qemu/target/microblaze/translate.c
Richard Henderson 287b1defeb target/microblaze: Cache mem_index in DisasContext
Ideally, nothing outside the top-level of translation even
has access to env.  Cache the value in init_disas_context.

Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2020-09-01 07:41:38 -07:00

1798 lines
49 KiB
C

/*
* Xilinx MicroBlaze emulation for qemu: main translation routines.
*
* Copyright (c) 2009 Edgar E. Iglesias.
* Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg/tcg-op.h"
#include "exec/helper-proto.h"
#include "microblaze-decode.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-gen.h"
#include "exec/translator.h"
#include "qemu/qemu-print.h"
#include "trace-tcg.h"
#include "exec/log.h"
#define EXTRACT_FIELD(src, start, end) \
(((src) >> start) & ((1 << (end - start + 1)) - 1))
/* is_jmp field values */
#define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
#define DISAS_UPDATE DISAS_TARGET_1 /* cpu state was modified dynamically */
static TCGv_i32 cpu_R[32];
static TCGv_i32 cpu_pc;
static TCGv_i32 cpu_msr;
static TCGv_i32 cpu_msr_c;
static TCGv_i32 cpu_imm;
static TCGv_i32 cpu_btaken;
static TCGv_i32 cpu_btarget;
static TCGv_i32 cpu_iflags;
static TCGv cpu_res_addr;
static TCGv_i32 cpu_res_val;
#include "exec/gen-icount.h"
/* This is the state at translation time. */
typedef struct DisasContext {
DisasContextBase base;
MicroBlazeCPU *cpu;
TCGv_i32 r0;
bool r0_set;
/* Decoder. */
int type_b;
uint32_t ir;
uint32_t ext_imm;
uint8_t opcode;
uint8_t rd, ra, rb;
uint16_t imm;
unsigned int cpustate_changed;
unsigned int delayed_branch;
unsigned int tb_flags, synced_flags; /* tb dependent flags. */
unsigned int clear_imm;
int mem_index;
#define JMP_NOJMP 0
#define JMP_DIRECT 1
#define JMP_DIRECT_CC 2
#define JMP_INDIRECT 3
unsigned int jmp;
uint32_t jmp_pc;
int abort_at_next_insn;
} DisasContext;
static int typeb_imm(DisasContext *dc, int x)
{
if (dc->tb_flags & IMM_FLAG) {
return deposit32(dc->ext_imm, 0, 16, x);
}
return x;
}
/* Include the auto-generated decoder. */
#include "decode-insns.c.inc"
static inline void t_sync_flags(DisasContext *dc)
{
/* Synch the tb dependent flags between translator and runtime. */
if (dc->tb_flags != dc->synced_flags) {
tcg_gen_movi_i32(cpu_iflags, dc->tb_flags);
dc->synced_flags = dc->tb_flags;
}
}
static void gen_raise_exception(DisasContext *dc, uint32_t index)
{
TCGv_i32 tmp = tcg_const_i32(index);
gen_helper_raise_exception(cpu_env, tmp);
tcg_temp_free_i32(tmp);
dc->base.is_jmp = DISAS_NORETURN;
}
static void gen_raise_exception_sync(DisasContext *dc, uint32_t index)
{
t_sync_flags(dc);
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next);
gen_raise_exception(dc, index);
}
static void gen_raise_hw_excp(DisasContext *dc, uint32_t esr_ec)
{
TCGv_i32 tmp = tcg_const_i32(esr_ec);
tcg_gen_st_i32(tmp, cpu_env, offsetof(CPUMBState, esr));
tcg_temp_free_i32(tmp);
gen_raise_exception_sync(dc, EXCP_HW_EXCP);
}
static inline bool use_goto_tb(DisasContext *dc, target_ulong dest)
{
#ifndef CONFIG_USER_ONLY
return (dc->base.pc_first & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK);
#else
return true;
#endif
}
static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest)
{
if (dc->base.singlestep_enabled) {
TCGv_i32 tmp = tcg_const_i32(EXCP_DEBUG);
tcg_gen_movi_i32(cpu_pc, dest);
gen_helper_raise_exception(cpu_env, tmp);
tcg_temp_free_i32(tmp);
} else if (use_goto_tb(dc, dest)) {
tcg_gen_goto_tb(n);
tcg_gen_movi_i32(cpu_pc, dest);
tcg_gen_exit_tb(dc->base.tb, n);
} else {
tcg_gen_movi_i32(cpu_pc, dest);
tcg_gen_exit_tb(NULL, 0);
}
dc->base.is_jmp = DISAS_NORETURN;
}
/*
* Returns true if the insn an illegal operation.
* If exceptions are enabled, an exception is raised.
*/
static bool trap_illegal(DisasContext *dc, bool cond)
{
if (cond && (dc->tb_flags & MSR_EE)
&& dc->cpu->cfg.illegal_opcode_exception) {
gen_raise_hw_excp(dc, ESR_EC_ILLEGAL_OP);
}
return cond;
}
/*
* Returns true if the insn is illegal in userspace.
* If exceptions are enabled, an exception is raised.
