res;
T1 = res >> 32;
}
FORCE_RET();
}
NEON_OP(addl_saturate_u64)
{
uint64_t src1;
uint64_t src2;
uint64_t res;
src1 = T0 + ((uint64_t)T1 << 32);
src2 = env->vfp.scratch[0] + ((uint64_t)env->vfp.scratch[1] << 32);
res = src1 + src2;
if (res < src1) {
env->QF = 1;
T0 = 0xffffffff;
T1 = 0xffffffff;
} else {
T0 = res;
T1 = res >> 32;
}
FORCE_RET();
}
NEON_OP(subl_saturate_s64)
{
uint64_t src1;
uint64_t src2;
uint64_t res;
src1 = T0 + ((uint64_t)T1 << 32);
src2 = env->vfp.scratch[0] + ((uint64_t)env->vfp.scratch[1] << 32);
res = src1 - src2;
if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
env->QF = 1;
T0 = ~(int64_t)src1 >> 63;
T1 = T0 ^ 0x80000000;
} else {
T0 = res;
T1 = res >> 32;
}
FORCE_RET();
}
NEON_OP(subl_saturate_u64)
{
uint64_t src1;
uint64_t src2;
uint64_t res;
src1 = T0 + ((uint64_t)T1 << 32);
src2 = env->vfp.scratch[0] + ((uint64_t)env->vfp.scratch[1] << 32);
if (src1 < src2) {
env->QF = 1;
T0 = 0;
T1 = 0;
} else {
res = src1 - src2;
T0 = res;
T1 = res >> 32;
}
FORCE_RET();
}
NEON_OP(negl_u16)
{
uint32_t tmp;
tmp = T0 >> 16;
tmp = -tmp;
T0 = (-T0 & 0xffff) | (tmp << 16);
tmp = T1 >> 16;
tmp = -tmp;
T1 = (-T1 & 0xffff) | (tmp << 16);
FORCE_RET();
}
NEON_OP(negl_u32)
{
T0 = -T0;
T1 = -T1;
FORCE_RET();
}
NEON_OP(negl_u64)
{
uint64_t val;
val = T0 | ((uint64_t)T1 << 32);
val = -val;
T0 = val;
T1 = val >> 32;
FORCE_RET();
}
/* Scalar operations. */
NEON_OP(dup_low16)
{
T0 = (T0 & 0xffff) | (T0 << 16);
FORCE_RET();
}
NEON_OP(dup_high16)
{
T0 = (T0 >> 16) | (T0 & 0xffff0000);
FORCE_RET();
}
/* Helper for VEXT */
NEON_OP(extract)
{
int shift = PARAM1;
T0 = (T0 >> shift) | (T1 << (32 - shift));
FORCE_RET();
}
/* Pairwise add long. Named type is source type. */
NEON_OP(paddl_s8)
{
int8_t src1;
int8_t src2;
uint16_t result;
src1 = T0 >> 24;
src2 = T0 >> 16;
result = (uint16_t)src1 + src2;
src1 = T0 >> 8;
src2 = T0;
T0 = (uint16_t)((uint16_t)src1 + src2) | ((uint32_t)result << 16);
FORCE_RET();
}
NEON_OP(paddl_u8)
{
uint8_t src1;
uint8_t src2;
uint16_t result;
src1 = T0 >> 24;
src2 = T0 >> 16;
result = (uint16_t)src1 + src2;
src1 = T0 >> 8;
src2 = T0;
T0 = (uint16_t)((uint16_t)src1 + src2) | ((uint32_t)result << 16);
FORCE_RET();
}
NEON_OP(paddl_s16)
{
T0 = (uint32_t)(int16_t)T0 + (uint32_t)(int16_t)(T0 >> 16);
FORCE_RET();
}
NEON_OP(paddl_u16)
{
T0 = (uint32_t)(uint16_t)T0 + (uint32_t)(uint16_t)(T0 >> 16);
FORCE_RET();
}
NEON_OP(paddl_s32)
{
int64_t tmp;
tmp = (int64_t)(int32_t)T0 + (int64_t)(int32_t)T1;
T0 = tmp;
T1 = tmp >> 32;
FORCE_RET();
}
NEON_OP(paddl_u32)
{
uint64_t tmp;
tmp = (uint64_t)T0 + (uint64_t)T1;
T0 = tmp;
T1 = tmp >> 32;
FORCE_RET();
}
/* Count Leading Sign/Zero Bits. */
static inline int do_clz8(uint8_t x)
{
int n;
for (n = 8; x; n--)
x >>= 1;
return n;
}
static inline int do_clz16(uint16_t x)
{
int n;
for (n = 16; x; n--)
x >>= 1;
return n;
}
NEON_OP(clz_u8)
{
uint32_t result;
uint32_t tmp;
tmp = T0;
result = do_clz8(tmp);
result |= do_clz8(tmp >> 8) << 8;
result |= do_clz8(tmp >> 16) << 16;
