84abdd7d27
Update FCS:FIP and FDS:FDP according to the Intel Manual Vol.1 8.1.8. Note that CPUID.(EAX=07H,ECX=0H):EBX[bit 13] is not implemented by design in this patch and will be added along with TCG features flag in a separate patch later. Signed-off-by: Ziqiao Kong <ziqiaokong@gmail.com> Message-Id: <20210530150112.74411-2-ziqiaokong@gmail.com> [rth: Push FDS/FDP handling down into mod != 3 case; free last_addr.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
3042 lines
104 KiB
C
3042 lines
104 KiB
C
/*
|
|
* x86 FPU, MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI helpers
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include <math.h>
|
|
#include "cpu.h"
|
|
#include "tcg-cpu.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "fpu/softfloat.h"
|
|
#include "fpu/softfloat-macros.h"
|
|
#include "helper-tcg.h"
|
|
|
|
/* float macros */
|
|
#define FT0 (env->ft0)
|
|
#define ST0 (env->fpregs[env->fpstt].d)
|
|
#define ST(n) (env->fpregs[(env->fpstt + (n)) & 7].d)
|
|
#define ST1 ST(1)
|
|
|
|
#define FPU_RC_MASK 0xc00
|
|
#define FPU_RC_NEAR 0x000
|
|
#define FPU_RC_DOWN 0x400
|
|
#define FPU_RC_UP 0x800
|
|
#define FPU_RC_CHOP 0xc00
|
|
|
|
#define MAXTAN 9223372036854775808.0
|
|
|
|
/* the following deal with x86 long double-precision numbers */
|
|
#define MAXEXPD 0x7fff
|
|
#define EXPBIAS 16383
|
|
#define EXPD(fp) (fp.l.upper & 0x7fff)
|
|
#define SIGND(fp) ((fp.l.upper) & 0x8000)
|
|
#define MANTD(fp) (fp.l.lower)
|
|
#define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
|
|
|
|
#define FPUS_IE (1 << 0)
|
|
#define FPUS_DE (1 << 1)
|
|
#define FPUS_ZE (1 << 2)
|
|
#define FPUS_OE (1 << 3)
|
|
#define FPUS_UE (1 << 4)
|
|
#define FPUS_PE (1 << 5)
|
|
#define FPUS_SF (1 << 6)
|
|
#define FPUS_SE (1 << 7)
|
|
#define FPUS_B (1 << 15)
|
|
|
|
#define FPUC_EM 0x3f
|
|
|
|
#define floatx80_lg2 make_floatx80(0x3ffd, 0x9a209a84fbcff799LL)
|
|
#define floatx80_lg2_d make_floatx80(0x3ffd, 0x9a209a84fbcff798LL)
|
|
#define floatx80_l2e make_floatx80(0x3fff, 0xb8aa3b295c17f0bcLL)
|
|
#define floatx80_l2e_d make_floatx80(0x3fff, 0xb8aa3b295c17f0bbLL)
|
|
#define floatx80_l2t make_floatx80(0x4000, 0xd49a784bcd1b8afeLL)
|
|
#define floatx80_l2t_u make_floatx80(0x4000, 0xd49a784bcd1b8affLL)
|
|
#define floatx80_ln2_d make_floatx80(0x3ffe, 0xb17217f7d1cf79abLL)
|
|
#define floatx80_pi_d make_floatx80(0x4000, 0xc90fdaa22168c234LL)
|
|
|
|
static inline void fpush(CPUX86State *env)
|
|
{
|
|
env->fpstt = (env->fpstt - 1) & 7;
|
|
env->fptags[env->fpstt] = 0; /* validate stack entry */
|
|
}
|
|
|
|
static inline void fpop(CPUX86State *env)
|
|
{
|
|
env->fptags[env->fpstt] = 1; /* invalidate stack entry */
|
|
env->fpstt = (env->fpstt + 1) & 7;
|
|
}
|
|
|
|
static floatx80 do_fldt(CPUX86State *env, target_ulong ptr, uintptr_t retaddr)
|
|
{
|
|
CPU_LDoubleU temp;
|
|
|
|
temp.l.lower = cpu_ldq_data_ra(env, ptr, retaddr);
|
|
temp.l.upper = cpu_lduw_data_ra(env, ptr + 8, retaddr);
|
|
return temp.d;
|
|
}
|
|
|
|
static void do_fstt(CPUX86State *env, floatx80 f, target_ulong ptr,
|
|
uintptr_t retaddr)
|
|
{
|
|
CPU_LDoubleU temp;
|
|
|
|
temp.d = f;
|
|
cpu_stq_data_ra(env, ptr, temp.l.lower, retaddr);
|
|
cpu_stw_data_ra(env, ptr + 8, temp.l.upper, retaddr);
|
|
}
|
|
|
|
/* x87 FPU helpers */
|
|
|
|
static inline double floatx80_to_double(CPUX86State *env, floatx80 a)
|
|
{
|
|
union {
|
|
float64 f64;
|
|
double d;
|
|
} u;
|
|
|
|
u.f64 = floatx80_to_float64(a, &env->fp_status);
|
|
return u.d;
|
|
}
|
|
|
|
static inline floatx80 double_to_floatx80(CPUX86State *env, double a)
|
|
{
|
|
union {
|
|
float64 f64;
|
|
double d;
|
|
} u;
|
|
|
|
u.d = a;
|
|
return float64_to_floatx80(u.f64, &env->fp_status);
|
|
}
|
|
|
|
static void fpu_set_exception(CPUX86State *env, int mask)
|
|
{
|
|
env->fpus |= mask;
|
|
if (env->fpus & (~env->fpuc & FPUC_EM)) {
|
|
env->fpus |= FPUS_SE | FPUS_B;
|
|
}
|
|
}
|
|
|
|
static inline uint8_t save_exception_flags(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = get_float_exception_flags(&env->fp_status);
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
return old_flags;
|
|
}
|
|
|
|
static void merge_exception_flags(CPUX86State *env, uint8_t old_flags)
|
|
{
|
|
uint8_t new_flags = get_float_exception_flags(&env->fp_status);
|
|
float_raise(old_flags, &env->fp_status);
|
|
fpu_set_exception(env,
|
|
((new_flags & float_flag_invalid ? FPUS_IE : 0) |
|
|
(new_flags & float_flag_divbyzero ? FPUS_ZE : 0) |
|
|
(new_flags & float_flag_overflow ? FPUS_OE : 0) |
|
|
(new_flags & float_flag_underflow ? FPUS_UE : 0) |
|
|
(new_flags & float_flag_inexact ? FPUS_PE : 0) |
|
|
(new_flags & float_flag_input_denormal ? FPUS_DE : 0)));
|
|
}
|
|
|
|
static inline floatx80 helper_fdiv(CPUX86State *env, floatx80 a, floatx80 b)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
floatx80 ret = floatx80_div(a, b, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
return ret;
|
|
}
|
|
|
|
static void fpu_raise_exception(CPUX86State *env, uintptr_t retaddr)
|
|
{
|
|
if (env->cr[0] & CR0_NE_MASK) {
|
|
raise_exception_ra(env, EXCP10_COPR, retaddr);
|
|
}
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
else {
|
|
fpu_check_raise_ferr_irq(env);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void helper_flds_FT0(CPUX86State *env, uint32_t val)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
union {
|
|
float32 f;
|
|
uint32_t i;
|
|
} u;
|
|
|
|
u.i = val;
|
|
FT0 = float32_to_floatx80(u.f, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fldl_FT0(CPUX86State *env, uint64_t val)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
union {
|
|
float64 f;
|
|
uint64_t i;
|
|
} u;
|
|
|
|
u.i = val;
|
|
FT0 = float64_to_floatx80(u.f, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fildl_FT0(CPUX86State *env, int32_t val)
|
|
{
|
|
FT0 = int32_to_floatx80(val, &env->fp_status);
|
|
}
|
|
|
|
void helper_flds_ST0(CPUX86State *env, uint32_t val)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int new_fpstt;
|
|
union {
|
|
float32 f;
|
|
uint32_t i;
|
|
} u;
|
|
|
|
new_fpstt = (env->fpstt - 1) & 7;
|
|
u.i = val;
|
|
env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status);
|
|
env->fpstt = new_fpstt;
|
|
env->fptags[new_fpstt] = 0; /* validate stack entry */
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fldl_ST0(CPUX86State *env, uint64_t val)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int new_fpstt;
|
|
union {
|
|
float64 f;
|
|
uint64_t i;
|
|
} u;
|
|
|
|
new_fpstt = (env->fpstt - 1) & 7;
|
|
u.i = val;
|
|
env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status);
|
|
env->fpstt = new_fpstt;
|
|
env->fptags[new_fpstt] = 0; /* validate stack entry */
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fildl_ST0(CPUX86State *env, int32_t val)
|
|
{
|
|
int new_fpstt;
|
|
|
|
new_fpstt = (env->fpstt - 1) & 7;
|
|
env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status);
|
|
env->fpstt = new_fpstt;
|
|
env->fptags[new_fpstt] = 0; /* validate stack entry */
|
|
}
|
|
|
|
void helper_fildll_ST0(CPUX86State *env, int64_t val)
|
|
{
|
|
int new_fpstt;
|
|
|
|
new_fpstt = (env->fpstt - 1) & 7;
|
|
env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status);
|
|
env->fpstt = new_fpstt;
|
|
env->fptags[new_fpstt] = 0; /* validate stack entry */
|
|
}
|
|
|
|
uint32_t helper_fsts_ST0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
union {
|
|
float32 f;
|
|
uint32_t i;
|
|
} u;
|
|
|
|
u.f = floatx80_to_float32(ST0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
return u.i;
|
|
}
|
|
|
|
uint64_t helper_fstl_ST0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
union {
|
|
float64 f;
|
|
uint64_t i;
|
|
} u;
|
|
|
|
u.f = floatx80_to_float64(ST0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
return u.i;
|
|
}
|
|
|
|
int32_t helper_fist_ST0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int32_t val;
|
|
|
|
val = floatx80_to_int32(ST0, &env->fp_status);
|
|
if (val != (int16_t)val) {
|
|
set_float_exception_flags(float_flag_invalid, &env->fp_status);
|
|
val = -32768;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
return val;
|
|
}
|
|
|
|
int32_t helper_fistl_ST0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int32_t val;
