qemu/target-i386/op.c
bellard 57fec1fee9 use the TCG code generator
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3944 c046a42c-6fe2-441c-8c8c-71466251a162
2008-02-01 10:50:11 +00:00

2272 lines
40 KiB
C

/*
* i386 micro operations
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define ASM_SOFTMMU
#include "exec.h"
/* n must be a constant to be efficient */
static inline target_long lshift(target_long x, int n)
{
if (n >= 0)
return x << n;
else
return x >> (-n);
}
/* we define the various pieces of code used by the JIT */
#define REG EAX
#define REGNAME _EAX
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG ECX
#define REGNAME _ECX
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG EDX
#define REGNAME _EDX
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG EBX
#define REGNAME _EBX
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG ESP
#define REGNAME _ESP
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG EBP
#define REGNAME _EBP
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG ESI
#define REGNAME _ESI
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG EDI
#define REGNAME _EDI
#include "opreg_template.h"
#undef REG
#undef REGNAME
#ifdef TARGET_X86_64
#define REG (env->regs[8])
#define REGNAME _R8
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG (env->regs[9])
#define REGNAME _R9
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG (env->regs[10])
#define REGNAME _R10
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG (env->regs[11])
#define REGNAME _R11
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG (env->regs[12])
#define REGNAME _R12
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG (env->regs[13])
#define REGNAME _R13
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG (env->regs[14])
#define REGNAME _R14
#include "opreg_template.h"
#undef REG
#undef REGNAME
#define REG (env->regs[15])
#define REGNAME _R15
#include "opreg_template.h"
#undef REG
#undef REGNAME
#endif
/* operations with flags */
/* update flags with T0 and T1 (add/sub case) */
void OPPROTO op_update2_cc(void)
{
CC_SRC = T1;
CC_DST = T0;
}
/* update flags with T0 (logic operation case) */
void OPPROTO op_update1_cc(void)
{
CC_DST = T0;
}
void OPPROTO op_update_neg_cc(void)
{
CC_SRC = -T0;
CC_DST = T0;
}
void OPPROTO op_cmpl_T0_T1_cc(void)
{
CC_SRC = T1;
CC_DST = T0 - T1;
}
void OPPROTO op_update_inc_cc(void)
{
CC_SRC = cc_table[CC_OP].compute_c();
CC_DST = T0;
}
void OPPROTO op_testl_T0_T1_cc(void)
{
CC_DST = T0 & T1;
}
/* operations without flags */
void OPPROTO op_negl_T0(void)
{
T0 = -T0;
}
void OPPROTO op_incl_T0(void)
{
T0++;
}
void OPPROTO op_decl_T0(void)
{
T0--;
}
void OPPROTO op_notl_T0(void)
{
T0 = ~T0;
}
/* multiply/divide */
/* XXX: add eflags optimizations */
/* XXX: add non P4 style flags */
void OPPROTO op_mulb_AL_T0(void)
{
unsigned int res;
res = (uint8_t)EAX * (uint8_t)T0;
EAX = (EAX & ~0xffff) | res;
CC_DST = res;
CC_SRC = (res & 0xff00);
}
void OPPROTO op_imulb_AL_T0(void)
{
int res;
res = (int8_t)EAX * (int8_t)T0;
EAX = (EAX & ~0xffff) | (res & 0xffff);
CC_DST = res;
CC_SRC = (res != (int8_t)res);
}
void OPPROTO op_mulw_AX_T0(void)
{
unsigned int res;
res = (uint16_t)EAX * (uint16_t)T0;
EAX = (EAX & ~0xffff) | (res & 0xffff);
EDX = (EDX & ~0xffff) | ((res >> 16) & 0xffff);
CC_DST = res;
CC_SRC = res >> 16;
}
void OPPROTO op_imulw_AX_T0(void)
{
int res;
res = (int16_t)EAX * (int16_t)T0;
EAX = (EAX & ~0xffff) | (res & 0xffff);
EDX = (EDX & ~0xffff) | ((res >> 16) & 0xffff);
CC_DST = res;
CC_SRC = (res != (int16_t)res);
}
void OPPROTO op_mull_EAX_T0(void)
{
uint64_t res;
res = (uint64_t)((uint32_t)EAX) * (uint64_t)((uint32_t)T0);
EAX = (uint32_t)res;
EDX = (uint32_t)(res >> 32);
CC_DST = (uint32_t)res;
CC_SRC = (uint32_t)(res >> 32);
}
void OPPROTO op_imull_EAX_T0(void)
{
int64_t res;
res = (int64_t)((int32_t)EAX) * (int64_t)((int32_t)T0);
EAX = (uint32_t)(res);
EDX = (uint32_t)(res >> 32);
CC_DST = res;
CC_SRC = (res != (int32_t)res);
}
void OPPROTO op_imulw_T0_T1(void)
{
int res;
res = (int16_t)T0 * (int16_t)T1;
T0 = res;
CC_DST = res;
CC_SRC = (res != (int16_t)res);
}
void OPPROTO op_imull_T0_T1(void)
{
int64_t res;
res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
T0 = res;
CC_DST = res;
CC_SRC = (res != (int32_t)res);
}
#ifdef TARGET_X86_64
void OPPROTO op_mulq_EAX_T0(void)
{
helper_mulq_EAX_T0();
}
void OPPROTO op_imulq_EAX_T0(void)
{
helper_imulq_EAX_T0();
}
void OPPROTO op_imulq_T0_T1(void)
{
helper_imulq_T0_T1();
}
#endif
/* division, flags are undefined */