*/
static bool trap_userspace(DisasContext *dc, bool cond)
{
bool cond_user = cond && dc->mem_index == MMU_USER_IDX;
if (cond_user && (dc->tb_flags & MSR_EE)) {
gen_raise_hw_excp(dc, ESR_EC_PRIVINSN);
}
return cond_user;
}
static int32_t dec_alu_typeb_imm(DisasContext *dc)
{
tcg_debug_assert(dc->type_b);
return typeb_imm(dc, (int16_t)dc->imm);
}
static inline TCGv_i32 *dec_alu_op_b(DisasContext *dc)
{
if (dc->type_b) {
tcg_gen_movi_i32(cpu_imm, dec_alu_typeb_imm(dc));
return &cpu_imm;
}
return &cpu_R[dc->rb];
}
static TCGv_i32 reg_for_read(DisasContext *dc, int reg)
{
if (likely(reg != 0)) {
return cpu_R[reg];
}
if (!dc->r0_set) {
if (dc->r0 == NULL) {
dc->r0 = tcg_temp_new_i32();
}
tcg_gen_movi_i32(dc->r0, 0);
dc->r0_set = true;
}
return dc->r0;
}
static TCGv_i32 reg_for_write(DisasContext *dc, int reg)
{
if (likely(reg != 0)) {
return cpu_R[reg];
}
if (dc->r0 == NULL) {
dc->r0 = tcg_temp_new_i32();
}
return dc->r0;
}
static bool do_typea(DisasContext *dc, arg_typea *arg, bool side_effects,
void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32))
{
TCGv_i32 rd, ra, rb;
if (arg->rd == 0 && !side_effects) {
return true;
}
rd = reg_for_write(dc, arg->rd);
ra = reg_for_read(dc, arg->ra);
rb = reg_for_read(dc, arg->rb);
fn(rd, ra, rb);
return true;
}
static bool do_typea0(DisasContext *dc, arg_typea0 *arg, bool side_effects,
void (*fn)(TCGv_i32, TCGv_i32))
{
TCGv_i32 rd, ra;
if (arg->rd == 0 && !side_effects) {
return true;
}
rd = reg_for_write(dc, arg->rd);
ra = reg_for_read(dc, arg->ra);
fn(rd, ra);
return true;
}
static bool do_typeb_imm(DisasContext *dc, arg_typeb *arg, bool side_effects,
void (*fni)(TCGv_i32, TCGv_i32, int32_t))
{
TCGv_i32 rd, ra;
if (arg->rd == 0 && !side_effects) {
return true;
}
rd = reg_for_write(dc, arg->rd);
ra = reg_for_read(dc, arg->ra);
fni(rd, ra, arg->imm);
return true;
}
static bool do_typeb_val(DisasContext *dc, arg_typeb *arg, bool side_effects,
void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32))
{
TCGv_i32 rd, ra, imm;
if (arg->rd == 0 && !side_effects) {
return true;
}
rd = reg_for_write(dc, arg->rd);
ra = reg_for_read(dc, arg->ra);
imm = tcg_const_i32(arg->imm);
fn(rd, ra, imm);
tcg_temp_free_i32(imm);
return true;
}
#define DO_TYPEA(NAME, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typea *a) \
{ return do_typea(dc, a, SE, FN); }
#define DO_TYPEA_CFG(NAME, CFG, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typea *a) \
{ return dc->cpu->cfg.CFG && do_typea(dc, a, SE, FN); }
#define DO_TYPEA0(NAME, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typea0 *a) \
{ return do_typea0(dc, a, SE, FN); }
#define DO_TYPEA0_CFG(NAME, CFG, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typea0 *a) \
{ return dc->cpu->cfg.CFG && do_typea0(dc, a, SE, FN); }
#define DO_TYPEBI(NAME, SE, FNI) \
static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \
{ return do_typeb_imm(dc, a, SE, FNI); }
#define DO_TYPEBI_CFG(NAME, CFG, SE, FNI) \
static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \
{ return dc->cpu->cfg.CFG && do_typeb_imm(dc, a, SE, FNI); }
#define DO_TYPEBV(NAME, SE, FN) \
static bool trans_##NAME(DisasContext *dc, arg_typeb *a) \
{ return do_typeb_val(dc, a, SE, FN); }
#define ENV_WRAPPER2(NAME, HELPER) \
static void NAME(TCGv_i32 out, TCGv_i32 ina) \
{ HELPER(out, cpu_env, ina); }
#define ENV_WRAPPER3(NAME, HELPER) \
static void NAME(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb) \
{ HELPER(out, cpu_env, ina, inb); }
/* No input carry, but output carry. */
static void gen_add(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 zero = tcg_const_i32(0);
tcg_gen_add2_i32(out, cpu_msr_c, ina, zero, inb, zero);
tcg_temp_free_i32(zero);
}
/* Input and output carry. */
static void gen_addc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 zero = tcg_const_i32(0);
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_add2_i32(tmp, cpu_msr_c, ina, zero, cpu_msr_c, zero);
tcg_gen_add2_i32(out, cpu_msr_c, tmp, cpu_msr_c, inb, zero);
tcg_temp_free_i32(tmp);
tcg_temp_free_i32(zero);
}
/* Input carry, but no output carry. */
static void gen_addkc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_add_i32(out, ina, inb);
tcg_gen_add_i32(out, out, cpu_msr_c);
}
DO_TYPEA(add, true, gen_add)
DO_TYPEA(addc, true, gen_addc)
DO_TYPEA(addk, false, tcg_gen_add_i32)
DO_TYPEA(addkc, true, gen_addkc)
DO_TYPEBV(addi, true, gen_add)
DO_TYPEBV(addic, true, gen_addc)
DO_TYPEBI(addik, false, tcg_gen_addi_i32)
DO_TYPEBV(addikc, true, gen_addkc)
static void gen_andni(TCGv_i32 out, TCGv_i32 ina, int32_t imm)
{
tcg_gen_andi_i32(out, ina, ~imm);
}
DO_TYPEA(and, false, tcg_gen_and_i32)
DO_TYPEBI(andi, false, tcg_gen_andi_i32)
DO_TYPEA(andn, false, tcg_gen_andc_i32)
DO_TYPEBI(andni, false, gen_andni)
static void gen_bsra(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp, inb, 31);
tcg_gen_sar_i32(out, ina, tmp);
tcg_temp_free_i32(tmp);
}
static void gen_bsrl(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp, inb, 31);
tcg_gen_shr_i32(out, ina, tmp);
tcg_temp_free_i32(tmp);
}
static void gen_bsll(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_andi_i32(tmp, inb, 31);
tcg_gen_shl_i32(out, ina, tmp);
tcg_temp_free_i32(tmp);
}
static void gen_bsefi(TCGv_i32 out, TCGv_i32 ina, int32_t imm)
{
/* Note that decodetree has extracted and reassembled imm_w/imm_s. */
int imm_w = extract32(imm, 5, 5);
int imm_s = extract32(imm, 0, 5);
if (imm_w + imm_s > 32 || imm_w == 0) {
/* These inputs have an undefined behavior. */
qemu_log_mask(LOG_GUEST_ERROR, "bsefi: Bad input w=%d s=%d\n",
imm_w, imm_s);
} else {
tcg_gen_extract_i32(out, ina, imm_s, imm_w);
}
}
static void gen_bsifi(TCGv_i32 out, TCGv_i32 ina, int32_t imm)
{
/* Note that decodetree has extracted and reassembled imm_w/imm_s. */
int imm_w = extract32(imm, 5, 5);
int imm_s = extract32(imm, 0, 5);
int width = imm_w - imm_s + 1;
if (imm_w < imm_s) {
/* These inputs have an undefined behavior. */
qemu_log_mask(LOG_GUEST_ERROR, "bsifi: Bad input w=%d s=%d\n",
imm_w, imm_s);
} else {
tcg_gen_deposit_i32(out, out, ina, imm_s, width);
}
}
DO_TYPEA_CFG(bsra, use_barrel, false, gen_bsra)
DO_TYPEA_CFG(bsrl, use_barrel, false, gen_bsrl)
DO_TYPEA_CFG(bsll, use_barrel, false, gen_bsll)
DO_TYPEBI_CFG(bsrai, use_barrel, false, tcg_gen_sari_i32)
DO_TYPEBI_CFG(bsrli, use_barrel, false, tcg_gen_shri_i32)