|
|
|
|
val = floatx80_to_int32(ST0, &env->fp_status);
|
|
if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
|
|
val = 0x80000000;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
return val;
|
|
}
|
|
|
|
int64_t helper_fistll_ST0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int64_t val;
|
|
|
|
val = floatx80_to_int64(ST0, &env->fp_status);
|
|
if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
|
|
val = 0x8000000000000000ULL;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
return val;
|
|
}
|
|
|
|
int32_t helper_fistt_ST0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int32_t val;
|
|
|
|
val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
|
|
if (val != (int16_t)val) {
|
|
set_float_exception_flags(float_flag_invalid, &env->fp_status);
|
|
val = -32768;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
return val;
|
|
}
|
|
|
|
int32_t helper_fisttl_ST0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int32_t val;
|
|
|
|
val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
|
|
if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
|
|
val = 0x80000000;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
return val;
|
|
}
|
|
|
|
int64_t helper_fisttll_ST0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int64_t val;
|
|
|
|
val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status);
|
|
if (get_float_exception_flags(&env->fp_status) & float_flag_invalid) {
|
|
val = 0x8000000000000000ULL;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
return val;
|
|
}
|
|
|
|
void helper_fldt_ST0(CPUX86State *env, target_ulong ptr)
|
|
{
|
|
int new_fpstt;
|
|
|
|
new_fpstt = (env->fpstt - 1) & 7;
|
|
env->fpregs[new_fpstt].d = do_fldt(env, ptr, GETPC());
|
|
env->fpstt = new_fpstt;
|
|
env->fptags[new_fpstt] = 0; /* validate stack entry */
|
|
}
|
|
|
|
void helper_fstt_ST0(CPUX86State *env, target_ulong ptr)
|
|
{
|
|
do_fstt(env, ST0, ptr, GETPC());
|
|
}
|
|
|
|
void helper_fpush(CPUX86State *env)
|
|
{
|
|
fpush(env);
|
|
}
|
|
|
|
void helper_fpop(CPUX86State *env)
|
|
{
|
|
fpop(env);
|
|
}
|
|
|
|
void helper_fdecstp(CPUX86State *env)
|
|
{
|
|
env->fpstt = (env->fpstt - 1) & 7;
|
|
env->fpus &= ~0x4700;
|
|
}
|
|
|
|
void helper_fincstp(CPUX86State *env)
|
|
{
|
|
env->fpstt = (env->fpstt + 1) & 7;
|
|
env->fpus &= ~0x4700;
|
|
}
|
|
|
|
/* FPU move */
|
|
|
|
void helper_ffree_STN(CPUX86State *env, int st_index)
|
|
{
|
|
env->fptags[(env->fpstt + st_index) & 7] = 1;
|
|
}
|
|
|
|
void helper_fmov_ST0_FT0(CPUX86State *env)
|
|
{
|
|
ST0 = FT0;
|
|
}
|
|
|
|
void helper_fmov_FT0_STN(CPUX86State *env, int st_index)
|
|
{
|
|
FT0 = ST(st_index);
|
|
}
|
|
|
|
void helper_fmov_ST0_STN(CPUX86State *env, int st_index)
|
|
{
|
|
ST0 = ST(st_index);
|
|
}
|
|
|
|
void helper_fmov_STN_ST0(CPUX86State *env, int st_index)
|
|
{
|
|
ST(st_index) = ST0;
|
|
}
|
|
|
|
void helper_fxchg_ST0_STN(CPUX86State *env, int st_index)
|
|
{
|
|
floatx80 tmp;
|
|
|
|
tmp = ST(st_index);
|
|
ST(st_index) = ST0;
|
|
ST0 = tmp;
|
|
}
|
|
|
|
/* FPU operations */
|
|
|
|
static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
|
|
|
|
void helper_fcom_ST0_FT0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
FloatRelation ret;
|
|
|
|
ret = floatx80_compare(ST0, FT0, &env->fp_status);
|
|
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fucom_ST0_FT0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
FloatRelation ret;
|
|
|
|
ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
|
|
env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
|
|
|
|
void helper_fcomi_ST0_FT0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int eflags;
|
|
FloatRelation ret;
|
|
|
|
ret = floatx80_compare(ST0, FT0, &env->fp_status);
|
|
eflags = cpu_cc_compute_all(env, CC_OP);
|
|
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
|
|
CC_SRC = eflags;
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fucomi_ST0_FT0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int eflags;
|
|
FloatRelation ret;
|
|
|
|
ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
|
|
eflags = cpu_cc_compute_all(env, CC_OP);
|
|
eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
|
|
CC_SRC = eflags;
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fadd_ST0_FT0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST0 = floatx80_add(ST0, FT0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fmul_ST0_FT0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST0 = floatx80_mul(ST0, FT0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fsub_ST0_FT0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST0 = floatx80_sub(ST0, FT0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fsubr_ST0_FT0(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST0 = floatx80_sub(FT0, ST0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fdiv_ST0_FT0(CPUX86State *env)
|
|
{
|
|
ST0 = helper_fdiv(env, ST0, FT0);
|
|
}
|
|
|
|
void helper_fdivr_ST0_FT0(CPUX86State *env)
|
|
{
|
|
ST0 = helper_fdiv(env, FT0, ST0);
|
|
}
|
|
|
|
/* fp operations between STN and ST0 */
|
|
|
|
void helper_fadd_STN_ST0(CPUX86State *env, int st_index)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fmul_STN_ST0(CPUX86State *env, int st_index)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fsub_STN_ST0(CPUX86State *env, int st_index)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fsubr_STN_ST0(CPUX86State *env, int st_index)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fdiv_STN_ST0(CPUX86State *env, int st_index)
|
|
{
|
|
floatx80 *p;
|
|
|
|
p = &ST(st_index);
|
|
*p = helper_fdiv(env, *p, ST0);
|
|
}
|
|
|
|
void helper_fdivr_STN_ST0(CPUX86State *env, int st_index)
|
|
{
|
|
floatx80 *p;
|
|
|
|
p = &ST(st_index);
|
|
*p = helper_fdiv(env, ST0, *p);
|
|
}
|
|
|
|
/* misc FPU operations */
|
|
void helper_fchs_ST0(CPUX86State *env)
|
|
{
|
|
ST0 = floatx80_chs(ST0);
|
|
}
|
|
|
|
void helper_fabs_ST0(CPUX86State *env)
|
|
{
|
|
ST0 = floatx80_abs(ST0);
|
|
}
|
|
|
|
void helper_fld1_ST0(CPUX86State *env)
|
|
{
|
|
ST0 = floatx80_one;
|
|
}
|
|
|
|
void helper_fldl2t_ST0(CPUX86State *env)
|
|
{
|
|
switch (env->fpuc & FPU_RC_MASK) {
|
|
case FPU_RC_UP:
|
|
ST0 = floatx80_l2t_u;
|
|
break;
|
|
default:
|
|
ST0 = floatx80_l2t;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_fldl2e_ST0(CPUX86State *env)
|
|
{
|
|
switch (env->fpuc & FPU_RC_MASK) {
|
|
case FPU_RC_DOWN:
|
|
case FPU_RC_CHOP:
|
|
ST0 = floatx80_l2e_d;
|
|
break;
|
|
default:
|
|
ST0 = floatx80_l2e;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_fldpi_ST0(CPUX86State *env)
|
|
{
|
|
switch (env->fpuc & FPU_RC_MASK) {
|
|
case FPU_RC_DOWN:
|
|
case FPU_RC_CHOP:
|
|
ST0 = floatx80_pi_d;
|
|
break;
|
|
default:
|
|
ST0 = floatx80_pi;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_fldlg2_ST0(CPUX86State *env)
|
|
{
|
|
switch (env->fpuc & FPU_RC_MASK) {
|
|
case FPU_RC_DOWN:
|
|
case FPU_RC_CHOP:
|
|
ST0 = floatx80_lg2_d;
|
|
break;
|
|
default:
|
|
ST0 = floatx80_lg2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_fldln2_ST0(CPUX86State *env)
|
|
{
|
|
switch (env->fpuc & FPU_RC_MASK) {
|
|
case FPU_RC_DOWN:
|
|
case FPU_RC_CHOP:
|
|
ST0 = floatx80_ln2_d;
|
|
break;
|
|
default:
|
|
ST0 = floatx80_ln2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_fldz_ST0(CPUX86State *env)
|
|
{
|
|
ST0 = floatx80_zero;
|
|
}
|
|
|
|
void helper_fldz_FT0(CPUX86State *env)
|
|
{
|
|
FT0 = floatx80_zero;
|
|
}
|
|
|
|
uint32_t helper_fnstsw(CPUX86State *env)
|
|
{
|
|
return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
|
|
}
|
|
|
|
uint32_t helper_fnstcw(CPUX86State *env)
|
|
{
|
|
return env->fpuc;
|
|
}
|
|
|
|
void update_fp_status(CPUX86State *env)
|
|
{
|
|
FloatRoundMode rnd_mode;
|
|
FloatX80RoundPrec rnd_prec;
|
|
|
|
/* set rounding mode */
|
|
switch (env->fpuc & FPU_RC_MASK) {
|
|
default:
|
|
case FPU_RC_NEAR:
|
|
rnd_mode = float_round_nearest_even;
|
|
break;
|
|
case FPU_RC_DOWN:
|
|
rnd_mode = float_round_down;
|
|
break;
|
|
case FPU_RC_UP:
|
|
rnd_mode = float_round_up;
|
|
break;
|
|
case FPU_RC_CHOP:
|
|
rnd_mode = float_round_to_zero;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(rnd_mode, &env->fp_status);