void OPPROTO op_divb_AL_T0(void)
{
unsigned int num, den, q, r;
num = (EAX & 0xffff);
den = (T0 & 0xff);
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
if (q > 0xff)
raise_exception(EXCP00_DIVZ);
q &= 0xff;
r = (num % den) & 0xff;
EAX = (EAX & ~0xffff) | (r << 8) | q;
}
void OPPROTO op_idivb_AL_T0(void)
{
int num, den, q, r;
num = (int16_t)EAX;
den = (int8_t)T0;
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
if (q != (int8_t)q)
raise_exception(EXCP00_DIVZ);
q &= 0xff;
r = (num % den) & 0xff;
EAX = (EAX & ~0xffff) | (r << 8) | q;
}
void OPPROTO op_divw_AX_T0(void)
{
unsigned int num, den, q, r;
num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
den = (T0 & 0xffff);
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
if (q > 0xffff)
raise_exception(EXCP00_DIVZ);
q &= 0xffff;
r = (num % den) & 0xffff;
EAX = (EAX & ~0xffff) | q;
EDX = (EDX & ~0xffff) | r;
}
void OPPROTO op_idivw_AX_T0(void)
{
int num, den, q, r;
num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
den = (int16_t)T0;
if (den == 0) {
raise_exception(EXCP00_DIVZ);
}
q = (num / den);
if (q != (int16_t)q)
raise_exception(EXCP00_DIVZ);
q &= 0xffff;
r = (num % den) & 0xffff;
EAX = (EAX & ~0xffff) | q;
EDX = (EDX & ~0xffff) | r;
}
#ifdef TARGET_X86_64
void OPPROTO op_divq_EAX_T0(void)
{
helper_divq_EAX_T0();
}
void OPPROTO op_idivq_EAX_T0(void)
{
helper_idivq_EAX_T0();
}
#endif
/* constant load & misc op */
/* XXX: consistent names */
void OPPROTO op_addl_T1_im(void)
{
T1 += PARAM1;
}
void OPPROTO op_movl_T1_A0(void)
{
T1 = A0;
}
void OPPROTO op_addl_A0_AL(void)
{
A0 = (uint32_t)(A0 + (EAX & 0xff));
}
#ifdef WORDS_BIGENDIAN
typedef union UREG64 {
struct { uint16_t v3, v2, v1, v0; } w;
struct { uint32_t v1, v0; } l;
uint64_t q;
} UREG64;
#else
typedef union UREG64 {
struct { uint16_t v0, v1, v2, v3; } w;
struct { uint32_t v0, v1; } l;
uint64_t q;
} UREG64;
#endif
#define PARAMQ1 \
({\
UREG64 __p;\
__p.l.v1 = PARAM1;\
__p.l.v0 = PARAM2;\
__p.q;\
})
#ifdef TARGET_X86_64
void OPPROTO op_addq_A0_AL(void)
{
A0 = (A0 + (EAX & 0xff));
}
#endif
/* memory access */
#define MEMSUFFIX _raw
#include "ops_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _kernel
#include "ops_mem.h"
#define MEMSUFFIX _user
#include "ops_mem.h"
#endif
void OPPROTO op_hlt(void)
{
helper_hlt();
}
void OPPROTO op_monitor(void)
{
helper_monitor();
}
void OPPROTO op_mwait(void)
{
helper_mwait();
}
void OPPROTO op_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
void OPPROTO op_raise_interrupt(void)
{
int intno, next_eip_addend;
intno = PARAM1;
next_eip_addend = PARAM2;
raise_interrupt(intno, 1, 0, next_eip_addend);
}
void OPPROTO op_raise_exception(void)
{
int exception_index;
exception_index = PARAM1;
raise_exception(exception_index);
}
void OPPROTO op_into(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
if (eflags & CC_O) {
raise_interrupt(EXCP04_INTO, 1, 0, PARAM1);
}
FORCE_RET();
}
void OPPROTO op_cli(void)
{
env->eflags &= ~IF_MASK;
}
void OPPROTO op_sti(void)
{
env->eflags |= IF_MASK;
}
void OPPROTO op_set_inhibit_irq(void)
{
env->hflags |= HF_INHIBIT_IRQ_MASK;
}
void OPPROTO op_reset_inhibit_irq(void)
{
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
}
void OPPROTO op_rsm(void)
{
helper_rsm();
}
#if 0
/* vm86plus instructions */
void OPPROTO op_cli_vm(void)
{
env->eflags &= ~VIF_MASK;
}
void OPPROTO op_sti_vm(void)
{
env->eflags |= VIF_MASK;
if (env->eflags & VIP_MASK) {
EIP = PARAM1;
raise_exception(EXCP0D_GPF);
}
FORCE_RET();
}
#endif
void OPPROTO op_boundw(void)
{
int low, high, v;
low = ldsw(A0);
high = ldsw(A0 + 2);
v = (int16_t)T0;
if (v < low || v > high) {
raise_exception(EXCP05_BOUND);
}
FORCE_RET();
}
void OPPROTO op_boundl(void)
{
int low, high, v;
low = ldl(A0);
high = ldl(A0 + 4);
v = T0;
if (v < low || v > high) {
raise_exception(EXCP05_BOUND);
}
FORCE_RET();
}
void OPPROTO op_cmpxchg8b(void)
{
helper_cmpxchg8b();
}
void OPPROTO op_single_step(void)
{
helper_single_step();
}
/* multiple size ops */
#define ldul ldl
#define SHIFT 0
#include "ops_template.h"
#undef SHIFT
#define SHIFT 1
#include "ops_template.h"
#undef SHIFT
#define SHIFT 2
#include "ops_template.h"
#undef SHIFT
#ifdef TARGET_X86_64
#define SHIFT 3
#include "ops_template.h"
#undef SHIFT
#endif
/* sign extend */
void OPPROTO op_movsbl_T0_T0(void)
{
T0 = (int8_t)T0;
}
void OPPROTO op_movzbl_T0_T0(void)
{
T0 = (uint8_t)T0;
}
void OPPROTO op_movswl_T0_T0(void)
{
T0 = (int16_t)T0;
}
void OPPROTO op_movzwl_T0_T0(void)
{
T0 = (uint16_t)T0;
}
void OPPROTO op_movswl_EAX_AX(void)
{
