qemu/hw/ppc440_bamboo.c
Paolo Bonzini 1422e32db5 net: reorganize headers
Move public headers to include/net, and leave private headers in net/.
Put the virtio headers in include/net/tap.h, removing the multiple copies
that existed.  Leave include/net/tap.h as the interface for NICs, and
net/tap_int.h as the interface for OS-specific parts of the tap backend.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2012-12-19 08:31:29 +01:00

306 lines
9.4 KiB
C

/*
* QEMU PowerPC 440 Bamboo board emulation
*
* Copyright 2007 IBM Corporation.
* Authors:
* Jerone Young <jyoung5@us.ibm.com>
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
* Hollis Blanchard <hollisb@us.ibm.com>
*
* This work is licensed under the GNU GPL license version 2 or later.
*
*/
#include "config.h"
#include "qemu-common.h"
#include "net/net.h"
#include "hw.h"
#include "pci/pci.h"
#include "boards.h"
#include "kvm.h"
#include "kvm_ppc.h"
#include "device_tree.h"
#include "loader.h"
#include "elf.h"
#include "exec-memory.h"
#include "serial.h"
#include "ppc.h"
#include "ppc405.h"
#include "sysemu.h"
#include "sysbus.h"
#define BINARY_DEVICE_TREE_FILE "bamboo.dtb"
/* from u-boot */
#define KERNEL_ADDR 0x1000000
#define FDT_ADDR 0x1800000
#define RAMDISK_ADDR 0x1900000
#define PPC440EP_PCI_CONFIG 0xeec00000
#define PPC440EP_PCI_INTACK 0xeed00000
#define PPC440EP_PCI_SPECIAL 0xeed00000
#define PPC440EP_PCI_REGS 0xef400000
#define PPC440EP_PCI_IO 0xe8000000
#define PPC440EP_PCI_IOLEN 0x00010000
#define PPC440EP_SDRAM_NR_BANKS 4
static const unsigned int ppc440ep_sdram_bank_sizes[] = {
256<<20, 128<<20, 64<<20, 32<<20, 16<<20, 8<<20, 0
};
static hwaddr entry;
static int bamboo_load_device_tree(hwaddr addr,
uint32_t ramsize,
hwaddr initrd_base,
hwaddr initrd_size,
const char *kernel_cmdline)
{
int ret = -1;
#ifdef CONFIG_FDT
uint32_t mem_reg_property[] = { 0, 0, cpu_to_be32(ramsize) };
char *filename;
int fdt_size;
void *fdt;
uint32_t tb_freq = 400000000;
uint32_t clock_freq = 400000000;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
if (!filename) {
goto out;
}
fdt = load_device_tree(filename, &fdt_size);
g_free(filename);
if (fdt == NULL) {
goto out;
}
/* Manipulate device tree in memory. */
ret = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
sizeof(mem_reg_property));
if (ret < 0)
fprintf(stderr, "couldn't set /memory/reg\n");
ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
initrd_base);
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
(initrd_base + initrd_size));
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
kernel_cmdline);
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/bootargs\n");
/* Copy data from the host device tree into the guest. Since the guest can
* directly access the timebase without host involvement, we must expose
* the correct frequencies. */
if (kvm_enabled()) {
tb_freq = kvmppc_get_tbfreq();
clock_freq = kvmppc_get_clockfreq();
}
qemu_devtree_setprop_cell(fdt, "/cpus/cpu@0", "clock-frequency",
clock_freq);
qemu_devtree_setprop_cell(fdt, "/cpus/cpu@0", "timebase-frequency",
tb_freq);
ret = rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr);
g_free(fdt);
out:
#endif
return ret;
}
/* Create reset TLB entries for BookE, spanning the 32bit addr space. */
static void mmubooke_create_initial_mapping(CPUPPCState *env,
target_ulong va,
hwaddr pa)
{
ppcemb_tlb_t *tlb = &env->tlb.tlbe[0];
tlb->attr = 0;
tlb->prot = PAGE_VALID | ((PAGE_READ | PAGE_WRITE | PAGE_EXEC) << 4);
tlb->size = 1 << 31; /* up to 0x80000000 */
tlb->EPN = va & TARGET_PAGE_MASK;
tlb->RPN = pa & TARGET_PAGE_MASK;
tlb->PID = 0;
tlb = &env->tlb.tlbe[1];
tlb->attr = 0;
tlb->prot = PAGE_VALID | ((PAGE_READ | PAGE_WRITE | PAGE_EXEC) << 4);
tlb->size = 1 << 31; /* up to 0xffffffff */
tlb->EPN = 0x80000000 & TARGET_PAGE_MASK;
tlb->RPN = 0x80000000 & TARGET_PAGE_MASK;
tlb->PID = 0;
}
static void main_cpu_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUPPCState *env = &cpu->env;
cpu_reset(CPU(cpu));