|
|
|
|
switch ((env->fpuc >> 8) & 3) {
|
|
case 0:
|
|
rnd_prec = floatx80_precision_s;
|
|
break;
|
|
case 2:
|
|
rnd_prec = floatx80_precision_d;
|
|
break;
|
|
case 3:
|
|
default:
|
|
rnd_prec = floatx80_precision_x;
|
|
break;
|
|
}
|
|
set_floatx80_rounding_precision(rnd_prec, &env->fp_status);
|
|
}
|
|
|
|
void helper_fldcw(CPUX86State *env, uint32_t val)
|
|
{
|
|
cpu_set_fpuc(env, val);
|
|
}
|
|
|
|
void helper_fclex(CPUX86State *env)
|
|
{
|
|
env->fpus &= 0x7f00;
|
|
}
|
|
|
|
void helper_fwait(CPUX86State *env)
|
|
{
|
|
if (env->fpus & FPUS_SE) {
|
|
fpu_raise_exception(env, GETPC());
|
|
}
|
|
}
|
|
|
|
static void do_fninit(CPUX86State *env)
|
|
{
|
|
env->fpus = 0;
|
|
env->fpstt = 0;
|
|
env->fpcs = 0;
|
|
env->fpds = 0;
|
|
env->fpip = 0;
|
|
env->fpdp = 0;
|
|
cpu_set_fpuc(env, 0x37f);
|
|
env->fptags[0] = 1;
|
|
env->fptags[1] = 1;
|
|
env->fptags[2] = 1;
|
|
env->fptags[3] = 1;
|
|
env->fptags[4] = 1;
|
|
env->fptags[5] = 1;
|
|
env->fptags[6] = 1;
|
|
env->fptags[7] = 1;
|
|
}
|
|
|
|
void helper_fninit(CPUX86State *env)
|
|
{
|
|
do_fninit(env);
|
|
}
|
|
|
|
/* BCD ops */
|
|
|
|
void helper_fbld_ST0(CPUX86State *env, target_ulong ptr)
|
|
{
|
|
floatx80 tmp;
|
|
uint64_t val;
|
|
unsigned int v;
|
|
int i;
|
|
|
|
val = 0;
|
|
for (i = 8; i >= 0; i--) {
|
|
v = cpu_ldub_data_ra(env, ptr + i, GETPC());
|
|
val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
|
|
}
|
|
tmp = int64_to_floatx80(val, &env->fp_status);
|
|
if (cpu_ldub_data_ra(env, ptr + 9, GETPC()) & 0x80) {
|
|
tmp = floatx80_chs(tmp);
|
|
}
|
|
fpush(env);
|
|
ST0 = tmp;
|
|
}
|
|
|
|
void helper_fbst_ST0(CPUX86State *env, target_ulong ptr)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
int v;
|
|
target_ulong mem_ref, mem_end;
|
|
int64_t val;
|
|
CPU_LDoubleU temp;
|
|
|
|
temp.d = ST0;
|
|
|
|
val = floatx80_to_int64(ST0, &env->fp_status);
|
|
mem_ref = ptr;
|
|
if (val >= 1000000000000000000LL || val <= -1000000000000000000LL) {
|
|
set_float_exception_flags(float_flag_invalid, &env->fp_status);
|
|
while (mem_ref < ptr + 7) {
|
|
cpu_stb_data_ra(env, mem_ref++, 0, GETPC());
|
|
}
|
|
cpu_stb_data_ra(env, mem_ref++, 0xc0, GETPC());
|
|
cpu_stb_data_ra(env, mem_ref++, 0xff, GETPC());
|
|
cpu_stb_data_ra(env, mem_ref++, 0xff, GETPC());
|
|
merge_exception_flags(env, old_flags);
|
|
return;
|
|
}
|
|
mem_end = mem_ref + 9;
|
|
if (SIGND(temp)) {
|
|
cpu_stb_data_ra(env, mem_end, 0x80, GETPC());
|
|
val = -val;
|
|
} else {
|
|
cpu_stb_data_ra(env, mem_end, 0x00, GETPC());
|
|
}
|
|
while (mem_ref < mem_end) {
|
|
if (val == 0) {
|
|
break;
|
|
}
|
|
v = val % 100;
|
|
val = val / 100;
|
|
v = ((v / 10) << 4) | (v % 10);
|
|
cpu_stb_data_ra(env, mem_ref++, v, GETPC());
|
|
}
|
|
while (mem_ref < mem_end) {
|
|
cpu_stb_data_ra(env, mem_ref++, 0, GETPC());
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
/* 128-bit significand of log(2). */
|
|
#define ln2_sig_high 0xb17217f7d1cf79abULL
|
|
#define ln2_sig_low 0xc9e3b39803f2f6afULL
|
|
|
|
/*
|
|
* Polynomial coefficients for an approximation to (2^x - 1) / x, on
|
|
* the interval [-1/64, 1/64].
|
|
*/
|
|
#define f2xm1_coeff_0 make_floatx80(0x3ffe, 0xb17217f7d1cf79acULL)
|
|
#define f2xm1_coeff_0_low make_floatx80(0xbfbc, 0xd87edabf495b3762ULL)
|
|
#define f2xm1_coeff_1 make_floatx80(0x3ffc, 0xf5fdeffc162c7543ULL)
|
|
#define f2xm1_coeff_2 make_floatx80(0x3ffa, 0xe35846b82505fcc7ULL)
|
|
#define f2xm1_coeff_3 make_floatx80(0x3ff8, 0x9d955b7dd273b899ULL)
|
|
#define f2xm1_coeff_4 make_floatx80(0x3ff5, 0xaec3ff3c4ef4ac0cULL)
|
|
#define f2xm1_coeff_5 make_floatx80(0x3ff2, 0xa184897c3a7f0de9ULL)
|
|
#define f2xm1_coeff_6 make_floatx80(0x3fee, 0xffe634d0ec30d504ULL)
|
|
#define f2xm1_coeff_7 make_floatx80(0x3feb, 0xb160111d2db515e4ULL)
|
|
|
|
struct f2xm1_data {
|
|
/*
|
|
* A value very close to a multiple of 1/32, such that 2^t and 2^t - 1
|
|
* are very close to exact floatx80 values.
|
|
*/
|
|
floatx80 t;
|
|
/* The value of 2^t. */
|
|
floatx80 exp2;
|
|
/* The value of 2^t - 1. */
|
|
floatx80 exp2m1;
|
|
};
|
|
|
|
static const struct f2xm1_data f2xm1_table[65] = {
|
|
{ make_floatx80_init(0xbfff, 0x8000000000000000ULL),
|
|
make_floatx80_init(0x3ffe, 0x8000000000000000ULL),
|
|
make_floatx80_init(0xbffe, 0x8000000000000000ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xf800000000002e7eULL),
|
|
make_floatx80_init(0x3ffe, 0x82cd8698ac2b9160ULL),
|
|
make_floatx80_init(0xbffd, 0xfa64f2cea7a8dd40ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xefffffffffffe960ULL),
|
|
make_floatx80_init(0x3ffe, 0x85aac367cc488345ULL),
|
|
make_floatx80_init(0xbffd, 0xf4aa7930676ef976ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xe800000000006f10ULL),
|
|
make_floatx80_init(0x3ffe, 0x88980e8092da5c14ULL),
|
|
make_floatx80_init(0xbffd, 0xeecfe2feda4b47d8ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xe000000000008a45ULL),
|
|
make_floatx80_init(0x3ffe, 0x8b95c1e3ea8ba2a5ULL),
|
|
make_floatx80_init(0xbffd, 0xe8d47c382ae8bab6ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xd7ffffffffff8a9eULL),
|
|
make_floatx80_init(0x3ffe, 0x8ea4398b45cd8116ULL),
|
|
make_floatx80_init(0xbffd, 0xe2b78ce97464fdd4ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xd0000000000019a0ULL),
|
|
make_floatx80_init(0x3ffe, 0x91c3d373ab11b919ULL),
|
|
make_floatx80_init(0xbffd, 0xdc785918a9dc8dceULL) },
|
|
{ make_floatx80_init(0xbffe, 0xc7ffffffffff14dfULL),
|
|
make_floatx80_init(0x3ffe, 0x94f4efa8fef76836ULL),
|
|
make_floatx80_init(0xbffd, 0xd61620ae02112f94ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xc000000000006530ULL),
|
|
make_floatx80_init(0x3ffe, 0x9837f0518db87fbbULL),
|
|
make_floatx80_init(0xbffd, 0xcf901f5ce48f008aULL) },
|
|
{ make_floatx80_init(0xbffe, 0xb7ffffffffff1723ULL),
|
|
make_floatx80_init(0x3ffe, 0x9b8d39b9d54eb74cULL),
|
|
make_floatx80_init(0xbffd, 0xc8e58c8c55629168ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xb00000000000b5e1ULL),
|
|
make_floatx80_init(0x3ffe, 0x9ef5326091a0c366ULL),
|
|
make_floatx80_init(0xbffd, 0xc2159b3edcbe7934ULL) },
|
|
{ make_floatx80_init(0xbffe, 0xa800000000006f8aULL),
|
|
make_floatx80_init(0x3ffe, 0xa27043030c49370aULL),
|
|
make_floatx80_init(0xbffd, 0xbb1f79f9e76d91ecULL) },
|
|
{ make_floatx80_init(0xbffe, 0x9fffffffffff816aULL),
|
|
make_floatx80_init(0x3ffe, 0xa5fed6a9b15171cfULL),
|
|
make_floatx80_init(0xbffd, 0xb40252ac9d5d1c62ULL) },
|
|
{ make_floatx80_init(0xbffe, 0x97ffffffffffb621ULL),
|
|
make_floatx80_init(0x3ffe, 0xa9a15ab4ea7c30e6ULL),
|
|
make_floatx80_init(0xbffd, 0xacbd4a962b079e34ULL) },
|
|
{ make_floatx80_init(0xbffe, 0x8fffffffffff162bULL),
|
|
make_floatx80_init(0x3ffe, 0xad583eea42a1b886ULL),
|
|
make_floatx80_init(0xbffd, 0xa54f822b7abc8ef4ULL) },
|
|
{ make_floatx80_init(0xbffe, 0x87ffffffffff4d34ULL),
|
|
make_floatx80_init(0x3ffe, 0xb123f581d2ac7b51ULL),
|
|
make_floatx80_init(0xbffd, 0x9db814fc5aa7095eULL) },
|
|
{ make_floatx80_init(0xbffe, 0x800000000000227dULL),
|
|
make_floatx80_init(0x3ffe, 0xb504f333f9de539dULL),
|
|
make_floatx80_init(0xbffd, 0x95f619980c4358c6ULL) },
|
|
{ make_floatx80_init(0xbffd, 0xefffffffffff3978ULL),
|
|
make_floatx80_init(0x3ffe, 0xb8fbaf4762fbd0a1ULL),
|
|
make_floatx80_init(0xbffd, 0x8e08a1713a085ebeULL) },
|
|
{ make_floatx80_init(0xbffd, 0xe00000000000df81ULL),
|
|
make_floatx80_init(0x3ffe, 0xbd08a39f580bfd8cULL),
|
|
make_floatx80_init(0xbffd, 0x85eeb8c14fe804e8ULL) },
|
|
{ make_floatx80_init(0xbffd, 0xd00000000000bccfULL),
|
|
make_floatx80_init(0x3ffe, 0xc12c4cca667062f6ULL),
|
|
make_floatx80_init(0xbffc, 0xfb4eccd6663e7428ULL) },
|
|
{ make_floatx80_init(0xbffd, 0xc00000000000eff0ULL),
|
|
make_floatx80_init(0x3ffe, 0xc5672a1155069abeULL),
|
|
make_floatx80_init(0xbffc, 0xea6357baabe59508ULL) },
|
|
{ make_floatx80_init(0xbffd, 0xb000000000000fe6ULL),
|
|
make_floatx80_init(0x3ffe, 0xc9b9bd866e2f234bULL),
|
|
make_floatx80_init(0xbffc, 0xd91909e6474372d4ULL) },
|
|
{ make_floatx80_init(0xbffd, 0x9fffffffffff2172ULL),
|
|
make_floatx80_init(0x3ffe, 0xce248c151f84bf00ULL),
|
|
make_floatx80_init(0xbffc, 0xc76dcfab81ed0400ULL) },
|
|
{ make_floatx80_init(0xbffd, 0x8fffffffffffafffULL),
|
|
make_floatx80_init(0x3ffe, 0xd2a81d91f12afb2bULL),