EAX = (uint32_t)((int16_t)EAX);
}
#ifdef TARGET_X86_64
void OPPROTO op_movslq_T0_T0(void)
{
T0 = (int32_t)T0;
}
void OPPROTO op_movslq_RAX_EAX(void)
{
EAX = (int32_t)EAX;
}
#endif
void OPPROTO op_movsbw_AX_AL(void)
{
EAX = (EAX & ~0xffff) | ((int8_t)EAX & 0xffff);
}
void OPPROTO op_movslq_EDX_EAX(void)
{
EDX = (uint32_t)((int32_t)EAX >> 31);
}
void OPPROTO op_movswl_DX_AX(void)
{
EDX = (EDX & ~0xffff) | (((int16_t)EAX >> 15) & 0xffff);
}
#ifdef TARGET_X86_64
void OPPROTO op_movsqo_RDX_RAX(void)
{
EDX = (int64_t)EAX >> 63;
}
#endif
/* string ops helpers */
void OPPROTO op_addl_ESI_T0(void)
{
ESI = (uint32_t)(ESI + T0);
}
void OPPROTO op_addw_ESI_T0(void)
{
ESI = (ESI & ~0xffff) | ((ESI + T0) & 0xffff);
}
void OPPROTO op_addl_EDI_T0(void)
{
EDI = (uint32_t)(EDI + T0);
}
void OPPROTO op_addw_EDI_T0(void)
{
EDI = (EDI & ~0xffff) | ((EDI + T0) & 0xffff);
}
void OPPROTO op_decl_ECX(void)
{
ECX = (uint32_t)(ECX - 1);
}
void OPPROTO op_decw_ECX(void)
{
ECX = (ECX & ~0xffff) | ((ECX - 1) & 0xffff);
}
#ifdef TARGET_X86_64
void OPPROTO op_addq_ESI_T0(void)
{
ESI = (ESI + T0);
}
void OPPROTO op_addq_EDI_T0(void)
{
EDI = (EDI + T0);
}
void OPPROTO op_decq_ECX(void)
{
ECX--;
}
#endif
void OPPROTO op_rdtsc(void)
{
helper_rdtsc();
}
void OPPROTO op_rdpmc(void)
{
helper_rdpmc();
}
void OPPROTO op_cpuid(void)
{
helper_cpuid();
}
void OPPROTO op_enter_level(void)
{
helper_enter_level(PARAM1, PARAM2);
}
#ifdef TARGET_X86_64
void OPPROTO op_enter64_level(void)
{
helper_enter64_level(PARAM1, PARAM2);
}
#endif
void OPPROTO op_sysenter(void)
{
helper_sysenter();
}
void OPPROTO op_sysexit(void)
{
helper_sysexit();
}
#ifdef TARGET_X86_64
void OPPROTO op_syscall(void)
{
helper_syscall(PARAM1);
}
void OPPROTO op_sysret(void)
{
helper_sysret(PARAM1);
}
#endif
void OPPROTO op_rdmsr(void)
{
helper_rdmsr();
}
void OPPROTO op_wrmsr(void)
{
helper_wrmsr();
}
/* bcd */
/* XXX: exception */
void OPPROTO op_aam(void)
{
int base = PARAM1;
int al, ah;
al = EAX & 0xff;
ah = al / base;
al = al % base;
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_DST = al;
}
void OPPROTO op_aad(void)
{
int base = PARAM1;
int al, ah;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
al = ((ah * base) + al) & 0xff;
EAX = (EAX & ~0xffff) | al;
CC_DST = al;
}
void OPPROTO op_aaa(void)
{
int icarry;
int al, ah, af;
int eflags;
eflags = cc_table[CC_OP].compute_all();
af = eflags & CC_A;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
icarry = (al > 0xf9);
if (((al & 0x0f) > 9 ) || af) {
al = (al + 6) & 0x0f;
ah = (ah + 1 + icarry) & 0xff;
eflags |= CC_C | CC_A;
} else {
eflags &= ~(CC_C | CC_A);
al &= 0x0f;
}
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_SRC = eflags;
FORCE_RET();
}
void OPPROTO op_aas(void)
{
int icarry;
int al, ah, af;
int eflags;
eflags = cc_table[CC_OP].compute_all();
af = eflags & CC_A;
al = EAX & 0xff;
ah = (EAX >> 8) & 0xff;
icarry = (al < 6);
if (((al & 0x0f) > 9 ) || af) {
al = (al - 6) & 0x0f;
ah = (ah - 1 - icarry) & 0xff;
eflags |= CC_C | CC_A;
} else {
eflags &= ~(CC_C | CC_A);
al &= 0x0f;
}
EAX = (EAX & ~0xffff) | al | (ah << 8);
CC_SRC = eflags;
FORCE_RET();
}
void OPPROTO op_daa(void)
{
int al, af, cf;
int eflags;
eflags = cc_table[CC_OP].compute_all();
cf = eflags & CC_C;
af = eflags & CC_A;
al = EAX & 0xff;
eflags = 0;
if (((al & 0x0f) > 9 ) || af) {
al = (al + 6) & 0xff;
eflags |= CC_A;
}
if ((al > 0x9f) || cf) {
al = (al + 0x60) & 0xff;
eflags |= CC_C;
}
EAX = (EAX & ~0xff) | al;
/* well, speed is not an issue here, so we compute the flags by hand */
eflags |= (al == 0) << 6; /* zf */
eflags |= parity_table[al]; /* pf */
eflags |= (al & 0x80); /* sf */
CC_SRC = eflags;
FORCE_RET();
}
void OPPROTO op_das(void)
{
int al, al1, af, cf;
int eflags;
eflags = cc_table[CC_OP].compute_all();
cf = eflags & CC_C;
af = eflags & CC_A;
al = EAX & 0xff;
eflags = 0;
al1 = al;
if (((al & 0x0f) > 9 ) || af) {
eflags |= CC_A;
if (al < 6 || cf)
eflags |= CC_C;
al = (al - 6) & 0xff;
}
if ((al1 > 0x99) || cf) {
al = (al - 0x60) & 0xff;
eflags |= CC_C;
}
EAX = (EAX & ~0xff) | al;
/* well, speed is not an issue here, so we compute the flags by hand */
eflags |= (al == 0) << 6; /* zf */
eflags |= parity_table[al]; /* pf */
eflags |= (al & 0x80); /* sf */
CC_SRC = eflags;
FORCE_RET();
}
/* segment handling */
/* never use it with R_CS */
void OPPROTO op_movl_seg_T0(void)
{
load_seg(PARAM1, T0);
}
/* faster VM86 version */
void OPPROTO op_movl_seg_T0_vm(void)
{
int selector;
SegmentCache *sc;
selector = T0 & 0xffff;
/* env->segs[] access */