DO_TYPEBI_CFG(bslli, use_barrel, false, tcg_gen_shli_i32)
DO_TYPEBI_CFG(bsefi, use_barrel, false, gen_bsefi)
DO_TYPEBI_CFG(bsifi, use_barrel, false, gen_bsifi)
static void gen_clz(TCGv_i32 out, TCGv_i32 ina)
{
tcg_gen_clzi_i32(out, ina, 32);
}
DO_TYPEA0_CFG(clz, use_pcmp_instr, false, gen_clz)
static void gen_cmp(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 lt = tcg_temp_new_i32();
tcg_gen_setcond_i32(TCG_COND_LT, lt, inb, ina);
tcg_gen_sub_i32(out, inb, ina);
tcg_gen_deposit_i32(out, out, lt, 31, 1);
tcg_temp_free_i32(lt);
}
static void gen_cmpu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 lt = tcg_temp_new_i32();
tcg_gen_setcond_i32(TCG_COND_LTU, lt, inb, ina);
tcg_gen_sub_i32(out, inb, ina);
tcg_gen_deposit_i32(out, out, lt, 31, 1);
tcg_temp_free_i32(lt);
}
DO_TYPEA(cmp, false, gen_cmp)
DO_TYPEA(cmpu, false, gen_cmpu)
ENV_WRAPPER3(gen_fadd, gen_helper_fadd)
ENV_WRAPPER3(gen_frsub, gen_helper_frsub)
ENV_WRAPPER3(gen_fmul, gen_helper_fmul)
ENV_WRAPPER3(gen_fdiv, gen_helper_fdiv)
ENV_WRAPPER3(gen_fcmp_un, gen_helper_fcmp_un)
ENV_WRAPPER3(gen_fcmp_lt, gen_helper_fcmp_lt)
ENV_WRAPPER3(gen_fcmp_eq, gen_helper_fcmp_eq)
ENV_WRAPPER3(gen_fcmp_le, gen_helper_fcmp_le)
ENV_WRAPPER3(gen_fcmp_gt, gen_helper_fcmp_gt)
ENV_WRAPPER3(gen_fcmp_ne, gen_helper_fcmp_ne)
ENV_WRAPPER3(gen_fcmp_ge, gen_helper_fcmp_ge)
DO_TYPEA_CFG(fadd, use_fpu, true, gen_fadd)
DO_TYPEA_CFG(frsub, use_fpu, true, gen_frsub)
DO_TYPEA_CFG(fmul, use_fpu, true, gen_fmul)
DO_TYPEA_CFG(fdiv, use_fpu, true, gen_fdiv)
DO_TYPEA_CFG(fcmp_un, use_fpu, true, gen_fcmp_un)
DO_TYPEA_CFG(fcmp_lt, use_fpu, true, gen_fcmp_lt)
DO_TYPEA_CFG(fcmp_eq, use_fpu, true, gen_fcmp_eq)
DO_TYPEA_CFG(fcmp_le, use_fpu, true, gen_fcmp_le)
DO_TYPEA_CFG(fcmp_gt, use_fpu, true, gen_fcmp_gt)
DO_TYPEA_CFG(fcmp_ne, use_fpu, true, gen_fcmp_ne)
DO_TYPEA_CFG(fcmp_ge, use_fpu, true, gen_fcmp_ge)
ENV_WRAPPER2(gen_flt, gen_helper_flt)
ENV_WRAPPER2(gen_fint, gen_helper_fint)
ENV_WRAPPER2(gen_fsqrt, gen_helper_fsqrt)
DO_TYPEA0_CFG(flt, use_fpu >= 2, true, gen_flt)
DO_TYPEA0_CFG(fint, use_fpu >= 2, true, gen_fint)
DO_TYPEA0_CFG(fsqrt, use_fpu >= 2, true, gen_fsqrt)
/* Does not use ENV_WRAPPER3, because arguments are swapped as well. */
static void gen_idiv(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
gen_helper_divs(out, cpu_env, inb, ina);
}
static void gen_idivu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
gen_helper_divu(out, cpu_env, inb, ina);
}
DO_TYPEA_CFG(idiv, use_div, true, gen_idiv)
DO_TYPEA_CFG(idivu, use_div, true, gen_idivu)
static bool trans_imm(DisasContext *dc, arg_imm *arg)
{
dc->ext_imm = arg->imm << 16;
tcg_gen_movi_i32(cpu_imm, dc->ext_imm);
dc->tb_flags |= IMM_FLAG;
dc->clear_imm = 0;
return true;
}
static void gen_mulh(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_muls2_i32(tmp, out, ina, inb);
tcg_temp_free_i32(tmp);
}
static void gen_mulhu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_mulu2_i32(tmp, out, ina, inb);
tcg_temp_free_i32(tmp);
}
static void gen_mulhsu(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_mulsu2_i32(tmp, out, ina, inb);
tcg_temp_free_i32(tmp);
}
DO_TYPEA_CFG(mul, use_hw_mul, false, tcg_gen_mul_i32)
DO_TYPEA_CFG(mulh, use_hw_mul >= 2, false, gen_mulh)
DO_TYPEA_CFG(mulhu, use_hw_mul >= 2, false, gen_mulhu)
DO_TYPEA_CFG(mulhsu, use_hw_mul >= 2, false, gen_mulhsu)
DO_TYPEBI_CFG(muli, use_hw_mul, false, tcg_gen_muli_i32)
DO_TYPEA(or, false, tcg_gen_or_i32)
DO_TYPEBI(ori, false, tcg_gen_ori_i32)
static void gen_pcmpeq(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_setcond_i32(TCG_COND_EQ, out, ina, inb);
}
static void gen_pcmpne(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_setcond_i32(TCG_COND_NE, out, ina, inb);
}
DO_TYPEA_CFG(pcmpbf, use_pcmp_instr, false, gen_helper_pcmpbf)
DO_TYPEA_CFG(pcmpeq, use_pcmp_instr, false, gen_pcmpeq)
DO_TYPEA_CFG(pcmpne, use_pcmp_instr, false, gen_pcmpne)
/* No input carry, but output carry. */
static void gen_rsub(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_msr_c, inb, ina);
tcg_gen_sub_i32(out, inb, ina);
}
/* Input and output carry. */
static void gen_rsubc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 zero = tcg_const_i32(0);
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_not_i32(tmp, ina);
tcg_gen_add2_i32(tmp, cpu_msr_c, tmp, zero, cpu_msr_c, zero);
tcg_gen_add2_i32(out, cpu_msr_c, tmp, cpu_msr_c, inb, zero);
tcg_temp_free_i32(zero);
tcg_temp_free_i32(tmp);
}
/* No input or output carry. */
static void gen_rsubk(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
tcg_gen_sub_i32(out, inb, ina);
}
/* Input carry, no output carry. */
static void gen_rsubkc(TCGv_i32 out, TCGv_i32 ina, TCGv_i32 inb)
{
TCGv_i32 nota = tcg_temp_new_i32();
tcg_gen_not_i32(nota, ina);
tcg_gen_add_i32(out, inb, nota);
tcg_gen_add_i32(out, out, cpu_msr_c);
tcg_temp_free_i32(nota);
}
DO_TYPEA(rsub, true, gen_rsub)
DO_TYPEA(rsubc, true, gen_rsubc)
DO_TYPEA(rsubk, false, gen_rsubk)
DO_TYPEA(rsubkc, true, gen_rsubkc)
DO_TYPEBV(rsubi, true, gen_rsub)
DO_TYPEBV(rsubic, true, gen_rsubc)
DO_TYPEBV(rsubik, false, gen_rsubk)
DO_TYPEBV(rsubikc, true, gen_rsubkc)
DO_TYPEA0(sext8, false, tcg_gen_ext8s_i32)
DO_TYPEA0(sext16, false, tcg_gen_ext16s_i32)
static void gen_sra(TCGv_i32 out, TCGv_i32 ina)
{
tcg_gen_andi_i32(cpu_msr_c, ina, 1);
tcg_gen_sari_i32(out, ina, 1);
}
static void gen_src(TCGv_i32 out, TCGv_i32 ina)
{
TCGv_i32 tmp = tcg_temp_new_i32();
tcg_gen_mov_i32(tmp, cpu_msr_c);
tcg_gen_andi_i32(cpu_msr_c, ina, 1);
tcg_gen_extract2_i32(out, ina, tmp, 1);
tcg_temp_free_i32(tmp);
}
static void gen_srl(TCGv_i32 out, TCGv_i32 ina)
{
tcg_gen_andi_i32(cpu_msr_c, ina, 1);
tcg_gen_shri_i32(out, ina, 1);
}
DO_TYPEA0(sra, false, gen_sra)
DO_TYPEA0(src, false, gen_src)
DO_TYPEA0(srl, false, gen_srl)
static void gen_swaph(TCGv_i32 out, TCGv_i32 ina)
{
tcg_gen_rotri_i32(out, ina, 16);
}
DO_TYPEA0(swapb, false, tcg_gen_bswap32_i32)
DO_TYPEA0(swaph, false, gen_swaph)
static bool trans_wdic(DisasContext *dc, arg_wdic *a)
{
/* Cache operations are nops: only check for supervisor mode. */
trap_userspace(dc, true);
return true;
}
DO_TYPEA(xor, false, tcg_gen_xor_i32)
DO_TYPEBI(xori, false, tcg_gen_xori_i32)
static bool trans_zero(DisasContext *dc, arg_zero *arg)
{
/* If opcode_0_illegal, trap. */
if (dc->cpu->cfg.opcode_0_illegal) {
trap_illegal(dc, true);
return true;
}
/*
* Otherwise, this is "add r0, r0, r0".