|
|
make_floatx80_init(0xbffc, 0xb55f89b83b541354ULL) },
|
|
{ make_floatx80_init(0xbffc, 0xffffffffffff81a3ULL),
|
|
make_floatx80_init(0x3ffe, 0xd744fccad69d7d5eULL),
|
|
make_floatx80_init(0xbffc, 0xa2ec0cd4a58a0a88ULL) },
|
|
{ make_floatx80_init(0xbffc, 0xdfffffffffff1568ULL),
|
|
make_floatx80_init(0x3ffe, 0xdbfbb797daf25a44ULL),
|
|
make_floatx80_init(0xbffc, 0x901121a0943696f0ULL) },
|
|
{ make_floatx80_init(0xbffc, 0xbfffffffffff68daULL),
|
|
make_floatx80_init(0x3ffe, 0xe0ccdeec2a94f811ULL),
|
|
make_floatx80_init(0xbffb, 0xf999089eab583f78ULL) },
|
|
{ make_floatx80_init(0xbffc, 0x9fffffffffff4690ULL),
|
|
make_floatx80_init(0x3ffe, 0xe5b906e77c83657eULL),
|
|
make_floatx80_init(0xbffb, 0xd237c8c41be4d410ULL) },
|
|
{ make_floatx80_init(0xbffb, 0xffffffffffff8aeeULL),
|
|
make_floatx80_init(0x3ffe, 0xeac0c6e7dd24427cULL),
|
|
make_floatx80_init(0xbffb, 0xa9f9c8c116ddec20ULL) },
|
|
{ make_floatx80_init(0xbffb, 0xbfffffffffff2d18ULL),
|
|
make_floatx80_init(0x3ffe, 0xefe4b99bdcdb06ebULL),
|
|
make_floatx80_init(0xbffb, 0x80da33211927c8a8ULL) },
|
|
{ make_floatx80_init(0xbffa, 0xffffffffffff8ccbULL),
|
|
make_floatx80_init(0x3ffe, 0xf5257d152486d0f4ULL),
|
|
make_floatx80_init(0xbffa, 0xada82eadb792f0c0ULL) },
|
|
{ make_floatx80_init(0xbff9, 0xffffffffffff11feULL),
|
|
make_floatx80_init(0x3ffe, 0xfa83b2db722a0846ULL),
|
|
make_floatx80_init(0xbff9, 0xaf89a491babef740ULL) },
|
|
{ floatx80_zero_init,
|
|
make_floatx80_init(0x3fff, 0x8000000000000000ULL),
|
|
floatx80_zero_init },
|
|
{ make_floatx80_init(0x3ff9, 0xffffffffffff2680ULL),
|
|
make_floatx80_init(0x3fff, 0x82cd8698ac2b9f6fULL),
|
|
make_floatx80_init(0x3ff9, 0xb361a62b0ae7dbc0ULL) },
|
|
{ make_floatx80_init(0x3ffb, 0x800000000000b500ULL),
|
|
make_floatx80_init(0x3fff, 0x85aac367cc488345ULL),
|
|
make_floatx80_init(0x3ffa, 0xb5586cf9891068a0ULL) },
|
|
{ make_floatx80_init(0x3ffb, 0xbfffffffffff4b67ULL),
|
|
make_floatx80_init(0x3fff, 0x88980e8092da7cceULL),
|
|
make_floatx80_init(0x3ffb, 0x8980e8092da7cce0ULL) },
|
|
{ make_floatx80_init(0x3ffb, 0xffffffffffffff57ULL),
|
|
make_floatx80_init(0x3fff, 0x8b95c1e3ea8bd6dfULL),
|
|
make_floatx80_init(0x3ffb, 0xb95c1e3ea8bd6df0ULL) },
|
|
{ make_floatx80_init(0x3ffc, 0x9fffffffffff811fULL),
|
|
make_floatx80_init(0x3fff, 0x8ea4398b45cd4780ULL),
|
|
make_floatx80_init(0x3ffb, 0xea4398b45cd47800ULL) },
|
|
{ make_floatx80_init(0x3ffc, 0xbfffffffffff9980ULL),
|
|
make_floatx80_init(0x3fff, 0x91c3d373ab11b919ULL),
|
|
make_floatx80_init(0x3ffc, 0x8e1e9b9d588dc8c8ULL) },
|
|
{ make_floatx80_init(0x3ffc, 0xdffffffffffff631ULL),
|
|
make_floatx80_init(0x3fff, 0x94f4efa8fef70864ULL),
|
|
make_floatx80_init(0x3ffc, 0xa7a77d47f7b84320ULL) },
|
|
{ make_floatx80_init(0x3ffc, 0xffffffffffff2499ULL),
|
|
make_floatx80_init(0x3fff, 0x9837f0518db892d4ULL),
|
|
make_floatx80_init(0x3ffc, 0xc1bf828c6dc496a0ULL) },
|
|
{ make_floatx80_init(0x3ffd, 0x8fffffffffff80fbULL),
|
|
make_floatx80_init(0x3fff, 0x9b8d39b9d54e3a79ULL),
|
|
make_floatx80_init(0x3ffc, 0xdc69cdceaa71d3c8ULL) },
|
|
{ make_floatx80_init(0x3ffd, 0x9fffffffffffbc23ULL),
|
|
make_floatx80_init(0x3fff, 0x9ef5326091a10313ULL),
|
|
make_floatx80_init(0x3ffc, 0xf7a993048d081898ULL) },
|
|
{ make_floatx80_init(0x3ffd, 0xafffffffffff20ecULL),
|
|
make_floatx80_init(0x3fff, 0xa27043030c49370aULL),
|
|
make_floatx80_init(0x3ffd, 0x89c10c0c3124dc28ULL) },
|
|
{ make_floatx80_init(0x3ffd, 0xc00000000000fd2cULL),
|
|
make_floatx80_init(0x3fff, 0xa5fed6a9b15171cfULL),
|
|
make_floatx80_init(0x3ffd, 0x97fb5aa6c545c73cULL) },
|
|
{ make_floatx80_init(0x3ffd, 0xd0000000000093beULL),
|
|
make_floatx80_init(0x3fff, 0xa9a15ab4ea7c30e6ULL),
|
|
make_floatx80_init(0x3ffd, 0xa6856ad3a9f0c398ULL) },
|
|
{ make_floatx80_init(0x3ffd, 0xe00000000000c2aeULL),
|
|
make_floatx80_init(0x3fff, 0xad583eea42a17876ULL),
|
|
make_floatx80_init(0x3ffd, 0xb560fba90a85e1d8ULL) },
|
|
{ make_floatx80_init(0x3ffd, 0xefffffffffff1e3fULL),
|
|
make_floatx80_init(0x3fff, 0xb123f581d2abef6cULL),
|
|
make_floatx80_init(0x3ffd, 0xc48fd6074aafbdb0ULL) },
|
|
{ make_floatx80_init(0x3ffd, 0xffffffffffff1c23ULL),
|
|
make_floatx80_init(0x3fff, 0xb504f333f9de2cadULL),
|
|
make_floatx80_init(0x3ffd, 0xd413cccfe778b2b4ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0x8800000000006344ULL),
|
|
make_floatx80_init(0x3fff, 0xb8fbaf4762fbd0a1ULL),
|
|
make_floatx80_init(0x3ffd, 0xe3eebd1d8bef4284ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0x9000000000005d67ULL),
|
|
make_floatx80_init(0x3fff, 0xbd08a39f580c668dULL),
|
|
make_floatx80_init(0x3ffd, 0xf4228e7d60319a34ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0x9800000000009127ULL),
|
|
make_floatx80_init(0x3fff, 0xc12c4cca6670e042ULL),
|
|
make_floatx80_init(0x3ffe, 0x82589994cce1c084ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0x9fffffffffff06f9ULL),
|
|
make_floatx80_init(0x3fff, 0xc5672a11550655c3ULL),
|
|
make_floatx80_init(0x3ffe, 0x8ace5422aa0cab86ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xa7fffffffffff80dULL),
|
|
make_floatx80_init(0x3fff, 0xc9b9bd866e2f234bULL),
|
|
make_floatx80_init(0x3ffe, 0x93737b0cdc5e4696ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xafffffffffff1470ULL),
|
|
make_floatx80_init(0x3fff, 0xce248c151f83fd69ULL),
|
|
make_floatx80_init(0x3ffe, 0x9c49182a3f07fad2ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xb800000000000e0aULL),
|
|
make_floatx80_init(0x3fff, 0xd2a81d91f12aec5cULL),
|
|
make_floatx80_init(0x3ffe, 0xa5503b23e255d8b8ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xc00000000000b7faULL),
|
|
make_floatx80_init(0x3fff, 0xd744fccad69dd630ULL),
|
|
make_floatx80_init(0x3ffe, 0xae89f995ad3bac60ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xc800000000003aa6ULL),
|
|
make_floatx80_init(0x3fff, 0xdbfbb797daf25a44ULL),
|
|
make_floatx80_init(0x3ffe, 0xb7f76f2fb5e4b488ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xd00000000000a6aeULL),
|
|
make_floatx80_init(0x3fff, 0xe0ccdeec2a954685ULL),
|
|
make_floatx80_init(0x3ffe, 0xc199bdd8552a8d0aULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xd800000000004165ULL),
|
|
make_floatx80_init(0x3fff, 0xe5b906e77c837155ULL),
|
|
make_floatx80_init(0x3ffe, 0xcb720dcef906e2aaULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xe00000000000582cULL),
|
|
make_floatx80_init(0x3fff, 0xeac0c6e7dd24713aULL),
|
|
make_floatx80_init(0x3ffe, 0xd5818dcfba48e274ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xe800000000001a5dULL),
|
|
make_floatx80_init(0x3fff, 0xefe4b99bdcdb06ebULL),
|
|
make_floatx80_init(0x3ffe, 0xdfc97337b9b60dd6ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xefffffffffffc1efULL),
|
|
make_floatx80_init(0x3fff, 0xf5257d152486a2faULL),
|
|
make_floatx80_init(0x3ffe, 0xea4afa2a490d45f4ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xf800000000001069ULL),
|
|
make_floatx80_init(0x3fff, 0xfa83b2db722a0e5cULL),
|
|
make_floatx80_init(0x3ffe, 0xf50765b6e4541cb8ULL) },
|
|
{ make_floatx80_init(0x3fff, 0x8000000000000000ULL),
|
|
make_floatx80_init(0x4000, 0x8000000000000000ULL),
|
|
make_floatx80_init(0x3fff, 0x8000000000000000ULL) },
|
|
};
|
|
|
|
void helper_f2xm1(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
uint64_t sig = extractFloatx80Frac(ST0);
|
|
int32_t exp = extractFloatx80Exp(ST0);
|
|
bool sign = extractFloatx80Sign(ST0);
|
|
|
|
if (floatx80_invalid_encoding(ST0)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_default_nan(&env->fp_status);
|
|
} else if (floatx80_is_any_nan(ST0)) {
|
|
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_silence_nan(ST0, &env->fp_status);
|
|
}
|
|
} else if (exp > 0x3fff ||
|
|
(exp == 0x3fff && sig != (0x8000000000000000ULL))) {
|
|
/* Out of range for the instruction, treat as invalid. */
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_default_nan(&env->fp_status);
|
|
} else if (exp == 0x3fff) {
|
|
/* Argument 1 or -1, exact result 1 or -0.5. */
|
|
if (sign) {
|
|
ST0 = make_floatx80(0xbffe, 0x8000000000000000ULL);
|
|
}
|
|
} else if (exp < 0x3fb0) {
|
|
if (!floatx80_is_zero(ST0)) {
|
|
/*
|
|
* Multiplying the argument by an extra-precision version
|
|
* of log(2) is sufficiently precise. Zero arguments are
|
|
* returned unchanged.