env->gpr[1] = (16<<20) - 8;
env->gpr[3] = FDT_ADDR;
env->nip = entry;
/* Create a mapping for the kernel. */
mmubooke_create_initial_mapping(env, 0, 0);
}
static void bamboo_init(QEMUMachineInitArgs *args)
{
ram_addr_t ram_size = args->ram_size;
const char *cpu_model = args->cpu_model;
const char *kernel_filename = args->kernel_filename;
const char *kernel_cmdline = args->kernel_cmdline;
const char *initrd_filename = args->initrd_filename;
unsigned int pci_irq_nrs[4] = { 28, 27, 26, 25 };
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram_memories
= g_malloc(PPC440EP_SDRAM_NR_BANKS * sizeof(*ram_memories));
hwaddr ram_bases[PPC440EP_SDRAM_NR_BANKS];
hwaddr ram_sizes[PPC440EP_SDRAM_NR_BANKS];
qemu_irq *pic;
qemu_irq *irqs;
PCIBus *pcibus;
PowerPCCPU *cpu;
CPUPPCState *env;
uint64_t elf_entry;
uint64_t elf_lowaddr;
hwaddr loadaddr = 0;
target_long initrd_size = 0;
DeviceState *dev;
int success;
int i;
/* Setup CPU. */
if (cpu_model == NULL) {
cpu_model = "440EP";
}
cpu = cpu_ppc_init(cpu_model);
if (cpu == NULL) {
fprintf(stderr, "Unable to initialize CPU!\n");
exit(1);
}
env = &cpu->env;
qemu_register_reset(main_cpu_reset, cpu);
ppc_booke_timers_init(env, 400000000, 0);
ppc_dcr_init(env, NULL, NULL);
/* interrupt controller */
irqs = g_malloc0(sizeof(qemu_irq) * PPCUIC_OUTPUT_NB);
irqs[PPCUIC_OUTPUT_INT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_INT];
irqs[PPCUIC_OUTPUT_CINT] = ((qemu_irq *)env->irq_inputs)[PPC40x_INPUT_CINT];
pic = ppcuic_init(env, irqs, 0x0C0, 0, 1);
/* SDRAM controller */
memset(ram_bases, 0, sizeof(ram_bases));
memset(ram_sizes, 0, sizeof(ram_sizes));
ram_size = ppc4xx_sdram_adjust(ram_size, PPC440EP_SDRAM_NR_BANKS,
ram_memories,
ram_bases, ram_sizes,
ppc440ep_sdram_bank_sizes);
/* XXX 440EP's ECC interrupts are on UIC1, but we've only created UIC0. */
ppc4xx_sdram_init(env, pic[14], PPC440EP_SDRAM_NR_BANKS, ram_memories,
ram_bases, ram_sizes, 1);
/* PCI */
dev = sysbus_create_varargs(TYPE_PPC4xx_PCI_HOST_BRIDGE,
PPC440EP_PCI_CONFIG,
pic[pci_irq_nrs[0]], pic[pci_irq_nrs[1]],
pic[pci_irq_nrs[2]], pic[pci_irq_nrs[3]],
NULL);
pcibus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
if (!pcibus) {
fprintf(stderr, "couldn't create PCI controller!\n");
exit(1);
}
isa_mmio_init(PPC440EP_PCI_IO, PPC440EP_PCI_IOLEN);
if (serial_hds[0] != NULL) {
serial_mm_init(address_space_mem, 0xef600300, 0, pic[0],
PPC_SERIAL_MM_BAUDBASE, serial_hds[0],
DEVICE_BIG_ENDIAN);
}
if (serial_hds[1] != NULL) {
serial_mm_init(address_space_mem, 0xef600400, 0, pic[1],
PPC_SERIAL_MM_BAUDBASE, serial_hds[1],
DEVICE_BIG_ENDIAN);
}
if (pcibus) {
/* Register network interfaces. */
for (i = 0; i < nb_nics; i++) {
/* There are no PCI NICs on the Bamboo board, but there are
* PCI slots, so we can pick whatever default model we want. */
pci_nic_init_nofail(&nd_table[i], "e1000", NULL);
}
}
/* Load kernel. */
if (kernel_filename) {
success = load_uimage(kernel_filename, &entry, &loadaddr, NULL);
if (success < 0) {
success = load_elf(kernel_filename, NULL, NULL, &elf_entry,
&elf_lowaddr, NULL, 1, ELF_MACHINE, 0);
entry = elf_entry;
loadaddr = elf_lowaddr;
}
/* XXX try again as binary */
if (success < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
}
/* Load initrd. */
if (initrd_filename) {
initrd_size = load_image_targphys(initrd_filename, RAMDISK_ADDR,
ram_size - RAMDISK_ADDR);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load ram disk '%s' at %x\n",
initrd_filename, RAMDISK_ADDR);
exit(1);
}
}
/* If we're loading a kernel directly, we must load the device tree too. */
if (kernel_filename) {
if (bamboo_load_device_tree(FDT_ADDR, ram_size, RAMDISK_ADDR,
initrd_size, kernel_cmdline) < 0) {
fprintf(stderr, "couldn't load device tree\n");
exit(1);
}
}
if (kvm_enabled())
kvmppc_init();
}
static QEMUMachine bamboo_machine = {
.name = "bamboo",
.desc = "bamboo",
.init = bamboo_init,
};
static void bamboo_machine_init(void)
{
qemu_register_machine(&bamboo_machine);
}
machine_init(bamboo_machine_init);