* Continue to trans_add so that MSR[C] gets cleared.
*/
return false;
}
static void msr_read(DisasContext *dc, TCGv_i32 d)
{
TCGv_i32 t;
/* Replicate the cpu_msr_c boolean into the proper bit and the copy. */
t = tcg_temp_new_i32();
tcg_gen_muli_i32(t, cpu_msr_c, MSR_C | MSR_CC);
tcg_gen_or_i32(d, cpu_msr, t);
tcg_temp_free_i32(t);
}
static void msr_write(DisasContext *dc, TCGv_i32 v)
{
dc->cpustate_changed = 1;
/* Install MSR_C. */
tcg_gen_extract_i32(cpu_msr_c, v, 2, 1);
/* Clear MSR_C and MSR_CC; MSR_PVR is not writable, and is always clear. */
tcg_gen_andi_i32(cpu_msr, v, ~(MSR_C | MSR_CC | MSR_PVR));
}
static void dec_msr(DisasContext *dc)
{
CPUState *cs = CPU(dc->cpu);
TCGv_i32 t0, t1;
unsigned int sr, rn;
bool to, clrset, extended = false;
sr = extract32(dc->imm, 0, 14);
to = extract32(dc->imm, 14, 1);
clrset = extract32(dc->imm, 15, 1) == 0;
dc->type_b = 1;
if (to) {
dc->cpustate_changed = 1;
}
/* Extended MSRs are only available if addr_size > 32. */
if (dc->cpu->cfg.addr_size > 32) {
/* The E-bit is encoded differently for To/From MSR. */
static const unsigned int e_bit[] = { 19, 24 };
extended = extract32(dc->imm, e_bit[to], 1);
}
/* msrclr and msrset. */
if (clrset) {
bool clr = extract32(dc->ir, 16, 1);
if (!dc->cpu->cfg.use_msr_instr) {
/* nop??? */
return;
}
if (trap_userspace(dc, dc->imm != 4 && dc->imm != 0)) {
return;
}
if (dc->rd)
msr_read(dc, cpu_R[dc->rd]);
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
msr_read(dc, t0);
tcg_gen_mov_i32(t1, *(dec_alu_op_b(dc)));
if (clr) {
tcg_gen_not_i32(t1, t1);
tcg_gen_and_i32(t0, t0, t1);
} else
tcg_gen_or_i32(t0, t0, t1);
msr_write(dc, t0);
tcg_temp_free_i32(t0);
tcg_temp_free_i32(t1);
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next + 4);
dc->base.is_jmp = DISAS_UPDATE;
return;
}
if (trap_userspace(dc, to)) {
return;
}
#if !defined(CONFIG_USER_ONLY)
/* Catch read/writes to the mmu block. */
if ((sr & ~0xff) == 0x1000) {
TCGv_i32 tmp_ext = tcg_const_i32(extended);
TCGv_i32 tmp_sr;
sr &= 7;
tmp_sr = tcg_const_i32(sr);
if (to) {
gen_helper_mmu_write(cpu_env, tmp_ext, tmp_sr, cpu_R[dc->ra]);
} else {
gen_helper_mmu_read(cpu_R[dc->rd], cpu_env, tmp_ext, tmp_sr);
}
tcg_temp_free_i32(tmp_sr);
tcg_temp_free_i32(tmp_ext);
return;
}
#endif
if (to) {
switch (sr) {
case SR_PC:
break;
case SR_MSR:
msr_write(dc, cpu_R[dc->ra]);
break;
case SR_EAR:
{
TCGv_i64 t64 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(t64, cpu_R[dc->ra]);
tcg_gen_st_i64(t64, cpu_env, offsetof(CPUMBState, ear));
tcg_temp_free_i64(t64);
}
break;
case SR_ESR:
tcg_gen_st_i32(cpu_R[dc->ra],
cpu_env, offsetof(CPUMBState, esr));
break;
case SR_FSR:
tcg_gen_st_i32(cpu_R[dc->ra],
cpu_env, offsetof(CPUMBState, fsr));
break;
case SR_BTR:
tcg_gen_st_i32(cpu_R[dc->ra],
cpu_env, offsetof(CPUMBState, btr));
break;
case SR_EDR:
tcg_gen_st_i32(cpu_R[dc->ra],
cpu_env, offsetof(CPUMBState, edr));
break;
case 0x800:
tcg_gen_st_i32(cpu_R[dc->ra],
cpu_env, offsetof(CPUMBState, slr));
break;
case 0x802:
tcg_gen_st_i32(cpu_R[dc->ra],
cpu_env, offsetof(CPUMBState, shr));
break;
default:
cpu_abort(CPU(dc->cpu), "unknown mts reg %x\n", sr);
break;
}
} else {
switch (sr) {
case SR_PC:
tcg_gen_movi_i32(cpu_R[dc->rd], dc->base.pc_next);
break;
case SR_MSR:
msr_read(dc, cpu_R[dc->rd]);
break;
case SR_EAR:
{
TCGv_i64 t64 = tcg_temp_new_i64();
tcg_gen_ld_i64(t64, cpu_env, offsetof(CPUMBState, ear));
if (extended) {
tcg_gen_extrh_i64_i32(cpu_R[dc->rd], t64);
} else {
tcg_gen_extrl_i64_i32(cpu_R[dc->rd], t64);
}
tcg_temp_free_i64(t64);
}
break;
case SR_ESR:
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, esr));
break;
case SR_FSR:
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, fsr));
break;
case SR_BTR:
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, btr));
break;
case SR_EDR:
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, edr));
break;
case 0x800:
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, slr));
break;
case 0x802:
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, shr));
break;
case 0x2000 ... 0x200c:
rn = sr & 0xf;
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, pvr.regs[rn]));
break;
default:
cpu_abort(cs, "unknown mfs reg %x\n", sr);
break;
}
}
if (dc->rd == 0) {
tcg_gen_movi_i32(cpu_R[0], 0);
}
}
static inline void sync_jmpstate(DisasContext *dc)
{
if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) {
if (dc->jmp == JMP_DIRECT) {
tcg_gen_movi_i32(cpu_btaken, 1);
}
dc->jmp = JMP_INDIRECT;
tcg_gen_movi_i32(cpu_btarget, dc->jmp_pc);
}
}
static inline void compute_ldst_addr(DisasContext *dc, bool ea, TCGv t)
{