|
|
*/
|
|
uint64_t sig0, sig1, sig2;
|
|
if (exp == 0) {
|
|
normalizeFloatx80Subnormal(sig, &exp, &sig);
|
|
}
|
|
mul128By64To192(ln2_sig_high, ln2_sig_low, sig, &sig0, &sig1,
|
|
&sig2);
|
|
/* This result is inexact. */
|
|
sig1 |= 1;
|
|
ST0 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
|
|
sign, exp, sig0, sig1,
|
|
&env->fp_status);
|
|
}
|
|
} else {
|
|
floatx80 tmp, y, accum;
|
|
bool asign, bsign;
|
|
int32_t n, aexp, bexp;
|
|
uint64_t asig0, asig1, asig2, bsig0, bsig1;
|
|
FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
|
|
FloatX80RoundPrec save_prec =
|
|
env->fp_status.floatx80_rounding_precision;
|
|
env->fp_status.float_rounding_mode = float_round_nearest_even;
|
|
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
|
|
|
|
/* Find the nearest multiple of 1/32 to the argument. */
|
|
tmp = floatx80_scalbn(ST0, 5, &env->fp_status);
|
|
n = 32 + floatx80_to_int32(tmp, &env->fp_status);
|
|
y = floatx80_sub(ST0, f2xm1_table[n].t, &env->fp_status);
|
|
|
|
if (floatx80_is_zero(y)) {
|
|
/*
|
|
* Use the value of 2^t - 1 from the table, to avoid
|
|
* needing to special-case zero as a result of
|
|
* multiplication below.
|
|
*/
|
|
ST0 = f2xm1_table[n].t;
|
|
set_float_exception_flags(float_flag_inexact, &env->fp_status);
|
|
env->fp_status.float_rounding_mode = save_mode;
|
|
} else {
|
|
/*
|
|
* Compute the lower parts of a polynomial expansion for
|
|
* (2^y - 1) / y.
|
|
*/
|
|
accum = floatx80_mul(f2xm1_coeff_7, y, &env->fp_status);
|
|
accum = floatx80_add(f2xm1_coeff_6, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, y, &env->fp_status);
|
|
accum = floatx80_add(f2xm1_coeff_5, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, y, &env->fp_status);
|
|
accum = floatx80_add(f2xm1_coeff_4, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, y, &env->fp_status);
|
|
accum = floatx80_add(f2xm1_coeff_3, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, y, &env->fp_status);
|
|
accum = floatx80_add(f2xm1_coeff_2, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, y, &env->fp_status);
|
|
accum = floatx80_add(f2xm1_coeff_1, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, y, &env->fp_status);
|
|
accum = floatx80_add(f2xm1_coeff_0_low, accum, &env->fp_status);
|
|
|
|
/*
|
|
* The full polynomial expansion is f2xm1_coeff_0 + accum
|
|
* (where accum has much lower magnitude, and so, in
|
|
* particular, carry out of the addition is not possible).
|
|
* (This expansion is only accurate to about 70 bits, not
|
|
* 128 bits.)
|
|
*/
|
|
aexp = extractFloatx80Exp(f2xm1_coeff_0);
|
|
asign = extractFloatx80Sign(f2xm1_coeff_0);
|
|
shift128RightJamming(extractFloatx80Frac(accum), 0,
|
|
aexp - extractFloatx80Exp(accum),
|
|
&asig0, &asig1);
|
|
bsig0 = extractFloatx80Frac(f2xm1_coeff_0);
|
|
bsig1 = 0;
|
|
if (asign == extractFloatx80Sign(accum)) {
|
|
add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
|
|
} else {
|
|
sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
|
|
}
|
|
/* And thus compute an approximation to 2^y - 1. */
|
|
mul128By64To192(asig0, asig1, extractFloatx80Frac(y),
|
|
&asig0, &asig1, &asig2);
|
|
aexp += extractFloatx80Exp(y) - 0x3ffe;
|
|
asign ^= extractFloatx80Sign(y);
|
|
if (n != 32) {
|
|
/*
|
|
* Multiply this by the precomputed value of 2^t and
|
|
* add that of 2^t - 1.
|
|
*/
|
|
mul128By64To192(asig0, asig1,
|
|
extractFloatx80Frac(f2xm1_table[n].exp2),
|
|
&asig0, &asig1, &asig2);
|
|
aexp += extractFloatx80Exp(f2xm1_table[n].exp2) - 0x3ffe;
|
|
bexp = extractFloatx80Exp(f2xm1_table[n].exp2m1);
|
|
bsig0 = extractFloatx80Frac(f2xm1_table[n].exp2m1);
|
|
bsig1 = 0;
|
|
if (bexp < aexp) {
|
|
shift128RightJamming(bsig0, bsig1, aexp - bexp,
|
|
&bsig0, &bsig1);
|
|
} else if (aexp < bexp) {
|
|
shift128RightJamming(asig0, asig1, bexp - aexp,
|
|
&asig0, &asig1);
|
|
aexp = bexp;
|
|
}
|
|
/* The sign of 2^t - 1 is always that of the result. */
|
|
bsign = extractFloatx80Sign(f2xm1_table[n].exp2m1);
|
|
if (asign == bsign) {
|
|
/* Avoid possible carry out of the addition. */
|
|
shift128RightJamming(asig0, asig1, 1,
|
|
&asig0, &asig1);
|
|
shift128RightJamming(bsig0, bsig1, 1,
|
|
&bsig0, &bsig1);
|
|
++aexp;
|
|
add128(asig0, asig1, bsig0, bsig1, &asig0, &asig1);
|
|
} else {
|
|
sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
|
|
asign = bsign;
|
|
}
|
|
}
|
|
env->fp_status.float_rounding_mode = save_mode;
|
|
/* This result is inexact. */
|
|
asig1 |= 1;
|
|
ST0 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
|
|
asign, aexp, asig0, asig1,
|
|
&env->fp_status);
|
|
}
|
|
|
|
env->fp_status.floatx80_rounding_precision = save_prec;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fptan(CPUX86State *env)
|
|
{
|
|
double fptemp = floatx80_to_double(env, ST0);
|
|
|
|
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
|
|
env->fpus |= 0x400;
|
|
} else {
|
|
fptemp = tan(fptemp);
|
|
ST0 = double_to_floatx80(env, fptemp);
|
|
fpush(env);
|
|
ST0 = floatx80_one;
|
|
env->fpus &= ~0x400; /* C2 <-- 0 */
|
|
/* the above code is for |arg| < 2**52 only */
|
|
}
|
|
}
|
|
|
|
/* Values of pi/4, pi/2, 3pi/4 and pi, with 128-bit precision. */
|
|
#define pi_4_exp 0x3ffe
|
|
#define pi_4_sig_high 0xc90fdaa22168c234ULL
|
|
#define pi_4_sig_low 0xc4c6628b80dc1cd1ULL
|
|
#define pi_2_exp 0x3fff
|
|
#define pi_2_sig_high 0xc90fdaa22168c234ULL
|
|
#define pi_2_sig_low 0xc4c6628b80dc1cd1ULL
|
|
#define pi_34_exp 0x4000
|
|
#define pi_34_sig_high 0x96cbe3f9990e91a7ULL
|
|
#define pi_34_sig_low 0x9394c9e8a0a5159dULL
|
|
#define pi_exp 0x4000
|
|
#define pi_sig_high 0xc90fdaa22168c234ULL
|
|
#define pi_sig_low 0xc4c6628b80dc1cd1ULL
|
|
|
|
/*
|
|
* Polynomial coefficients for an approximation to atan(x), with only
|
|
* odd powers of x used, for x in the interval [-1/16, 1/16]. (Unlike
|
|
* for some other approximations, no low part is needed for the first
|
|
* coefficient here to achieve a sufficiently accurate result, because
|
|
* the coefficient in this minimax approximation is very close to
|
|
* exactly 1.)