sc = (SegmentCache *)((char *)env + PARAM1);
sc->selector = selector;
sc->base = (selector << 4);
}
void OPPROTO op_movl_T0_seg(void)
{
T0 = env->segs[PARAM1].selector;
}
void OPPROTO op_lsl(void)
{
helper_lsl();
}
void OPPROTO op_lar(void)
{
helper_lar();
}
void OPPROTO op_verr(void)
{
helper_verr();
}
void OPPROTO op_verw(void)
{
helper_verw();
}
void OPPROTO op_arpl(void)
{
if ((T0 & 3) < (T1 & 3)) {
/* XXX: emulate bug or 0xff3f0000 oring as in bochs ? */
T0 = (T0 & ~3) | (T1 & 3);
T1 = CC_Z;
} else {
T1 = 0;
}
FORCE_RET();
}
void OPPROTO op_arpl_update(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
CC_SRC = (eflags & ~CC_Z) | T1;
}
/* T0: segment, T1:eip */
void OPPROTO op_ljmp_protected_T0_T1(void)
{
helper_ljmp_protected_T0_T1(PARAM1);
}
void OPPROTO op_lcall_real_T0_T1(void)
{
helper_lcall_real_T0_T1(PARAM1, PARAM2);
}
void OPPROTO op_lcall_protected_T0_T1(void)
{
helper_lcall_protected_T0_T1(PARAM1, PARAM2);
}
void OPPROTO op_iret_real(void)
{
helper_iret_real(PARAM1);
}
void OPPROTO op_iret_protected(void)
{
helper_iret_protected(PARAM1, PARAM2);
}
void OPPROTO op_lret_protected(void)
{
helper_lret_protected(PARAM1, PARAM2);
}
void OPPROTO op_lldt_T0(void)
{
helper_lldt_T0();
}
void OPPROTO op_ltr_T0(void)
{
helper_ltr_T0();
}
/* CR registers access. */
void OPPROTO op_movl_crN_T0(void)
{
helper_movl_crN_T0(PARAM1);
}
/* These pseudo-opcodes check for SVM intercepts. */
void OPPROTO op_svm_check_intercept(void)
{
A0 = PARAM1 & PARAM2;
svm_check_intercept(PARAMQ1);
}
void OPPROTO op_svm_check_intercept_param(void)
{
A0 = PARAM1 & PARAM2;
svm_check_intercept_param(PARAMQ1, T1);
}
void OPPROTO op_svm_vmexit(void)
{
A0 = PARAM1 & PARAM2;
vmexit(PARAMQ1, T1);
}
void OPPROTO op_geneflags(void)
{
CC_SRC = cc_table[CC_OP].compute_all();
}
/* This pseudo-opcode checks for IO intercepts. */
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_svm_check_intercept_io(void)
{
A0 = PARAM1 & PARAM2;
/* PARAMQ1 = TYPE (0 = OUT, 1 = IN; 4 = STRING; 8 = REP)
T0 = PORT
T1 = next eip */
stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), T1);
/* ASIZE does not appear on real hw */
svm_check_intercept_param(SVM_EXIT_IOIO,
(PARAMQ1 & ~SVM_IOIO_ASIZE_MASK) |
((T0 & 0xffff) << 16));
}
#endif
#if !defined(CONFIG_USER_ONLY)
void OPPROTO op_movtl_T0_cr8(void)
{
T0 = cpu_get_apic_tpr(env);
}
#endif
/* DR registers access */
void OPPROTO op_movl_drN_T0(void)
{
helper_movl_drN_T0(PARAM1);
}
void OPPROTO op_lmsw_T0(void)
{
/* only 4 lower bits of CR0 are modified. PE cannot be set to zero
if already set to one. */
T0 = (env->cr[0] & ~0xe) | (T0 & 0xf);
helper_movl_crN_T0(0);
}
void OPPROTO op_invlpg_A0(void)
{
helper_invlpg(A0);
}
void OPPROTO op_movl_T0_env(void)
{
T0 = *(uint32_t *)((char *)env + PARAM1);
}
void OPPROTO op_movl_env_T0(void)
{
*(uint32_t *)((char *)env + PARAM1) = T0;
}
void OPPROTO op_movl_env_T1(void)
{
*(uint32_t *)((char *)env + PARAM1) = T1;
}
void OPPROTO op_movtl_T0_env(void)
{
T0 = *(target_ulong *)((char *)env + PARAM1);
}
void OPPROTO op_movtl_env_T0(void)
{
*(target_ulong *)((char *)env + PARAM1) = T0;
}
void OPPROTO op_movtl_T1_env(void)
{
T1 = *(target_ulong *)((char *)env + PARAM1);
}
void OPPROTO op_movtl_env_T1(void)
{
*(target_ulong *)((char *)env + PARAM1) = T1;
}
void OPPROTO op_clts(void)
{
env->cr[0] &= ~CR0_TS_MASK;
env->hflags &= ~HF_TS_MASK;
}
/* flags handling */
void OPPROTO op_jmp_label(void)
{
GOTO_LABEL_PARAM(1);
}
void OPPROTO op_jnz_T0_label(void)
{
if (T0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_jz_T0_label(void)
{
if (!T0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
/* slow set cases (compute x86 flags) */
void OPPROTO op_seto_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags >> 11) & 1;
}
void OPPROTO op_setb_T0_cc(void)
{
T0 = cc_table[CC_OP].compute_c();
}
void OPPROTO op_setz_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags >> 6) & 1;
}
void OPPROTO op_setbe_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags & (CC_Z | CC_C)) != 0;
}
void OPPROTO op_sets_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags >> 7) & 1;
}
void OPPROTO op_setp_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (eflags >> 2) & 1;
}
void OPPROTO op_setl_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = ((eflags ^ (eflags >> 4)) >> 7) & 1;
}
void OPPROTO op_setle_T0_cc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
T0 = (((eflags ^ (eflags >> 4)) & 0x80) || (eflags & CC_Z)) != 0;
}
void OPPROTO op_xor_T0_1(void)
{
T0 ^= 1;
}
void OPPROTO op_mov_T0_cc(void)
{