/* Should be set to true if r1 is used by loadstores. */
bool stackprot = false;
TCGv_i32 t32;
/* All load/stores use ra. */
if (dc->ra == 1 && dc->cpu->cfg.stackprot) {
stackprot = true;
}
/* Treat the common cases first. */
if (!dc->type_b) {
if (ea) {
int addr_size = dc->cpu->cfg.addr_size;
if (addr_size == 32) {
tcg_gen_extu_i32_tl(t, cpu_R[dc->rb]);
return;
}
tcg_gen_concat_i32_i64(t, cpu_R[dc->rb], cpu_R[dc->ra]);
if (addr_size < 64) {
/* Mask off out of range bits. */
tcg_gen_andi_i64(t, t, MAKE_64BIT_MASK(0, addr_size));
}
return;
}
/* If any of the regs is r0, set t to the value of the other reg. */
if (dc->ra == 0) {
tcg_gen_extu_i32_tl(t, cpu_R[dc->rb]);
return;
} else if (dc->rb == 0) {
tcg_gen_extu_i32_tl(t, cpu_R[dc->ra]);
return;
}
if (dc->rb == 1 && dc->cpu->cfg.stackprot) {
stackprot = true;
}
t32 = tcg_temp_new_i32();
tcg_gen_add_i32(t32, cpu_R[dc->ra], cpu_R[dc->rb]);
tcg_gen_extu_i32_tl(t, t32);
tcg_temp_free_i32(t32);
if (stackprot) {
gen_helper_stackprot(cpu_env, t);
}
return;
}
/* Immediate. */
t32 = tcg_temp_new_i32();
tcg_gen_addi_i32(t32, cpu_R[dc->ra], dec_alu_typeb_imm(dc));
tcg_gen_extu_i32_tl(t, t32);
tcg_temp_free_i32(t32);
if (stackprot) {
gen_helper_stackprot(cpu_env, t);
}
return;
}
static void dec_load(DisasContext *dc)
{
TCGv_i32 v;
TCGv addr;
unsigned int size;
bool rev = false, ex = false, ea = false;
int mem_index = dc->mem_index;
MemOp mop;
mop = dc->opcode & 3;
size = 1 << mop;
if (!dc->type_b) {
ea = extract32(dc->ir, 7, 1);
rev = extract32(dc->ir, 9, 1);
ex = extract32(dc->ir, 10, 1);
}
mop |= MO_TE;
if (rev) {
mop ^= MO_BSWAP;
}
if (trap_illegal(dc, size > 4)) {
return;
}
if (trap_userspace(dc, ea)) {
return;
}
t_sync_flags(dc);
addr = tcg_temp_new();
compute_ldst_addr(dc, ea, addr);
/* Extended addressing bypasses the MMU. */
mem_index = ea ? MMU_NOMMU_IDX : mem_index;
/*
* When doing reverse accesses we need to do two things.
*
* 1. Reverse the address wrt endianness.
* 2. Byteswap the data lanes on the way back into the CPU core.
*/
if (rev && size != 4) {
/* Endian reverse the address. t is addr. */
switch (size) {
case 1:
{
tcg_gen_xori_tl(addr, addr, 3);
break;
}
case 2:
/* 00 -> 10
10 -> 00. */
tcg_gen_xori_tl(addr, addr, 2);
break;
default:
cpu_abort(CPU(dc->cpu), "Invalid reverse size\n");
break;
}
}
/* lwx does not throw unaligned access errors, so force alignment */
if (ex) {
tcg_gen_andi_tl(addr, addr, ~3);
}
/* If we get a fault on a dslot, the jmpstate better be in sync. */
sync_jmpstate(dc);
/* Verify alignment if needed. */
/*
* Microblaze gives MMU faults priority over faults due to
* unaligned addresses. That's why we speculatively do the load
* into v. If the load succeeds, we verify alignment of the
* address and if that succeeds we write into the destination reg.
*/
v = tcg_temp_new_i32();
tcg_gen_qemu_ld_i32(v, addr, mem_index, mop);
if (dc->cpu->cfg.unaligned_exceptions && size > 1) {
TCGv_i32 t0 = tcg_const_i32(0);
TCGv_i32 treg = tcg_const_i32(dc->rd);
TCGv_i32 tsize = tcg_const_i32(size - 1);
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next);
gen_helper_memalign(cpu_env, addr, treg, t0, tsize);
tcg_temp_free_i32(t0);
tcg_temp_free_i32(treg);
tcg_temp_free_i32(tsize);
}
if (ex) {
tcg_gen_mov_tl(cpu_res_addr, addr);
tcg_gen_mov_i32(cpu_res_val, v);
}
if (dc->rd) {
tcg_gen_mov_i32(cpu_R[dc->rd], v);
}
tcg_temp_free_i32(v);
if (ex) { /* lwx */
/* no support for AXI exclusive so always clear C */
tcg_gen_movi_i32(cpu_msr_c, 0);
}
tcg_temp_free(addr);
}
static void dec_store(DisasContext *dc)
{
TCGv addr;
TCGLabel *swx_skip = NULL;
unsigned int size;
bool rev = false, ex = false, ea = false;
int mem_index = dc->mem_index;
MemOp mop;
mop = dc->opcode & 3;
size = 1 << mop;
if (!dc->type_b) {
ea = extract32(dc->ir, 7, 1);
rev = extract32(dc->ir, 9, 1);
ex = extract32(dc->ir, 10, 1);
}
mop |= MO_TE;
if (rev) {
mop ^= MO_BSWAP;
}
if (trap_illegal(dc, size > 4)) {
return;
}
trap_userspace(dc, ea);
t_sync_flags(dc);
/* If we get a fault on a dslot, the jmpstate better be in sync. */
sync_jmpstate(dc);
/* SWX needs a temp_local. */
addr = ex ? tcg_temp_local_new() : tcg_temp_new();
compute_ldst_addr(dc, ea, addr);
/* Extended addressing bypasses the MMU. */
mem_index = ea ? MMU_NOMMU_IDX : mem_index;
if (ex) { /* swx */
TCGv_i32 tval;
/* swx does not throw unaligned access errors, so force alignment */
tcg_gen_andi_tl(addr, addr, ~3);
tcg_gen_movi_i32(cpu_msr_c, 1);
swx_skip = gen_new_label();
tcg_gen_brcond_tl(TCG_COND_NE, cpu_res_addr, addr, swx_skip);
/*
* Compare the value loaded at lwx with current contents of
* the reserved location.