result |= do_clz8(tmp >> 24) << 24;
T0 = result;
FORCE_RET();
}
NEON_OP(clz_u16)
{
uint32_t result;
uint32_t tmp;
tmp = T0;
result = do_clz16(tmp);
result |= do_clz16(tmp >> 16) << 16;
T0 = result;
FORCE_RET();
}
NEON_OP(cls_s8)
{
uint32_t result;
int8_t tmp;
tmp = T0;
result = do_clz8((tmp < 0) ? ~tmp : tmp) - 1;
tmp = T0 >> 8;
result |= (do_clz8((tmp < 0) ? ~tmp : tmp) - 1) << 8;
tmp = T0 >> 16;
result |= (do_clz8((tmp < 0) ? ~tmp : tmp) - 1) << 16;
tmp = T0 >> 24;
result |= (do_clz8((tmp < 0) ? ~tmp : tmp) - 1) << 24;
T0 = result;
FORCE_RET();
}
NEON_OP(cls_s16)
{
uint32_t result;
int16_t tmp;
tmp = T0;
result = do_clz16((tmp < 0) ? ~tmp : tmp) - 1;
tmp = T0 >> 16;
result |= (do_clz16((tmp < 0) ? ~tmp : tmp) - 1) << 16;
T0 = result;
FORCE_RET();
}
NEON_OP(cls_s32)
{
int count;
if ((int32_t)T0 < 0)
T0 = ~T0;
for (count = 32; T0 > 0; count--)
T0 = T0 >> 1;
T0 = count - 1;
FORCE_RET();
}
/* Bit count. */
NEON_OP(cnt_u8)
{
T0 = (T0 & 0x55555555) + ((T0 >> 1) & 0x55555555);
T0 = (T0 & 0x33333333) + ((T0 >> 2) & 0x33333333);
T0 = (T0 & 0x0f0f0f0f) + ((T0 >> 4) & 0x0f0f0f0f);
FORCE_RET();
}
/* Saturnating negation. */
/* ??? Make these use NEON_VOP1 */
#define DO_QABS8(x) do { \
if (x == (int8_t)0x80) { \
x = 0x7f; \
env->QF = 1; \
} else if (x < 0) { \
x = -x; \
}} while (0)
NEON_OP(qabs_s8)
{
neon_s8 vec;
NEON_UNPACK(neon_s8, vec, T0);
DO_QABS8(vec.v1);
DO_QABS8(vec.v2);
DO_QABS8(vec.v3);
DO_QABS8(vec.v4);
NEON_PACK(neon_s8, T0, vec);
FORCE_RET();
}
#undef DO_QABS8
#define DO_QNEG8(x) do { \
if (x == (int8_t)0x80) { \
x = 0x7f; \
env->QF = 1; \
} else { \
x = -x; \
}} while (0)
NEON_OP(qneg_s8)
{
neon_s8 vec;
NEON_UNPACK(neon_s8, vec, T0);
DO_QNEG8(vec.v1);
DO_QNEG8(vec.v2);
DO_QNEG8(vec.v3);
DO_QNEG8(vec.v4);
NEON_PACK(neon_s8, T0, vec);
FORCE_RET();
}
#undef DO_QNEG8
#define DO_QABS16(x) do { \
if (x == (int16_t)0x8000) { \
x = 0x7fff; \
env->QF = 1; \
} else if (x < 0) { \
x = -x; \
}} while (0)
NEON_OP(qabs_s16)
{
neon_s16 vec;
NEON_UNPACK(neon_s16, vec, T0);
DO_QABS16(vec.v1);
DO_QABS16(vec.v2);
NEON_PACK(neon_s16, T0, vec);
FORCE_RET();
}
#undef DO_QABS16
#define DO_QNEG16(x) do { \
if (x == (int16_t)0x8000) { \
x = 0x7fff; \
env->QF = 1; \
} else { \
x = -x; \
}} while (0)
NEON_OP(qneg_s16)
{
neon_s16 vec;
NEON_UNPACK(neon_s16, vec, T0);
DO_QNEG16(vec.v1);
DO_QNEG16(vec.v2);
NEON_PACK(neon_s16, T0, vec);
FORCE_RET();
}
#undef DO_QNEG16
NEON_OP(qabs_s32)
{
if (T0 == 0x80000000) {
T0 = 0x7fffffff;
env->QF = 1;
} else if ((int32_t)T0 < 0) {
T0 = -T0;
}
FORCE_RET();
}
NEON_OP(qneg_s32)
{
if (T0 == 0x80000000) {
T0 = 0x7fffffff;
env->QF = 1;
} else {
T0 = -T0;
}
FORCE_RET();
}
/* Unary opperations */
#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
NEON_VOP1(abs_s8, neon_s8, 4)
NEON_VOP1(abs_s16, neon_s16, 2)
NEON_OP(abs_s32)
{
if ((int32_t)T0 < 0)
T0 = -T0;
FORCE_RET();
}
#undef NEON_FN
/* Transpose. Argument order is rather strange to avoid special casing
the tranlation code.