T0 = cc_table[CC_OP].compute_all();
}
/* XXX: clear VIF/VIP in all ops ? */
void OPPROTO op_movl_eflags_T0(void)
{
load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK));
}
void OPPROTO op_movw_eflags_T0(void)
{
load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK) & 0xffff);
}
void OPPROTO op_movl_eflags_T0_io(void)
{
load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK));
}
void OPPROTO op_movw_eflags_T0_io(void)
{
load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK) & 0xffff);
}
void OPPROTO op_movl_eflags_T0_cpl0(void)
{
load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK | IOPL_MASK));
}
void OPPROTO op_movw_eflags_T0_cpl0(void)
{
load_eflags(T0, (TF_MASK | AC_MASK | ID_MASK | NT_MASK | IF_MASK | IOPL_MASK) & 0xffff);
}
#if 0
/* vm86plus version */
void OPPROTO op_movw_eflags_T0_vm(void)
{
int eflags;
eflags = T0;
CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((eflags >> 10) & 1));
/* we also update some system flags as in user mode */
env->eflags = (env->eflags & ~(FL_UPDATE_MASK16 | VIF_MASK)) |
(eflags & FL_UPDATE_MASK16);
if (eflags & IF_MASK) {
env->eflags |= VIF_MASK;
if (env->eflags & VIP_MASK) {
EIP = PARAM1;
raise_exception(EXCP0D_GPF);
}
}
FORCE_RET();
}
void OPPROTO op_movl_eflags_T0_vm(void)
{
int eflags;
eflags = T0;
CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((eflags >> 10) & 1));
/* we also update some system flags as in user mode */
env->eflags = (env->eflags & ~(FL_UPDATE_MASK32 | VIF_MASK)) |
(eflags & FL_UPDATE_MASK32);
if (eflags & IF_MASK) {
env->eflags |= VIF_MASK;
if (env->eflags & VIP_MASK) {
EIP = PARAM1;
raise_exception(EXCP0D_GPF);
}
}
FORCE_RET();
}
#endif
/* XXX: compute only O flag */
void OPPROTO op_movb_eflags_T0(void)
{
int of;
of = cc_table[CC_OP].compute_all() & CC_O;
CC_SRC = (T0 & (CC_S | CC_Z | CC_A | CC_P | CC_C)) | of;
}
void OPPROTO op_movl_T0_eflags(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags |= (DF & DF_MASK);
eflags |= env->eflags & ~(VM_MASK | RF_MASK);
T0 = eflags;
}
/* vm86plus version */
#if 0
void OPPROTO op_movl_T0_eflags_vm(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags |= (DF & DF_MASK);
eflags |= env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
if (env->eflags & VIF_MASK)
eflags |= IF_MASK;
T0 = eflags;
}
#endif
void OPPROTO op_cld(void)
{
DF = 1;
}
void OPPROTO op_std(void)
{
DF = -1;
}
void OPPROTO op_clc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags &= ~CC_C;
CC_SRC = eflags;
}
void OPPROTO op_stc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags |= CC_C;
CC_SRC = eflags;
}
void OPPROTO op_cmc(void)
{
int eflags;
eflags = cc_table[CC_OP].compute_all();
eflags ^= CC_C;
CC_SRC = eflags;
}
void OPPROTO op_salc(void)
{
int cf;
cf = cc_table[CC_OP].compute_c();
EAX = (EAX & ~0xff) | ((-cf) & 0xff);
}
static int compute_all_eflags(void)
{
return CC_SRC;
}
static int compute_c_eflags(void)
{
return CC_SRC & CC_C;
}
CCTable cc_table[CC_OP_NB] = {
[CC_OP_DYNAMIC] = { /* should never happen */ },
[CC_OP_EFLAGS] = { compute_all_eflags, compute_c_eflags },
[CC_OP_MULB] = { compute_all_mulb, compute_c_mull },
[CC_OP_MULW] = { compute_all_mulw, compute_c_mull },
[CC_OP_MULL] = { compute_all_mull, compute_c_mull },
[CC_OP_ADDB] = { compute_all_addb, compute_c_addb },
[CC_OP_ADDW] = { compute_all_addw, compute_c_addw },
[CC_OP_ADDL] = { compute_all_addl, compute_c_addl },
[CC_OP_ADCB] = { compute_all_adcb, compute_c_adcb },
[CC_OP_ADCW] = { compute_all_adcw, compute_c_adcw },
[CC_OP_ADCL] = { compute_all_adcl, compute_c_adcl },
[CC_OP_SUBB] = { compute_all_subb, compute_c_subb },
[CC_OP_SUBW] = { compute_all_subw, compute_c_subw },
[CC_OP_SUBL] = { compute_all_subl, compute_c_subl },
[CC_OP_SBBB] = { compute_all_sbbb, compute_c_sbbb },
[CC_OP_SBBW] = { compute_all_sbbw, compute_c_sbbw },
[CC_OP_SBBL] = { compute_all_sbbl, compute_c_sbbl },
[CC_OP_LOGICB] = { compute_all_logicb, compute_c_logicb },
[CC_OP_LOGICW] = { compute_all_logicw, compute_c_logicw },
[CC_OP_LOGICL] = { compute_all_logicl, compute_c_logicl },
[CC_OP_INCB] = { compute_all_incb, compute_c_incl },
[CC_OP_INCW] = { compute_all_incw, compute_c_incl },
[CC_OP_INCL] = { compute_all_incl, compute_c_incl },
[CC_OP_DECB] = { compute_all_decb, compute_c_incl },
[CC_OP_DECW] = { compute_all_decw, compute_c_incl },
[CC_OP_DECL] = { compute_all_decl, compute_c_incl },
[CC_OP_SHLB] = { compute_all_shlb, compute_c_shlb },
[CC_OP_SHLW] = { compute_all_shlw, compute_c_shlw },
[CC_OP_SHLL] = { compute_all_shll, compute_c_shll },