*/
tval = tcg_temp_new_i32();
tcg_gen_atomic_cmpxchg_i32(tval, addr, cpu_res_val,
cpu_R[dc->rd], mem_index,
mop);
tcg_gen_brcond_i32(TCG_COND_NE, cpu_res_val, tval, swx_skip);
tcg_gen_movi_i32(cpu_msr_c, 0);
tcg_temp_free_i32(tval);
}
if (rev && size != 4) {
/* Endian reverse the address. t is addr. */
switch (size) {
case 1:
{
tcg_gen_xori_tl(addr, addr, 3);
break;
}
case 2:
/* 00 -> 10
10 -> 00. */
/* Force addr into the temp. */
tcg_gen_xori_tl(addr, addr, 2);
break;
default:
cpu_abort(CPU(dc->cpu), "Invalid reverse size\n");
break;
}
}
if (!ex) {
tcg_gen_qemu_st_i32(cpu_R[dc->rd], addr, mem_index, mop);
}
/* Verify alignment if needed. */
if (dc->cpu->cfg.unaligned_exceptions && size > 1) {
TCGv_i32 t1 = tcg_const_i32(1);
TCGv_i32 treg = tcg_const_i32(dc->rd);
TCGv_i32 tsize = tcg_const_i32(size - 1);
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next);
/* FIXME: if the alignment is wrong, we should restore the value
* in memory. One possible way to achieve this is to probe
* the MMU prior to the memaccess, thay way we could put
* the alignment checks in between the probe and the mem
* access.
*/
gen_helper_memalign(cpu_env, addr, treg, t1, tsize);
tcg_temp_free_i32(t1);
tcg_temp_free_i32(treg);
tcg_temp_free_i32(tsize);
}
if (ex) {
gen_set_label(swx_skip);
}
tcg_temp_free(addr);
}
static inline void eval_cc(DisasContext *dc, unsigned int cc,
TCGv_i32 d, TCGv_i32 a)
{
static const int mb_to_tcg_cc[] = {
[CC_EQ] = TCG_COND_EQ,
[CC_NE] = TCG_COND_NE,
[CC_LT] = TCG_COND_LT,
[CC_LE] = TCG_COND_LE,
[CC_GE] = TCG_COND_GE,
[CC_GT] = TCG_COND_GT,
};
switch (cc) {
case CC_EQ:
case CC_NE:
case CC_LT:
case CC_LE:
case CC_GE:
case CC_GT:
tcg_gen_setcondi_i32(mb_to_tcg_cc[cc], d, a, 0);
break;
default:
cpu_abort(CPU(dc->cpu), "Unknown condition code %x.\n", cc);
break;
}
}
static void eval_cond_jmp(DisasContext *dc, TCGv_i32 pc_true, TCGv_i32 pc_false)
{
TCGv_i32 zero = tcg_const_i32(0);
tcg_gen_movcond_i32(TCG_COND_NE, cpu_pc,
cpu_btaken, zero,
pc_true, pc_false);
tcg_temp_free_i32(zero);
}
static void dec_setup_dslot(DisasContext *dc)
{
TCGv_i32 tmp = tcg_const_i32(dc->type_b && (dc->tb_flags & IMM_FLAG));
dc->delayed_branch = 2;
dc->tb_flags |= D_FLAG;
tcg_gen_st_i32(tmp, cpu_env, offsetof(CPUMBState, bimm));
tcg_temp_free_i32(tmp);
}
static void dec_bcc(DisasContext *dc)
{
unsigned int cc;
unsigned int dslot;
cc = EXTRACT_FIELD(dc->ir, 21, 23);
dslot = dc->ir & (1 << 25);
dc->delayed_branch = 1;
if (dslot) {
dec_setup_dslot(dc);
}
if (dc->type_b) {
dc->jmp = JMP_DIRECT_CC;
dc->jmp_pc = dc->base.pc_next + dec_alu_typeb_imm(dc);
tcg_gen_movi_i32(cpu_btarget, dc->jmp_pc);
} else {
dc->jmp = JMP_INDIRECT;
tcg_gen_addi_i32(cpu_btarget, cpu_R[dc->rb], dc->base.pc_next);
}
eval_cc(dc, cc, cpu_btaken, cpu_R[dc->ra]);
}
static void dec_br(DisasContext *dc)
{
unsigned int dslot, link, abs, mbar;
dslot = dc->ir & (1 << 20);
abs = dc->ir & (1 << 19);
link = dc->ir & (1 << 18);
/* Memory barrier. */
mbar = (dc->ir >> 16) & 31;
if (mbar == 2 && dc->imm == 4) {
uint16_t mbar_imm = dc->rd;
/* Data access memory barrier. */
if ((mbar_imm & 2) == 0) {
tcg_gen_mb(TCG_BAR_SC | TCG_MO_ALL);
}
/* mbar IMM & 16 decodes to sleep. */
if (mbar_imm & 16) {
TCGv_i32 tmp_1;
if (trap_userspace(dc, true)) {
/* Sleep is a privileged instruction. */
return;
}
t_sync_flags(dc);
tmp_1 = tcg_const_i32(1);
tcg_gen_st_i32(tmp_1, cpu_env,
-offsetof(MicroBlazeCPU, env)
+offsetof(CPUState, halted));
tcg_temp_free_i32(tmp_1);
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next + 4);
gen_raise_exception(dc, EXCP_HLT);
return;
}
/* Break the TB. */
dc->cpustate_changed = 1;
return;
}
if (abs && link && !dslot) {
if (dc->type_b) {
/* BRKI */
uint32_t imm = dec_alu_typeb_imm(dc);
if (trap_userspace(dc, imm != 8 && imm != 0x18)) {
return;
}
} else {
/* BRK */
if (trap_userspace(dc, true)) {
return;
}
}
}
dc->delayed_branch = 1;
if (dslot) {
dec_setup_dslot(dc);
}
if (link && dc->rd) {
tcg_gen_movi_i32(cpu_R[dc->rd], dc->base.pc_next);
}
if (abs) {
if (dc->type_b) {
uint32_t dest = dec_alu_typeb_imm(dc);
dc->jmp = JMP_DIRECT;
dc->jmp_pc = dest;
tcg_gen_movi_i32(cpu_btarget, dest);
if (link && !dslot) {
switch (dest) {
case 8:
case 0x18:
gen_raise_exception_sync(dc, EXCP_BREAK);
break;
case 0:
gen_raise_exception_sync(dc, EXCP_DEBUG);
break;
}
}
} else {
dc->jmp = JMP_INDIRECT;
tcg_gen_mov_i32(cpu_btarget, cpu_R[dc->rb]);
if (link && !dslot) {
gen_raise_exception_sync(dc, EXCP_BREAK);
}
}
} else if (dc->type_b) {
dc->jmp = JMP_DIRECT;
dc->jmp_pc = dc->base.pc_next + dec_alu_typeb_imm(dc);
tcg_gen_movi_i32(cpu_btarget, dc->jmp_pc);
} else {
dc->jmp = JMP_INDIRECT;
tcg_gen_addi_i32(cpu_btarget, cpu_R[dc->rb], dc->base.pc_next);
}