|
|
*/
|
|
#define fpatan_coeff_0 make_floatx80(0x3fff, 0x8000000000000000ULL)
|
|
#define fpatan_coeff_1 make_floatx80(0xbffd, 0xaaaaaaaaaaaaaa43ULL)
|
|
#define fpatan_coeff_2 make_floatx80(0x3ffc, 0xccccccccccbfe4f8ULL)
|
|
#define fpatan_coeff_3 make_floatx80(0xbffc, 0x92492491fbab2e66ULL)
|
|
#define fpatan_coeff_4 make_floatx80(0x3ffb, 0xe38e372881ea1e0bULL)
|
|
#define fpatan_coeff_5 make_floatx80(0xbffb, 0xba2c0104bbdd0615ULL)
|
|
#define fpatan_coeff_6 make_floatx80(0x3ffb, 0x9baf7ebf898b42efULL)
|
|
|
|
struct fpatan_data {
|
|
/* High and low parts of atan(x). */
|
|
floatx80 atan_high, atan_low;
|
|
};
|
|
|
|
static const struct fpatan_data fpatan_table[9] = {
|
|
{ floatx80_zero_init,
|
|
floatx80_zero_init },
|
|
{ make_floatx80_init(0x3ffb, 0xfeadd4d5617b6e33ULL),
|
|
make_floatx80_init(0xbfb9, 0xdda19d8305ddc420ULL) },
|
|
{ make_floatx80_init(0x3ffc, 0xfadbafc96406eb15ULL),
|
|
make_floatx80_init(0x3fbb, 0xdb8f3debef442fccULL) },
|
|
{ make_floatx80_init(0x3ffd, 0xb7b0ca0f26f78474ULL),
|
|
make_floatx80_init(0xbfbc, 0xeab9bdba460376faULL) },
|
|
{ make_floatx80_init(0x3ffd, 0xed63382b0dda7b45ULL),
|
|
make_floatx80_init(0x3fbc, 0xdfc88bd978751a06ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0x8f005d5ef7f59f9bULL),
|
|
make_floatx80_init(0x3fbd, 0xb906bc2ccb886e90ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xa4bc7d1934f70924ULL),
|
|
make_floatx80_init(0x3fbb, 0xcd43f9522bed64f8ULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xb8053e2bc2319e74ULL),
|
|
make_floatx80_init(0xbfbc, 0xd3496ab7bd6eef0cULL) },
|
|
{ make_floatx80_init(0x3ffe, 0xc90fdaa22168c235ULL),
|
|
make_floatx80_init(0xbfbc, 0xece675d1fc8f8cbcULL) },
|
|
};
|
|
|
|
void helper_fpatan(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
uint64_t arg0_sig = extractFloatx80Frac(ST0);
|
|
int32_t arg0_exp = extractFloatx80Exp(ST0);
|
|
bool arg0_sign = extractFloatx80Sign(ST0);
|
|
uint64_t arg1_sig = extractFloatx80Frac(ST1);
|
|
int32_t arg1_exp = extractFloatx80Exp(ST1);
|
|
bool arg1_sign = extractFloatx80Sign(ST1);
|
|
|
|
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_silence_nan(ST0, &env->fp_status);
|
|
} else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_silence_nan(ST1, &env->fp_status);
|
|
} else if (floatx80_invalid_encoding(ST0) ||
|
|
floatx80_invalid_encoding(ST1)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_default_nan(&env->fp_status);
|
|
} else if (floatx80_is_any_nan(ST0)) {
|
|
ST1 = ST0;
|
|
} else if (floatx80_is_any_nan(ST1)) {
|
|
/* Pass this NaN through. */
|
|
} else if (floatx80_is_zero(ST1) && !arg0_sign) {
|
|
/* Pass this zero through. */
|
|
} else if (((floatx80_is_infinity(ST0) && !floatx80_is_infinity(ST1)) ||
|
|
arg0_exp - arg1_exp >= 80) &&
|
|
!arg0_sign) {
|
|
/*
|
|
* Dividing ST1 by ST0 gives the correct result up to
|
|
* rounding, and avoids spurious underflow exceptions that
|
|
* might result from passing some small values through the
|
|
* polynomial approximation, but if a finite nonzero result of
|
|
* division is exact, the result of fpatan is still inexact
|
|
* (and underflowing where appropriate).
|
|
*/
|
|
FloatX80RoundPrec save_prec =
|
|
env->fp_status.floatx80_rounding_precision;
|
|
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
|
|
ST1 = floatx80_div(ST1, ST0, &env->fp_status);
|
|
env->fp_status.floatx80_rounding_precision = save_prec;
|
|
if (!floatx80_is_zero(ST1) &&
|
|
!(get_float_exception_flags(&env->fp_status) &
|
|
float_flag_inexact)) {
|
|
/*
|
|
* The mathematical result is very slightly closer to zero
|
|
* than this exact result. Round a value with the
|
|
* significand adjusted accordingly to get the correct
|
|
* exceptions, and possibly an adjusted result depending
|
|
* on the rounding mode.
|
|
*/
|
|
uint64_t sig = extractFloatx80Frac(ST1);
|
|
int32_t exp = extractFloatx80Exp(ST1);
|
|
bool sign = extractFloatx80Sign(ST1);
|
|
if (exp == 0) {
|
|
normalizeFloatx80Subnormal(sig, &exp, &sig);
|
|
}
|
|
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
|
|
sign, exp, sig - 1,
|
|
-1, &env->fp_status);
|
|
}
|
|
} else {
|
|
/* The result is inexact. */
|
|
bool rsign = arg1_sign;
|
|
int32_t rexp;
|
|
uint64_t rsig0, rsig1;
|
|
if (floatx80_is_zero(ST1)) {
|
|
/*
|
|
* ST0 is negative. The result is pi with the sign of
|
|
* ST1.
|
|
*/
|
|
rexp = pi_exp;
|
|
rsig0 = pi_sig_high;
|
|
rsig1 = pi_sig_low;
|
|
} else if (floatx80_is_infinity(ST1)) {
|
|
if (floatx80_is_infinity(ST0)) {
|
|
if (arg0_sign) {
|
|
rexp = pi_34_exp;
|
|
rsig0 = pi_34_sig_high;
|
|
rsig1 = pi_34_sig_low;
|
|
} else {
|
|
rexp = pi_4_exp;
|
|
rsig0 = pi_4_sig_high;
|
|
rsig1 = pi_4_sig_low;
|
|
}
|
|
} else {
|
|
rexp = pi_2_exp;
|
|
rsig0 = pi_2_sig_high;
|
|
rsig1 = pi_2_sig_low;
|
|
}
|
|
} else if (floatx80_is_zero(ST0) || arg1_exp - arg0_exp >= 80) {
|
|
rexp = pi_2_exp;
|
|
rsig0 = pi_2_sig_high;
|
|
rsig1 = pi_2_sig_low;
|
|
} else if (floatx80_is_infinity(ST0) || arg0_exp - arg1_exp >= 80) {
|
|
/* ST0 is negative. */
|
|
rexp = pi_exp;
|
|
rsig0 = pi_sig_high;
|
|
rsig1 = pi_sig_low;
|
|
} else {
|
|
/*
|
|
* ST0 and ST1 are finite, nonzero and with exponents not
|
|
* too far apart.
|
|
*/
|
|
int32_t adj_exp, num_exp, den_exp, xexp, yexp, n, texp, zexp, aexp;
|
|
int32_t azexp, axexp;
|
|
bool adj_sub, ysign, zsign;
|
|
uint64_t adj_sig0, adj_sig1, num_sig, den_sig, xsig0, xsig1;
|
|
uint64_t msig0, msig1, msig2, remsig0, remsig1, remsig2;
|
|
uint64_t ysig0, ysig1, tsig, zsig0, zsig1, asig0, asig1;
|
|
uint64_t azsig0, azsig1;
|
|
uint64_t azsig2, azsig3, axsig0, axsig1;
|
|
floatx80 x8;
|
|
FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
|
|
FloatX80RoundPrec save_prec =
|
|
env->fp_status.floatx80_rounding_precision;
|
|
env->fp_status.float_rounding_mode = float_round_nearest_even;
|
|
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
|
|
|
|
if (arg0_exp == 0) {
|
|
normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
|
|
}
|
|
if (arg1_exp == 0) {
|
|
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
|
|
}
|
|
if (arg0_exp > arg1_exp ||
|
|
(arg0_exp == arg1_exp && arg0_sig >= arg1_sig)) {
|
|
/* Work with abs(ST1) / abs(ST0). */
|
|
num_exp = arg1_exp;
|
|
num_sig = arg1_sig;
|
|
den_exp = arg0_exp;
|
|
den_sig = arg0_sig;
|
|
if (arg0_sign) {
|
|
/* The result is subtracted from pi. */
|
|
adj_exp = pi_exp;
|
|
adj_sig0 = pi_sig_high;
|
|
adj_sig1 = pi_sig_low;
|
|
adj_sub = true;
|
|
} else {
|
|
/* The result is used as-is. */
|
|
adj_exp = 0;
|
|
adj_sig0 = 0;
|
|
adj_sig1 = 0;
|
|
adj_sub = false;
|
|
}
|
|
} else {
|
|
/* Work with abs(ST0) / abs(ST1). */
|
|
num_exp = arg0_exp;
|
|
num_sig = arg0_sig;
|
|
den_exp = arg1_exp;
|
|
den_sig = arg1_sig;
|
|
/* The result is added to or subtracted from pi/2. */
|
|
adj_exp = pi_2_exp;
|
|
adj_sig0 = pi_2_sig_high;
|
|
adj_sig1 = pi_2_sig_low;
|
|
adj_sub = !arg0_sign;
|
|
}
|
|
|
|
/*
|
|
* Compute x = num/den, where 0 < x <= 1 and x is not too
|
|
* small.
|
|
*/
|
|
xexp = num_exp - den_exp + 0x3ffe;
|
|
remsig0 = num_sig;
|
|
remsig1 = 0;
|
|
if (den_sig <= remsig0) {
|
|
shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1);
|
|
++xexp;
|
|
}
|
|
xsig0 = estimateDiv128To64(remsig0, remsig1, den_sig);
|
|
mul64To128(den_sig, xsig0, &msig0, &msig1);
|
|
sub128(remsig0, remsig1, msig0, msig1, &remsig0, &remsig1);
|
|
while ((int64_t) remsig0 < 0) {
|
|
--xsig0;
|
|
add128(remsig0, remsig1, 0, den_sig, &remsig0, &remsig1);
|
|
}
|
|
xsig1 = estimateDiv128To64(remsig1, 0, den_sig);
|
|
/*
|
|
* No need to correct any estimation error in xsig1; even
|
|
* with such error, it is accurate enough.