[CC_OP_SARB] = { compute_all_sarb, compute_c_sarl },
[CC_OP_SARW] = { compute_all_sarw, compute_c_sarl },
[CC_OP_SARL] = { compute_all_sarl, compute_c_sarl },
#ifdef TARGET_X86_64
[CC_OP_MULQ] = { compute_all_mulq, compute_c_mull },
[CC_OP_ADDQ] = { compute_all_addq, compute_c_addq },
[CC_OP_ADCQ] = { compute_all_adcq, compute_c_adcq },
[CC_OP_SUBQ] = { compute_all_subq, compute_c_subq },
[CC_OP_SBBQ] = { compute_all_sbbq, compute_c_sbbq },
[CC_OP_LOGICQ] = { compute_all_logicq, compute_c_logicq },
[CC_OP_INCQ] = { compute_all_incq, compute_c_incl },
[CC_OP_DECQ] = { compute_all_decq, compute_c_incl },
[CC_OP_SHLQ] = { compute_all_shlq, compute_c_shlq },
[CC_OP_SARQ] = { compute_all_sarq, compute_c_sarl },
#endif
};
/* floating point support. Some of the code for complicated x87
functions comes from the LGPL'ed x86 emulator found in the Willows
TWIN windows emulator. */
/* fp load FT0 */
void OPPROTO op_flds_FT0_A0(void)
{
#ifdef USE_FP_CONVERT
FP_CONVERT.i32 = ldl(A0);
FT0 = FP_CONVERT.f;
#else
FT0 = ldfl(A0);
#endif
}
void OPPROTO op_fldl_FT0_A0(void)
{
#ifdef USE_FP_CONVERT
FP_CONVERT.i64 = ldq(A0);
FT0 = FP_CONVERT.d;
#else
FT0 = ldfq(A0);
#endif
}
/* helpers are needed to avoid static constant reference. XXX: find a better way */
#ifdef USE_INT_TO_FLOAT_HELPERS
void helper_fild_FT0_A0(void)
{
FT0 = (CPU86_LDouble)ldsw(A0);
}
void helper_fildl_FT0_A0(void)
{
FT0 = (CPU86_LDouble)((int32_t)ldl(A0));
}
void helper_fildll_FT0_A0(void)
{
FT0 = (CPU86_LDouble)((int64_t)ldq(A0));
}
void OPPROTO op_fild_FT0_A0(void)
{
helper_fild_FT0_A0();
}
void OPPROTO op_fildl_FT0_A0(void)
{
helper_fildl_FT0_A0();
}
void OPPROTO op_fildll_FT0_A0(void)
{
helper_fildll_FT0_A0();
}
#else
void OPPROTO op_fild_FT0_A0(void)
{
#ifdef USE_FP_CONVERT
FP_CONVERT.i32 = ldsw(A0);
FT0 = (CPU86_LDouble)FP_CONVERT.i32;
#else
FT0 = (CPU86_LDouble)ldsw(A0);
#endif
}
void OPPROTO op_fildl_FT0_A0(void)
{
#ifdef USE_FP_CONVERT
FP_CONVERT.i32 = (int32_t) ldl(A0);
FT0 = (CPU86_LDouble)FP_CONVERT.i32;
#else
FT0 = (CPU86_LDouble)((int32_t)ldl(A0));
#endif
}
void OPPROTO op_fildll_FT0_A0(void)
{
#ifdef USE_FP_CONVERT
FP_CONVERT.i64 = (int64_t) ldq(A0);
FT0 = (CPU86_LDouble)FP_CONVERT.i64;
#else
FT0 = (CPU86_LDouble)((int64_t)ldq(A0));
#endif
}
#endif
/* fp load ST0 */
void OPPROTO op_flds_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
#ifdef USE_FP_CONVERT
FP_CONVERT.i32 = ldl(A0);
env->fpregs[new_fpstt].d = FP_CONVERT.f;
#else
env->fpregs[new_fpstt].d = ldfl(A0);
#endif
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void OPPROTO op_fldl_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
#ifdef USE_FP_CONVERT
FP_CONVERT.i64 = ldq(A0);
env->fpregs[new_fpstt].d = FP_CONVERT.d;
#else
env->fpregs[new_fpstt].d = ldfq(A0);
#endif
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void OPPROTO op_fldt_ST0_A0(void)
{
helper_fldt_ST0_A0();
}
/* helpers are needed to avoid static constant reference. XXX: find a better way */
#ifdef USE_INT_TO_FLOAT_HELPERS
void helper_fild_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = (CPU86_LDouble)ldsw(A0);
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fildl_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = (CPU86_LDouble)((int32_t)ldl(A0));
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void helper_fildll_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
env->fpregs[new_fpstt].d = (CPU86_LDouble)((int64_t)ldq(A0));
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void OPPROTO op_fild_ST0_A0(void)
{
helper_fild_ST0_A0();
}
void OPPROTO op_fildl_ST0_A0(void)
{
helper_fildl_ST0_A0();
}
void OPPROTO op_fildll_ST0_A0(void)
{
helper_fildll_ST0_A0();
}
#else
void OPPROTO op_fild_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
#ifdef USE_FP_CONVERT
FP_CONVERT.i32 = ldsw(A0);
env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i32;
#else
env->fpregs[new_fpstt].d = (CPU86_LDouble)ldsw(A0);
#endif
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void OPPROTO op_fildl_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
#ifdef USE_FP_CONVERT
FP_CONVERT.i32 = (int32_t) ldl(A0);
env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i32;
#else
env->fpregs[new_fpstt].d = (CPU86_LDouble)((int32_t)ldl(A0));
#endif
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
void OPPROTO op_fildll_ST0_A0(void)
{
int new_fpstt;
new_fpstt = (env->fpstt - 1) & 7;
#ifdef USE_FP_CONVERT
FP_CONVERT.i64 = (int64_t) ldq(A0);
env->fpregs[new_fpstt].d = (CPU86_LDouble)FP_CONVERT.i64;
#else