tcg_gen_movi_i32(cpu_btaken, 1);
}
static inline void do_rti(DisasContext *dc)
{
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
tcg_gen_mov_i32(t1, cpu_msr);
tcg_gen_shri_i32(t0, t1, 1);
tcg_gen_ori_i32(t1, t1, MSR_IE);
tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM));
tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM));
tcg_gen_or_i32(t1, t1, t0);
msr_write(dc, t1);
tcg_temp_free_i32(t1);
tcg_temp_free_i32(t0);
dc->tb_flags &= ~DRTI_FLAG;
}
static inline void do_rtb(DisasContext *dc)
{
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
tcg_gen_mov_i32(t1, cpu_msr);
tcg_gen_andi_i32(t1, t1, ~MSR_BIP);
tcg_gen_shri_i32(t0, t1, 1);
tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM));
tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM));
tcg_gen_or_i32(t1, t1, t0);
msr_write(dc, t1);
tcg_temp_free_i32(t1);
tcg_temp_free_i32(t0);
dc->tb_flags &= ~DRTB_FLAG;
}
static inline void do_rte(DisasContext *dc)
{
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
tcg_gen_mov_i32(t1, cpu_msr);
tcg_gen_ori_i32(t1, t1, MSR_EE);
tcg_gen_andi_i32(t1, t1, ~MSR_EIP);
tcg_gen_shri_i32(t0, t1, 1);
tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM));
tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM));
tcg_gen_or_i32(t1, t1, t0);
msr_write(dc, t1);
tcg_temp_free_i32(t1);
tcg_temp_free_i32(t0);
dc->tb_flags &= ~DRTE_FLAG;
}
static void dec_rts(DisasContext *dc)
{
unsigned int b_bit, i_bit, e_bit;
i_bit = dc->ir & (1 << 21);
b_bit = dc->ir & (1 << 22);
e_bit = dc->ir & (1 << 23);
if (trap_userspace(dc, i_bit || b_bit || e_bit)) {
return;
}
dec_setup_dslot(dc);
if (i_bit) {
dc->tb_flags |= DRTI_FLAG;
} else if (b_bit) {
dc->tb_flags |= DRTB_FLAG;
} else if (e_bit) {
dc->tb_flags |= DRTE_FLAG;
}
dc->jmp = JMP_INDIRECT;
tcg_gen_movi_i32(cpu_btaken, 1);
tcg_gen_add_i32(cpu_btarget, cpu_R[dc->ra], *dec_alu_op_b(dc));
}
static void dec_null(DisasContext *dc)
{
if (trap_illegal(dc, true)) {
return;
}
qemu_log_mask(LOG_GUEST_ERROR, "unknown insn pc=%x opc=%x\n",
(uint32_t)dc->base.pc_next, dc->opcode);
dc->abort_at_next_insn = 1;
}
/* Insns connected to FSL or AXI stream attached devices. */
static void dec_stream(DisasContext *dc)
{
TCGv_i32 t_id, t_ctrl;
int ctrl;
if (trap_userspace(dc, true)) {
return;
}
t_id = tcg_temp_new_i32();
if (dc->type_b) {
tcg_gen_movi_i32(t_id, dc->imm & 0xf);
ctrl = dc->imm >> 10;
} else {
tcg_gen_andi_i32(t_id, cpu_R[dc->rb], 0xf);
ctrl = dc->imm >> 5;
}
t_ctrl = tcg_const_i32(ctrl);
if (dc->rd == 0) {
gen_helper_put(t_id, t_ctrl, cpu_R[dc->ra]);
} else {
gen_helper_get(cpu_R[dc->rd], t_id, t_ctrl);
}
tcg_temp_free_i32(t_id);
tcg_temp_free_i32(t_ctrl);
}
static struct decoder_info {
struct {
uint32_t bits;
uint32_t mask;
};
void (*dec)(DisasContext *dc);
} decinfo[] = {
{DEC_LD, dec_load},
{DEC_ST, dec_store},
{DEC_BR, dec_br},
{DEC_BCC, dec_bcc},
{DEC_RTS, dec_rts},
{DEC_MSR, dec_msr},
{DEC_STREAM, dec_stream},
{{0, 0}, dec_null}
};
static void old_decode(DisasContext *dc, uint32_t ir)
{
int i;
dc->ir = ir;
/* bit 2 seems to indicate insn type. */
dc->type_b = ir & (1 << 29);
dc->opcode = EXTRACT_FIELD(ir, 26, 31);
dc->rd = EXTRACT_FIELD(ir, 21, 25);
dc->ra = EXTRACT_FIELD(ir, 16, 20);
dc->rb = EXTRACT_FIELD(ir, 11, 15);
dc->imm = EXTRACT_FIELD(ir, 0, 15);
/* Large switch for all insns. */
for (i = 0; i < ARRAY_SIZE(decinfo); i++) {
if ((dc->opcode & decinfo[i].mask) == decinfo[i].bits) {
decinfo[i].dec(dc);
break;
}
}
}
static void mb_tr_init_disas_context(DisasContextBase *dcb, CPUState *cs)
{
DisasContext *dc = container_of(dcb, DisasContext, base);
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
int bound;
dc->cpu = cpu;
dc->synced_flags = dc->tb_flags = dc->base.tb->flags;
dc->delayed_branch = !!(dc->tb_flags & D_FLAG);
dc->jmp = dc->delayed_branch ? JMP_INDIRECT : JMP_NOJMP;
dc->cpustate_changed = 0;
dc->abort_at_next_insn = 0;
dc->ext_imm = dc->base.tb->cs_base;
dc->r0 = NULL;
dc->r0_set = false;
dc->mem_index = cpu_mmu_index(&cpu->env, false);
bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
dc->base.max_insns = MIN(dc->base.max_insns, bound);
}
static void mb_tr_tb_start(DisasContextBase *dcb, CPUState *cs)
{
}
static void mb_tr_insn_start(DisasContextBase *dcb, CPUState *cs)
{
tcg_gen_insn_start(dcb->pc_next);
}
static bool mb_tr_breakpoint_check(DisasContextBase *dcb, CPUState *cs,
const CPUBreakpoint *bp)
{
DisasContext *dc = container_of(dcb, DisasContext, base);
gen_raise_exception_sync(dc, EXCP_DEBUG);
/*
* The address covered by the breakpoint must be included in
* [tb->pc, tb->pc + tb->size) in order to for it to be
* properly cleared -- thus we increment the PC here so that
* the logic setting tb->size below does the right thing.
