qemu/target-arm/op_helper.c
bellard 44f8625d23 fixed invalid type
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3582 c046a42c-6fe2-441c-8c8c-71466251a162
2007-11-11 12:35:55 +00:00

306 lines
8.0 KiB
C

/*
* ARM helper routines
*
* Copyright (c) 2005-2007 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
}
/* thread support */
spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
void cpu_lock(void)
{
spin_lock(&global_cpu_lock);
}
void cpu_unlock(void)
{
spin_unlock(&global_cpu_lock);
}
/* VFP support. */
void do_vfp_abss(void)
{
FT0s = float32_abs(FT0s);
}
void do_vfp_absd(void)
{
FT0d = float64_abs(FT0d);
}
void do_vfp_sqrts(void)
{
FT0s = float32_sqrt(FT0s, &env->vfp.fp_status);
}
void do_vfp_sqrtd(void)
{
FT0d = float64_sqrt(FT0d, &env->vfp.fp_status);
}
/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, size) \
void do_vfp_cmp##p(void) \
{ \
uint32_t flags; \
switch(float ## size ## _compare_quiet(FT0##p, FT1##p, &env->vfp.fp_status)) {\
case 0: flags = 0x6; break;\
case -1: flags = 0x8; break;\
case 1: flags = 0x2; break;\
default: case 2: flags = 0x3; break;\
}\
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28)\
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
FORCE_RET(); \
}\
\
void do_vfp_cmpe##p(void) \
{ \
uint32_t flags; \
switch(float ## size ## _compare(FT0##p, FT1##p, &env->vfp.fp_status)) {\
case 0: flags = 0x6; break;\
case -1: flags = 0x8; break;\
case 1: flags = 0x2; break;\
default: case 2: flags = 0x3; break;\
}\
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28)\
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
FORCE_RET(); \
}
DO_VFP_cmp(s, 32)
DO_VFP_cmp(d, 64)
#undef DO_VFP_cmp
/* Convert host exception flags to vfp form. */
static inline int vfp_exceptbits_from_host(int host_bits)
{
int target_bits = 0;
if (host_bits & float_flag_invalid)
target_bits |= 1;
if (host_bits & float_flag_divbyzero)
target_bits |= 2;
if (host_bits & float_flag_overflow)
target_bits |= 4;
if (host_bits & float_flag_underflow)
target_bits |= 8;
if (host_bits & float_flag_inexact)
target_bits |= 0x10;
return target_bits;
}
/* Convert vfp exception flags to target form. */
static inline int vfp_exceptbits_to_host(int target_bits)
{
int host_bits = 0;
if (target_bits & 1)
host_bits |= float_flag_invalid;
if (target_bits & 2)
host_bits |= float_flag_divbyzero;
if (target_bits & 4)
host_bits |= float_flag_overflow;
if (target_bits & 8)
host_bits |= float_flag_underflow;
if (target_bits & 0x10)
host_bits |= float_flag_inexact;
return host_bits;
}
void do_vfp_set_fpscr(void)
{
int i;
uint32_t changed;
changed = env->vfp.xregs[ARM_VFP_FPSCR];
env->vfp.xregs[ARM_VFP_FPSCR] = (T0 & 0xffc8ffff);
env->vfp.vec_len = (T0 >> 16) & 7;
env->vfp.vec_stride = (T0 >> 20) & 3;
changed ^= T0;
if (changed & (3 << 22)) {
i = (T0 >> 22) & 3;
switch (i) {
case 0:
i = float_round_nearest_even;
break;
case 1:
i = float_round_up;
break;
case 2:
i = float_round_down;
break;
case 3:
i = float_round_to_zero;
break;
}
set_float_rounding_mode(i, &env->vfp.fp_status);
}
i = vfp_exceptbits_to_host((T0 >> 8) & 0x1f);
set_float_exception_flags(i, &env->vfp.fp_status);
/* XXX: FZ and DN are not implemented. */
}
void do_vfp_get_fpscr(void)
{
int i;
T0 = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | (env->vfp.vec_len << 16)
| (env->vfp.vec_stride << 20);
i = get_float_exception_flags(&env->vfp.fp_status);
T0 |= vfp_exceptbits_from_host(i);
}
float32 helper_recps_f32(float32 a, float32 b)
{
float_status *s = &env->vfp.fp_status;
float32 two = int32_to_float32(2, s);
return float32_sub(two, float32_mul(a, b, s), s);
}
float32 helper_rsqrts_f32(float32 a, float32 b)
{
float_status *s = &env->vfp.fp_status;
float32 three = int32_to_float32(3, s);
return float32_sub(three, float32_mul(a, b, s), s);
}
/* TODO: The architecture specifies the value that the estimate functions
should return. We return the exact reciprocal/root instead. */
float32 helper_recpe_f32(float32 a)
{
float_status *s = &env->vfp.fp_status;
float32 one = int32_to_float32(1, s);
return float32_div(one, a, s);
}
float32 helper_rsqrte_f32(float32 a)
{
float_status *s = &env->vfp.fp_status;
float32 one = int32_to_float32(1, s);
return float32_div(one, float32_sqrt(a, s), s);
}
uint32_t helper_recpe_u32(uint32_t a)
{
float_status *s = &env->vfp.fp_status;
float32 tmp;
tmp = int32_to_float32(a, s);
tmp = float32_scalbn(tmp, -32, s);
tmp = helper_recpe_f32(tmp);
tmp = float32_scalbn(tmp, 31, s);
return float32_to_int32(tmp, s);
}
uint32_t helper_rsqrte_u32(uint32_t a)
{
float_status *s = &env->vfp.fp_status;
float32 tmp;
tmp = int32_to_float32(a, s);
tmp = float32_scalbn(tmp, -32, s);
tmp = helper_rsqrte_f32(tmp);
tmp = float32_scalbn(tmp, 31, s);
return float32_to_int32(tmp, s);
}
void helper_neon_tbl(int rn, int maxindex)
{
uint32_t val;
uint32_t mask;
uint32_t tmp;
int index;
int shift;
uint64_t *table;
table = (uint64_t *)&env->vfp.regs[rn];
val = 0;
mask = 0;
for (shift = 0; shift < 32; shift += 8) {
index = (T1 >> shift) & 0xff;
if (index <= maxindex) {
tmp = (table[index >> 3] >> (index & 7)) & 0xff;
val |= tmp << shift;
} else {
val |= T0 & (0xff << shift);
}
}
T0 = val;
}
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#ifdef __s390__
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
#else
# define GETPC() (__builtin_return_address(0))
#endif
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
TranslationBlock *tb;
CPUState *saved_env;
unsigned long pc;
int ret;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_arm_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (__builtin_expect(ret, 0)) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, NULL);
}
}
raise_exception(env->exception_index);
}
env = saved_env;
}
#endif