env->fpregs[new_fpstt].d = (CPU86_LDouble)((int64_t)ldq(A0));
#endif
env->fpstt = new_fpstt;
env->fptags[new_fpstt] = 0; /* validate stack entry */
}
#endif
/* fp store */
void OPPROTO op_fsts_ST0_A0(void)
{
#ifdef USE_FP_CONVERT
FP_CONVERT.f = (float)ST0;
stfl(A0, FP_CONVERT.f);
#else
stfl(A0, (float)ST0);
#endif
FORCE_RET();
}
void OPPROTO op_fstl_ST0_A0(void)
{
stfq(A0, (double)ST0);
FORCE_RET();
}
void OPPROTO op_fstt_ST0_A0(void)
{
helper_fstt_ST0_A0();
}
void OPPROTO op_fist_ST0_A0(void)
{
#if defined(__sparc__) && !defined(__sparc_v9__)
register CPU86_LDouble d asm("o0");
#else
CPU86_LDouble d;
#endif
int val;
d = ST0;
val = floatx_to_int32(d, &env->fp_status);
if (val != (int16_t)val)
val = -32768;
stw(A0, val);
FORCE_RET();
}
void OPPROTO op_fistl_ST0_A0(void)
{
#if defined(__sparc__) && !defined(__sparc_v9__)
register CPU86_LDouble d asm("o0");
#else
CPU86_LDouble d;
#endif
int val;
d = ST0;
val = floatx_to_int32(d, &env->fp_status);
stl(A0, val);
FORCE_RET();
}
void OPPROTO op_fistll_ST0_A0(void)
{
#if defined(__sparc__) && !defined(__sparc_v9__)
register CPU86_LDouble d asm("o0");
#else
CPU86_LDouble d;
#endif
int64_t val;
d = ST0;
val = floatx_to_int64(d, &env->fp_status);
stq(A0, val);
FORCE_RET();
}
void OPPROTO op_fistt_ST0_A0(void)
{
#if defined(__sparc__) && !defined(__sparc_v9__)
register CPU86_LDouble d asm("o0");
#else
CPU86_LDouble d;
#endif
int val;
d = ST0;
val = floatx_to_int32_round_to_zero(d, &env->fp_status);
if (val != (int16_t)val)
val = -32768;
stw(A0, val);
FORCE_RET();
}
void OPPROTO op_fisttl_ST0_A0(void)
{
#if defined(__sparc__) && !defined(__sparc_v9__)
register CPU86_LDouble d asm("o0");
#else
CPU86_LDouble d;
#endif
int val;
d = ST0;
val = floatx_to_int32_round_to_zero(d, &env->fp_status);
stl(A0, val);
FORCE_RET();
}
void OPPROTO op_fisttll_ST0_A0(void)
{
#if defined(__sparc__) && !defined(__sparc_v9__)
register CPU86_LDouble d asm("o0");
#else
CPU86_LDouble d;
#endif
int64_t val;
d = ST0;
val = floatx_to_int64_round_to_zero(d, &env->fp_status);
stq(A0, val);
FORCE_RET();
}
void OPPROTO op_fbld_ST0_A0(void)
{
helper_fbld_ST0_A0();
}
void OPPROTO op_fbst_ST0_A0(void)
{
helper_fbst_ST0_A0();
}
/* FPU move */
void OPPROTO op_fpush(void)
{
fpush();
}
void OPPROTO op_fpop(void)
{
fpop();
}
void OPPROTO op_fdecstp(void)
{
env->fpstt = (env->fpstt - 1) & 7;
env->fpus &= (~0x4700);
}
void OPPROTO op_fincstp(void)
{
env->fpstt = (env->fpstt + 1) & 7;
env->fpus &= (~0x4700);
}
void OPPROTO op_ffree_STN(void)
{
env->fptags[(env->fpstt + PARAM1) & 7] = 1;
}
void OPPROTO op_fmov_ST0_FT0(void)
{
ST0 = FT0;
}
void OPPROTO op_fmov_FT0_STN(void)
{
FT0 = ST(PARAM1);
}
void OPPROTO op_fmov_ST0_STN(void)
{
ST0 = ST(PARAM1);
}
void OPPROTO op_fmov_STN_ST0(void)
{
ST(PARAM1) = ST0;
}
void OPPROTO op_fxchg_ST0_STN(void)
{
CPU86_LDouble tmp;
tmp = ST(PARAM1);
ST(PARAM1) = ST0;
ST0 = tmp;
}
/* FPU operations */
const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
void OPPROTO op_fcom_ST0_FT0(void)
{
int ret;
ret = floatx_compare(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
FORCE_RET();
}
void OPPROTO op_fucom_ST0_FT0(void)
{
int ret;
ret = floatx_compare_quiet(ST0, FT0, &env->fp_status);
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret+ 1];
FORCE_RET();
}
const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
void OPPROTO op_fcomi_ST0_FT0(void)
{
int eflags;
int ret;
ret = floatx_compare(ST0, FT0, &env->fp_status);
eflags = cc_table[CC_OP].compute_all();
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
FORCE_RET();
}
void OPPROTO op_fucomi_ST0_FT0(void)
{
int eflags;
int ret;
ret = floatx_compare_quiet(ST0, FT0, &env->fp_status);
eflags = cc_table[CC_OP].compute_all();
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
CC_SRC = eflags;
FORCE_RET();
}
void OPPROTO op_fcmov_ST0_STN_T0(void)
{
if (T0) {
ST0 = ST(PARAM1);
}
FORCE_RET();
}
void OPPROTO op_fadd_ST0_FT0(void)
{
ST0 += FT0;
}
void OPPROTO op_fmul_ST0_FT0(void)
{
ST0 *= FT0;
}
void OPPROTO op_fsub_ST0_FT0(void)
{
ST0 -= FT0;
}
void OPPROTO op_fsubr_ST0_FT0(void)
{
ST0 = FT0 - ST0;
}
void OPPROTO op_fdiv_ST0_FT0(void)
{
ST0 = helper_fdiv(ST0, FT0);
}
void OPPROTO op_fdivr_ST0_FT0(void)
{
ST0 = helper_fdiv(FT0, ST0);
}
/* fp operations between STN and ST0 */
void OPPROTO op_fadd_STN_ST0(void)
{
ST(PARAM1) += ST0;
}
void OPPROTO op_fmul_STN_ST0(void)
{
ST(PARAM1) *= ST0;
}
void OPPROTO op_fsub_STN_ST0(void)
{
ST(PARAM1) -= ST0;
}
void OPPROTO op_fsubr_STN_ST0(void)
{
CPU86_LDouble *p;
p = &ST(PARAM1);
*p = ST0 - *p;
}
void OPPROTO op_fdiv_STN_ST0(void)