On input T0 = rm, T1 = rd. On output T0 = rd, T1 = rm */
NEON_OP(trn_u8)
{
uint32_t rd;
uint32_t rm;
rd = ((T0 & 0x00ff00ff) << 8) | (T1 & 0x00ff00ff);
rm = ((T1 & 0xff00ff00) >> 8) | (T0 & 0xff00ff00);
T0 = rd;
T1 = rm;
FORCE_RET();
}
NEON_OP(trn_u16)
{
uint32_t rd;
uint32_t rm;
rd = (T0 << 16) | (T1 & 0xffff);
rm = (T1 >> 16) | (T0 & 0xffff0000);
T0 = rd;
T1 = rm;
FORCE_RET();
}
/* Worker routines for zip and unzip. */
NEON_OP(unzip_u8)
{
uint32_t rd;
uint32_t rm;
rd = (T0 & 0xff) | ((T0 >> 8) & 0xff00)
| ((T1 << 16) & 0xff0000) | ((T1 << 8) & 0xff000000);
rm = ((T0 >> 8) & 0xff) | ((T0 >> 16) & 0xff00)
| ((T1 << 8) & 0xff0000) | (T1 & 0xff000000);
T0 = rd;
T1 = rm;
FORCE_RET();
}
NEON_OP(zip_u8)
{
uint32_t rd;
uint32_t rm;
rd = (T0 & 0xff) | ((T1 << 8) & 0xff00)
| ((T0 << 16) & 0xff0000) | ((T1 << 24) & 0xff000000);
rm = ((T0 >> 16) & 0xff) | ((T1 >> 8) & 0xff00)
| ((T0 >> 8) & 0xff0000) | (T1 & 0xff000000);
T0 = rd;
T1 = rm;
FORCE_RET();
}
NEON_OP(zip_u16)
{
uint32_t tmp;
tmp = (T0 & 0xffff) | (T1 << 16);
T1 = (T1 & 0xffff0000) | (T0 >> 16);
T0 = tmp;
FORCE_RET();
}
/* Reciprocal/root estimate. */
NEON_OP(recpe_u32)
{
T0 = helper_recpe_u32(T0);
}
NEON_OP(rsqrte_u32)
{
T0 = helper_rsqrte_u32(T0);
}
NEON_OP(recpe_f32)
{
FT0s = helper_recpe_f32(FT0s);
}
NEON_OP(rsqrte_f32)
{
FT0s = helper_rsqrte_f32(FT0s);
}
/* Table lookup. This accessed the register file directly. */
NEON_OP(tbl)
{
helper_neon_tbl(PARAM1, PARAM2);
}
NEON_OP(dup_u8)
{
T0 = (T0 >> PARAM1) & 0xff;
T0 |= T0 << 8;
T0 |= T0 << 16;
FORCE_RET();
}
/* Helpers for element load/store. */
NEON_OP(insert_elt)
{
int shift = PARAM1;
uint32_t mask = PARAM2;
T2 = (T2 & mask) | (T0 << shift);
FORCE_RET();
}
NEON_OP(extract_elt)
{
int shift = PARAM1;
uint32_t mask = PARAM2;
T0 = (T2 & mask) >> shift;
FORCE_RET();
}