|
|
*/
|
|
|
|
/*
|
|
* Split x as x = t + y, where t = n/8 is the nearest
|
|
* multiple of 1/8 to x.
|
|
*/
|
|
x8 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
|
|
false, xexp + 3, xsig0,
|
|
xsig1, &env->fp_status);
|
|
n = floatx80_to_int32(x8, &env->fp_status);
|
|
if (n == 0) {
|
|
ysign = false;
|
|
yexp = xexp;
|
|
ysig0 = xsig0;
|
|
ysig1 = xsig1;
|
|
texp = 0;
|
|
tsig = 0;
|
|
} else {
|
|
int shift = clz32(n) + 32;
|
|
texp = 0x403b - shift;
|
|
tsig = n;
|
|
tsig <<= shift;
|
|
if (texp == xexp) {
|
|
sub128(xsig0, xsig1, tsig, 0, &ysig0, &ysig1);
|
|
if ((int64_t) ysig0 >= 0) {
|
|
ysign = false;
|
|
if (ysig0 == 0) {
|
|
if (ysig1 == 0) {
|
|
yexp = 0;
|
|
} else {
|
|
shift = clz64(ysig1) + 64;
|
|
yexp = xexp - shift;
|
|
shift128Left(ysig0, ysig1, shift,
|
|
&ysig0, &ysig1);
|
|
}
|
|
} else {
|
|
shift = clz64(ysig0);
|
|
yexp = xexp - shift;
|
|
shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
|
|
}
|
|
} else {
|
|
ysign = true;
|
|
sub128(0, 0, ysig0, ysig1, &ysig0, &ysig1);
|
|
if (ysig0 == 0) {
|
|
shift = clz64(ysig1) + 64;
|
|
} else {
|
|
shift = clz64(ysig0);
|
|
}
|
|
yexp = xexp - shift;
|
|
shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
|
|
}
|
|
} else {
|
|
/*
|
|
* t's exponent must be greater than x's because t
|
|
* is positive and the nearest multiple of 1/8 to
|
|
* x, and if x has a greater exponent, the power
|
|
* of 2 with that exponent is also a multiple of
|
|
* 1/8.
|
|
*/
|
|
uint64_t usig0, usig1;
|
|
shift128RightJamming(xsig0, xsig1, texp - xexp,
|
|
&usig0, &usig1);
|
|
ysign = true;
|
|
sub128(tsig, 0, usig0, usig1, &ysig0, &ysig1);
|
|
if (ysig0 == 0) {
|
|
shift = clz64(ysig1) + 64;
|
|
} else {
|
|
shift = clz64(ysig0);
|
|
}
|
|
yexp = texp - shift;
|
|
shift128Left(ysig0, ysig1, shift, &ysig0, &ysig1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute z = y/(1+tx), so arctan(x) = arctan(t) +
|
|
* arctan(z).
|
|
*/
|
|
zsign = ysign;
|
|
if (texp == 0 || yexp == 0) {
|
|
zexp = yexp;
|
|
zsig0 = ysig0;
|
|
zsig1 = ysig1;
|
|
} else {
|
|
/*
|
|
* t <= 1, x <= 1 and if both are 1 then y is 0, so tx < 1.
|
|
*/
|
|
int32_t dexp = texp + xexp - 0x3ffe;
|
|
uint64_t dsig0, dsig1, dsig2;
|
|
mul128By64To192(xsig0, xsig1, tsig, &dsig0, &dsig1, &dsig2);
|
|
/*
|
|
* dexp <= 0x3fff (and if equal, dsig0 has a leading 0
|
|
* bit). Add 1 to produce the denominator 1+tx.
|
|
*/
|
|
shift128RightJamming(dsig0, dsig1, 0x3fff - dexp,
|
|
&dsig0, &dsig1);
|
|
dsig0 |= 0x8000000000000000ULL;
|
|
zexp = yexp - 1;
|
|
remsig0 = ysig0;
|
|
remsig1 = ysig1;
|
|
remsig2 = 0;
|
|
if (dsig0 <= remsig0) {
|
|
shift128Right(remsig0, remsig1, 1, &remsig0, &remsig1);
|
|
++zexp;
|
|
}
|
|
zsig0 = estimateDiv128To64(remsig0, remsig1, dsig0);
|
|
mul128By64To192(dsig0, dsig1, zsig0, &msig0, &msig1, &msig2);
|
|
sub192(remsig0, remsig1, remsig2, msig0, msig1, msig2,
|
|
&remsig0, &remsig1, &remsig2);
|
|
while ((int64_t) remsig0 < 0) {
|
|
--zsig0;
|
|
add192(remsig0, remsig1, remsig2, 0, dsig0, dsig1,
|
|
&remsig0, &remsig1, &remsig2);
|
|
}
|
|
zsig1 = estimateDiv128To64(remsig1, remsig2, dsig0);
|
|
/* No need to correct any estimation error in zsig1. */
|
|
}
|
|
|
|
if (zexp == 0) {
|
|
azexp = 0;
|
|
azsig0 = 0;
|
|
azsig1 = 0;
|
|
} else {
|
|
floatx80 z2, accum;
|
|
uint64_t z2sig0, z2sig1, z2sig2, z2sig3;
|
|
/* Compute z^2. */
|
|
mul128To256(zsig0, zsig1, zsig0, zsig1,
|
|
&z2sig0, &z2sig1, &z2sig2, &z2sig3);
|
|
z2 = normalizeRoundAndPackFloatx80(floatx80_precision_x, false,
|
|
zexp + zexp - 0x3ffe,
|
|
z2sig0, z2sig1,
|
|
&env->fp_status);
|
|
|
|
/* Compute the lower parts of the polynomial expansion. */
|
|
accum = floatx80_mul(fpatan_coeff_6, z2, &env->fp_status);
|
|
accum = floatx80_add(fpatan_coeff_5, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, z2, &env->fp_status);
|
|
accum = floatx80_add(fpatan_coeff_4, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, z2, &env->fp_status);
|
|
accum = floatx80_add(fpatan_coeff_3, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, z2, &env->fp_status);
|
|
accum = floatx80_add(fpatan_coeff_2, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, z2, &env->fp_status);
|
|
accum = floatx80_add(fpatan_coeff_1, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, z2, &env->fp_status);
|
|
|
|
/*
|
|
* The full polynomial expansion is z*(fpatan_coeff_0 + accum).
|
|
* fpatan_coeff_0 is 1, and accum is negative and much smaller.
|
|
*/
|
|
aexp = extractFloatx80Exp(fpatan_coeff_0);
|
|
shift128RightJamming(extractFloatx80Frac(accum), 0,
|
|
aexp - extractFloatx80Exp(accum),
|
|
&asig0, &asig1);
|
|
sub128(extractFloatx80Frac(fpatan_coeff_0), 0, asig0, asig1,
|
|
&asig0, &asig1);
|
|
/* Multiply by z to compute arctan(z). */
|
|
azexp = aexp + zexp - 0x3ffe;
|
|
mul128To256(asig0, asig1, zsig0, zsig1, &azsig0, &azsig1,
|
|
&azsig2, &azsig3);
|
|
}
|
|
|
|
/* Add arctan(t) (positive or zero) and arctan(z) (sign zsign). */
|
|
if (texp == 0) {
|
|
/* z is positive. */
|
|
axexp = azexp;
|
|
axsig0 = azsig0;
|
|
axsig1 = azsig1;
|
|
} else {
|
|
bool low_sign = extractFloatx80Sign(fpatan_table[n].atan_low);
|
|
int32_t low_exp = extractFloatx80Exp(fpatan_table[n].atan_low);
|
|
uint64_t low_sig0 =
|
|
extractFloatx80Frac(fpatan_table[n].atan_low);
|
|
uint64_t low_sig1 = 0;
|
|
axexp = extractFloatx80Exp(fpatan_table[n].atan_high);
|
|
axsig0 = extractFloatx80Frac(fpatan_table[n].atan_high);
|
|
axsig1 = 0;
|
|
shift128RightJamming(low_sig0, low_sig1, axexp - low_exp,
|
|
&low_sig0, &low_sig1);
|
|
if (low_sign) {
|
|
sub128(axsig0, axsig1, low_sig0, low_sig1,
|
|
&axsig0, &axsig1);
|
|
} else {
|
|
add128(axsig0, axsig1, low_sig0, low_sig1,
|
|
&axsig0, &axsig1);
|
|
}
|
|
if (azexp >= axexp) {
|
|
shift128RightJamming(axsig0, axsig1, azexp - axexp + 1,
|
|
&axsig0, &axsig1);
|
|
axexp = azexp + 1;
|
|
shift128RightJamming(azsig0, azsig1, 1,
|
|
&azsig0, &azsig1);
|
|
} else {
|
|
shift128RightJamming(axsig0, axsig1, 1,
|
|
&axsig0, &axsig1);
|
|
shift128RightJamming(azsig0, azsig1, axexp - azexp + 1,
|
|
&azsig0, &azsig1);
|
|
++axexp;
|
|
}
|
|
if (zsign) {
|
|
sub128(axsig0, axsig1, azsig0, azsig1,
|
|
&axsig0, &axsig1);
|
|
} else {
|
|
add128(axsig0, axsig1, azsig0, azsig1,
|
|
&axsig0, &axsig1);
|
|
}
|
|
}
|
|
|
|
if (adj_exp == 0) {
|
|
rexp = axexp;
|
|
rsig0 = axsig0;
|
|
rsig1 = axsig1;
|
|
} else {
|
|
/*
|
|
* Add or subtract arctan(x) (exponent axexp,
|
|
* significand axsig0 and axsig1, positive, not
|
|
* necessarily normalized) to the number given by
|
|
* adj_exp, adj_sig0 and adj_sig1, according to
|
|
* adj_sub.