{
CPU86_LDouble *p;
p = &ST(PARAM1);
*p = helper_fdiv(*p, ST0);
}
void OPPROTO op_fdivr_STN_ST0(void)
{
CPU86_LDouble *p;
p = &ST(PARAM1);
*p = helper_fdiv(ST0, *p);
}
/* misc FPU operations */
void OPPROTO op_fchs_ST0(void)
{
ST0 = floatx_chs(ST0);
}
void OPPROTO op_fabs_ST0(void)
{
ST0 = floatx_abs(ST0);
}
void OPPROTO op_fxam_ST0(void)
{
helper_fxam_ST0();
}
void OPPROTO op_fld1_ST0(void)
{
ST0 = f15rk[1];
}
void OPPROTO op_fldl2t_ST0(void)
{
ST0 = f15rk[6];
}
void OPPROTO op_fldl2e_ST0(void)
{
ST0 = f15rk[5];
}
void OPPROTO op_fldpi_ST0(void)
{
ST0 = f15rk[2];
}
void OPPROTO op_fldlg2_ST0(void)
{
ST0 = f15rk[3];
}
void OPPROTO op_fldln2_ST0(void)
{
ST0 = f15rk[4];
}
void OPPROTO op_fldz_ST0(void)
{
ST0 = f15rk[0];
}
void OPPROTO op_fldz_FT0(void)
{
FT0 = f15rk[0];
}
/* associated heplers to reduce generated code length and to simplify
relocation (FP constants are usually stored in .rodata section) */
void OPPROTO op_f2xm1(void)
{
helper_f2xm1();
}
void OPPROTO op_fyl2x(void)
{
helper_fyl2x();
}
void OPPROTO op_fptan(void)
{
helper_fptan();
}
void OPPROTO op_fpatan(void)
{
helper_fpatan();
}
void OPPROTO op_fxtract(void)
{
helper_fxtract();
}
void OPPROTO op_fprem1(void)
{
helper_fprem1();
}
void OPPROTO op_fprem(void)
{
helper_fprem();
}
void OPPROTO op_fyl2xp1(void)
{
helper_fyl2xp1();
}
void OPPROTO op_fsqrt(void)
{
helper_fsqrt();
}
void OPPROTO op_fsincos(void)
{
helper_fsincos();
}
void OPPROTO op_frndint(void)
{
helper_frndint();
}
void OPPROTO op_fscale(void)
{
helper_fscale();
}
void OPPROTO op_fsin(void)
{
helper_fsin();
}
void OPPROTO op_fcos(void)
{
helper_fcos();
}
void OPPROTO op_fnstsw_A0(void)
{
int fpus;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
stw(A0, fpus);
FORCE_RET();
}
void OPPROTO op_fnstsw_EAX(void)
{
int fpus;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
EAX = (EAX & ~0xffff) | fpus;
}
void OPPROTO op_fnstcw_A0(void)
{
stw(A0, env->fpuc);
FORCE_RET();
}
void OPPROTO op_fldcw_A0(void)
{
env->fpuc = lduw(A0);
update_fp_status();
}
void OPPROTO op_fclex(void)
{
env->fpus &= 0x7f00;
}
void OPPROTO op_fwait(void)
{
if (env->fpus & FPUS_SE)
fpu_raise_exception();
FORCE_RET();
}
void OPPROTO op_fninit(void)
{
env->fpus = 0;
env->fpstt = 0;
env->fpuc = 0x37f;
env->fptags[0] = 1;
env->fptags[1] = 1;
env->fptags[2] = 1;
env->fptags[3] = 1;
env->fptags[4] = 1;
env->fptags[5] = 1;
env->fptags[6] = 1;
env->fptags[7] = 1;
}
void OPPROTO op_fnstenv_A0(void)
{
helper_fstenv(A0, PARAM1);
}
void OPPROTO op_fldenv_A0(void)
{
helper_fldenv(A0, PARAM1);
}
void OPPROTO op_fnsave_A0(void)
{
helper_fsave(A0, PARAM1);
}
void OPPROTO op_frstor_A0(void)
{
helper_frstor(A0, PARAM1);
}
/* threading support */
void OPPROTO op_lock(void)
{
cpu_lock();
}
void OPPROTO op_unlock(void)
{
cpu_unlock();
}
/* SSE support */
static inline void memcpy16(void *d, void *s)
{
((uint32_t *)d)[0] = ((uint32_t *)s)[0];
((uint32_t *)d)[1] = ((uint32_t *)s)[1];
((uint32_t *)d)[2] = ((uint32_t *)s)[2];
((uint32_t *)d)[3] = ((uint32_t *)s)[3];
}
void OPPROTO op_movo(void)
{
/* XXX: badly generated code */
XMMReg *d, *s;
d = (XMMReg *)((char *)env + PARAM1);
s = (XMMReg *)((char *)env + PARAM2);
memcpy16(d, s);
}
void OPPROTO op_movq(void)
{
uint64_t *d, *s;
d = (uint64_t *)((char *)env + PARAM1);
s = (uint64_t *)((char *)env + PARAM2);
*d = *s;
}
void OPPROTO op_movl(void)
{
uint32_t *d, *s;
d = (uint32_t *)((char *)env + PARAM1);
s = (uint32_t *)((char *)env + PARAM2);
*d = *s;
}
void OPPROTO op_movq_env_0(void)
{
uint64_t *d;
d = (uint64_t *)((char *)env + PARAM1);
*d = 0;
}
void OPPROTO op_fxsave_A0(void)
{
helper_fxsave(A0, PARAM1);
}
void OPPROTO op_fxrstor_A0(void)
{
helper_fxrstor(A0, PARAM1);
}
/* XXX: optimize by storing fptt and fptags in the static cpu state */
void OPPROTO op_enter_mmx(void)
{
env->fpstt = 0;
*(uint32_t *)(env->fptags) = 0;
*(uint32_t *)(env->fptags + 4) = 0;
}
void OPPROTO op_emms(void)
{
/* set to empty state */
*(uint32_t *)(env->fptags) = 0x01010101;
*(uint32_t *)(env->fptags + 4) = 0x01010101;
}
#define SHIFT 0
#include "ops_sse.h"
#define SHIFT 1
#include "ops_sse.h"
/* Secure Virtual Machine ops */
void OPPROTO op_vmrun(void)
{
helper_vmrun(EAX);
}
void OPPROTO op_vmmcall(void)
{
helper_vmmcall();
}
void OPPROTO op_vmload(void)
{
helper_vmload(EAX);
}
void OPPROTO op_vmsave(void)
{
helper_vmsave(EAX);
}
void OPPROTO op_stgi(void)
{
helper_stgi();
}
void OPPROTO op_clgi(void)
{
helper_clgi();
}
void OPPROTO op_skinit(void)
{
helper_skinit();
}
void OPPROTO op_invlpga(void)
{
helper_invlpga();
}