*/
dc->base.pc_next += 4;
return true;
}
static void mb_tr_translate_insn(DisasContextBase *dcb, CPUState *cs)
{
DisasContext *dc = container_of(dcb, DisasContext, base);
CPUMBState *env = cs->env_ptr;
uint32_t ir;
/* TODO: This should raise an exception, not terminate qemu. */
if (dc->base.pc_next & 3) {
cpu_abort(cs, "Microblaze: unaligned PC=%x\n",
(uint32_t)dc->base.pc_next);
}
dc->clear_imm = 1;
ir = cpu_ldl_code(env, dc->base.pc_next);
if (!decode(dc, ir)) {
old_decode(dc, ir);
}
if (dc->r0) {
tcg_temp_free_i32(dc->r0);
dc->r0 = NULL;
dc->r0_set = false;
}
if (dc->clear_imm && (dc->tb_flags & IMM_FLAG)) {
dc->tb_flags &= ~IMM_FLAG;
tcg_gen_discard_i32(cpu_imm);
}
dc->base.pc_next += 4;
if (dc->delayed_branch && --dc->delayed_branch == 0) {
if (dc->tb_flags & DRTI_FLAG) {
do_rti(dc);
}
if (dc->tb_flags & DRTB_FLAG) {
do_rtb(dc);
}
if (dc->tb_flags & DRTE_FLAG) {
do_rte(dc);
}
/* Clear the delay slot flag. */
dc->tb_flags &= ~D_FLAG;
dc->base.is_jmp = DISAS_JUMP;
}
/* Force an exit if the per-tb cpu state has changed. */
if (dc->base.is_jmp == DISAS_NEXT && dc->cpustate_changed) {
dc->base.is_jmp = DISAS_UPDATE;
tcg_gen_movi_i32(cpu_pc, dc->base.pc_next);
}
}
static void mb_tr_tb_stop(DisasContextBase *dcb, CPUState *cs)
{
DisasContext *dc = container_of(dcb, DisasContext, base);
assert(!dc->abort_at_next_insn);
if (dc->base.is_jmp == DISAS_NORETURN) {
/* We have already exited the TB. */
return;
}
t_sync_flags(dc);
if (dc->tb_flags & D_FLAG) {
sync_jmpstate(dc);
dc->jmp = JMP_NOJMP;
}
switch (dc->base.is_jmp) {
case DISAS_TOO_MANY:
assert(dc->jmp == JMP_NOJMP);
gen_goto_tb(dc, 0, dc->base.pc_next);
return;
case DISAS_UPDATE:
assert(dc->jmp == JMP_NOJMP);
if (unlikely(cs->singlestep_enabled)) {
gen_raise_exception(dc, EXCP_DEBUG);
} else {
tcg_gen_exit_tb(NULL, 0);
}
return;
case DISAS_JUMP:
switch (dc->jmp) {
case JMP_INDIRECT:
{
TCGv_i32 tmp_pc = tcg_const_i32(dc->base.pc_next);
eval_cond_jmp(dc, cpu_btarget, tmp_pc);
tcg_temp_free_i32(tmp_pc);
if (unlikely(cs->singlestep_enabled)) {
gen_raise_exception(dc, EXCP_DEBUG);
} else {
tcg_gen_exit_tb(NULL, 0);
}
}
return;
case JMP_DIRECT_CC:
{
TCGLabel *l1 = gen_new_label();
tcg_gen_brcondi_i32(TCG_COND_NE, cpu_btaken, 0, l1);
gen_goto_tb(dc, 1, dc->base.pc_next);
gen_set_label(l1);
}
/* fall through */
case JMP_DIRECT:
gen_goto_tb(dc, 0, dc->jmp_pc);
return;
}
/* fall through */
default:
g_assert_not_reached();
}
}
static void mb_tr_disas_log(const DisasContextBase *dcb, CPUState *cs)
{
qemu_log("IN: %s\n", lookup_symbol(dcb->pc_first));
log_target_disas(cs, dcb->pc_first, dcb->tb->size);
}
static const TranslatorOps mb_tr_ops = {
.init_disas_context = mb_tr_init_disas_context,
.tb_start = mb_tr_tb_start,
.insn_start = mb_tr_insn_start,
.breakpoint_check = mb_tr_breakpoint_check,
.translate_insn = mb_tr_translate_insn,
.tb_stop = mb_tr_tb_stop,
.disas_log = mb_tr_disas_log,
};
void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns)
{
DisasContext dc;
translator_loop(&mb_tr_ops, &dc.base, cpu, tb, max_insns);
}
void mb_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
int i;
if (!env) {
return;
}
qemu_fprintf(f, "IN: PC=%x %s\n",
env->pc, lookup_symbol(env->pc));
qemu_fprintf(f, "rmsr=%x resr=%x rear=%" PRIx64 " "
"imm=%x iflags=%x fsr=%x rbtr=%x\n",
env->msr, env->esr, env->ear,
env->imm, env->iflags, env->fsr, env->btr);
qemu_fprintf(f, "btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
env->btaken, env->btarget,
(env->msr & MSR_UM) ? "user" : "kernel",
(env->msr & MSR_UMS) ? "user" : "kernel",
(bool)(env->msr & MSR_EIP),
(bool)(env->msr & MSR_IE));
for (i = 0; i < 12; i++) {
qemu_fprintf(f, "rpvr%2.2d=%8.8x ", i, env->pvr.regs[i]);
if ((i + 1) % 4 == 0) {
qemu_fprintf(f, "\n");
}
}
/* Registers that aren't modeled are reported as 0 */
qemu_fprintf(f, "redr=%x rpid=0 rzpr=0 rtlbx=0 rtlbsx=0 "
"rtlblo=0 rtlbhi=0\n", env->edr);
qemu_fprintf(f, "slr=%x shr=%x\n", env->slr, env->shr);
for (i = 0; i < 32; i++) {
qemu_fprintf(f, "r%2.2d=%8.8x ", i, env->regs[i]);
if ((i + 1) % 4 == 0)
qemu_fprintf(f, "\n");
}
qemu_fprintf(f, "\n\n");
}
void mb_tcg_init(void)
{
#define R(X) { &cpu_R[X], offsetof(CPUMBState, regs[X]), "r" #X }
#define SP(X) { &cpu_##X, offsetof(CPUMBState, X), #X }
static const struct {
TCGv_i32 *var; int ofs; char name[8];
} i32s[] = {
R(0), R(1), R(2), R(3), R(4), R(5), R(6), R(7),
R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
SP(pc),
SP(msr),
SP(msr_c),
SP(imm),
SP(iflags),
SP(btaken),
SP(btarget),
SP(res_val),
};
#undef R
#undef SP
for (int i = 0; i < ARRAY_SIZE(i32s); ++i) {
*i32s[i].var =
tcg_global_mem_new_i32(cpu_env, i32s[i].ofs, i32s[i].name);
}
cpu_res_addr =
tcg_global_mem_new(cpu_env, offsetof(CPUMBState, res_addr), "res_addr");
}
void restore_state_to_opc(CPUMBState *env, TranslationBlock *tb,
target_ulong *data)
{
env->pc = data[0];
}