|
|
*/
|
|
if (adj_exp >= axexp) {
|
|
shift128RightJamming(axsig0, axsig1, adj_exp - axexp + 1,
|
|
&axsig0, &axsig1);
|
|
rexp = adj_exp + 1;
|
|
shift128RightJamming(adj_sig0, adj_sig1, 1,
|
|
&adj_sig0, &adj_sig1);
|
|
} else {
|
|
shift128RightJamming(axsig0, axsig1, 1,
|
|
&axsig0, &axsig1);
|
|
shift128RightJamming(adj_sig0, adj_sig1,
|
|
axexp - adj_exp + 1,
|
|
&adj_sig0, &adj_sig1);
|
|
rexp = axexp + 1;
|
|
}
|
|
if (adj_sub) {
|
|
sub128(adj_sig0, adj_sig1, axsig0, axsig1,
|
|
&rsig0, &rsig1);
|
|
} else {
|
|
add128(adj_sig0, adj_sig1, axsig0, axsig1,
|
|
&rsig0, &rsig1);
|
|
}
|
|
}
|
|
|
|
env->fp_status.float_rounding_mode = save_mode;
|
|
env->fp_status.floatx80_rounding_precision = save_prec;
|
|
}
|
|
/* This result is inexact. */
|
|
rsig1 |= 1;
|
|
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x, rsign, rexp,
|
|
rsig0, rsig1, &env->fp_status);
|
|
}
|
|
|
|
fpop(env);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fxtract(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
CPU_LDoubleU temp;
|
|
|
|
temp.d = ST0;
|
|
|
|
if (floatx80_is_zero(ST0)) {
|
|
/* Easy way to generate -inf and raising division by 0 exception */
|
|
ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero,
|
|
&env->fp_status);
|
|
fpush(env);
|
|
ST0 = temp.d;
|
|
} else if (floatx80_invalid_encoding(ST0)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_default_nan(&env->fp_status);
|
|
fpush(env);
|
|
ST0 = ST1;
|
|
} else if (floatx80_is_any_nan(ST0)) {
|
|
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_silence_nan(ST0, &env->fp_status);
|
|
}
|
|
fpush(env);
|
|
ST0 = ST1;
|
|
} else if (floatx80_is_infinity(ST0)) {
|
|
fpush(env);
|
|
ST0 = ST1;
|
|
ST1 = floatx80_infinity;
|
|
} else {
|
|
int expdif;
|
|
|
|
if (EXPD(temp) == 0) {
|
|
int shift = clz64(temp.l.lower);
|
|
temp.l.lower <<= shift;
|
|
expdif = 1 - EXPBIAS - shift;
|
|
float_raise(float_flag_input_denormal, &env->fp_status);
|
|
} else {
|
|
expdif = EXPD(temp) - EXPBIAS;
|
|
}
|
|
/* DP exponent bias */
|
|
ST0 = int32_to_floatx80(expdif, &env->fp_status);
|
|
fpush(env);
|
|
BIASEXPONENT(temp);
|
|
ST0 = temp.d;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
static void helper_fprem_common(CPUX86State *env, bool mod)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
uint64_t quotient;
|
|
CPU_LDoubleU temp0, temp1;
|
|
int exp0, exp1, expdiff;
|
|
|
|
temp0.d = ST0;
|
|
temp1.d = ST1;
|
|
exp0 = EXPD(temp0);
|
|
exp1 = EXPD(temp1);
|
|
|
|
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
|
|
if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) ||
|
|
exp0 == 0x7fff || exp1 == 0x7fff ||
|
|
floatx80_invalid_encoding(ST0) || floatx80_invalid_encoding(ST1)) {
|
|
ST0 = floatx80_modrem(ST0, ST1, mod, "ient, &env->fp_status);
|
|
} else {
|
|
if (exp0 == 0) {
|
|
exp0 = 1 - clz64(temp0.l.lower);
|
|
}
|
|
if (exp1 == 0) {
|
|
exp1 = 1 - clz64(temp1.l.lower);
|
|
}
|
|
expdiff = exp0 - exp1;
|
|
if (expdiff < 64) {
|
|
ST0 = floatx80_modrem(ST0, ST1, mod, "ient, &env->fp_status);
|
|
env->fpus |= (quotient & 0x4) << (8 - 2); /* (C0) <-- q2 */
|
|
env->fpus |= (quotient & 0x2) << (14 - 1); /* (C3) <-- q1 */
|
|
env->fpus |= (quotient & 0x1) << (9 - 0); /* (C1) <-- q0 */
|
|
} else {
|
|
/*
|
|
* Partial remainder. This choice of how many bits to
|
|
* process at once is specified in AMD instruction set
|
|
* manuals, and empirically is followed by Intel
|
|
* processors as well; it ensures that the final remainder
|
|
* operation in a loop does produce the correct low three
|
|
* bits of the quotient. AMD manuals specify that the
|
|
* flags other than C2 are cleared, and empirically Intel
|
|
* processors clear them as well.
|
|
*/
|
|
int n = 32 + (expdiff % 32);
|
|
temp1.d = floatx80_scalbn(temp1.d, expdiff - n, &env->fp_status);
|
|
ST0 = floatx80_mod(ST0, temp1.d, &env->fp_status);
|
|
env->fpus |= 0x400; /* C2 <-- 1 */
|
|
}
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fprem1(CPUX86State *env)
|
|
{
|
|
helper_fprem_common(env, false);
|
|
}
|
|
|
|
void helper_fprem(CPUX86State *env)
|
|
{
|
|
helper_fprem_common(env, true);
|
|
}
|
|
|
|
/* 128-bit significand of log2(e). */
|
|
#define log2_e_sig_high 0xb8aa3b295c17f0bbULL
|
|
#define log2_e_sig_low 0xbe87fed0691d3e89ULL
|
|
|
|
/*
|
|
* Polynomial coefficients for an approximation to log2((1+x)/(1-x)),
|
|
* with only odd powers of x used, for x in the interval [2*sqrt(2)-3,
|
|
* 3-2*sqrt(2)], which corresponds to logarithms of numbers in the
|
|
* interval [sqrt(2)/2, sqrt(2)].
|
|
*/
|
|
#define fyl2x_coeff_0 make_floatx80(0x4000, 0xb8aa3b295c17f0bcULL)
|
|
#define fyl2x_coeff_0_low make_floatx80(0xbfbf, 0x834972fe2d7bab1bULL)
|
|
#define fyl2x_coeff_1 make_floatx80(0x3ffe, 0xf6384ee1d01febb8ULL)
|
|
#define fyl2x_coeff_2 make_floatx80(0x3ffe, 0x93bb62877cdfa2e3ULL)
|
|
#define fyl2x_coeff_3 make_floatx80(0x3ffd, 0xd30bb153d808f269ULL)
|
|
#define fyl2x_coeff_4 make_floatx80(0x3ffd, 0xa42589eaf451499eULL)
|
|
#define fyl2x_coeff_5 make_floatx80(0x3ffd, 0x864d42c0f8f17517ULL)
|
|
#define fyl2x_coeff_6 make_floatx80(0x3ffc, 0xe3476578adf26272ULL)
|
|
#define fyl2x_coeff_7 make_floatx80(0x3ffc, 0xc506c5f874e6d80fULL)
|
|
#define fyl2x_coeff_8 make_floatx80(0x3ffc, 0xac5cf50cc57d6372ULL)
|
|
#define fyl2x_coeff_9 make_floatx80(0x3ffc, 0xb1ed0066d971a103ULL)
|
|
|
|
/*
|
|
* Compute an approximation of log2(1+arg), where 1+arg is in the
|
|
* interval [sqrt(2)/2, sqrt(2)]. It is assumed that when this
|
|
* function is called, rounding precision is set to 80 and the
|
|
* round-to-nearest mode is in effect. arg must not be exactly zero,
|
|
* and must not be so close to zero that underflow might occur.
|
|
*/
|
|
static void helper_fyl2x_common(CPUX86State *env, floatx80 arg, int32_t *exp,
|
|
uint64_t *sig0, uint64_t *sig1)
|
|
{
|
|
uint64_t arg0_sig = extractFloatx80Frac(arg);
|
|
int32_t arg0_exp = extractFloatx80Exp(arg);
|
|
bool arg0_sign = extractFloatx80Sign(arg);
|
|
bool asign;
|
|
int32_t dexp, texp, aexp;
|
|
uint64_t dsig0, dsig1, tsig0, tsig1, rsig0, rsig1, rsig2;
|
|
uint64_t msig0, msig1, msig2, t2sig0, t2sig1, t2sig2, t2sig3;
|
|
uint64_t asig0, asig1, asig2, asig3, bsig0, bsig1;
|
|
floatx80 t2, accum;
|
|
|
|
/*
|
|
* Compute an approximation of arg/(2+arg), with extra precision,
|
|
* as the argument to a polynomial approximation. The extra
|
|
* precision is only needed for the first term of the
|
|
* approximation, with subsequent terms being significantly
|
|
* smaller; the approximation only uses odd exponents, and the
|
|
* square of arg/(2+arg) is at most 17-12*sqrt(2) = 0.029....
|
|
*/
|
|
if (arg0_sign) {
|
|
dexp = 0x3fff;
|
|
shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1);
|
|
sub128(0, 0, dsig0, dsig1, &dsig0, &dsig1);
|
|
} else {
|
|
dexp = 0x4000;
|
|
shift128RightJamming(arg0_sig, 0, dexp - arg0_exp, &dsig0, &dsig1);
|
|
dsig0 |= 0x8000000000000000ULL;
|
|
}
|
|
texp = arg0_exp - dexp + 0x3ffe;
|
|
rsig0 = arg0_sig;
|
|
rsig1 = 0;
|
|
rsig2 = 0;
|
|
if (dsig0 <= rsig0) {
|
|
shift128Right(rsig0, rsig1, 1, &rsig0, &rsig1);
|
|
++texp;
|
|
}
|
|
tsig0 = estimateDiv128To64(rsig0, rsig1, dsig0);
|
|
mul128By64To192(dsig0, dsig1, tsig0, &msig0, &msig1, &msig2);
|
|
sub192(rsig0, rsig1, rsig2, msig0, msig1, msig2,
|
|
&rsig0, &rsig1, &rsig2);
|
|
while ((int64_t) rsig0 < 0) {
|
|
--tsig0;
|
|
add192(rsig0, rsig1, rsig2, 0, dsig0, dsig1,
|
|
&rsig0, &rsig1, &rsig2);
|
|
}
|
|
tsig1 = estimateDiv128To64(rsig1, rsig2, dsig0);
|
|
/*
|
|
* No need to correct any estimation error in tsig1; even with
|
|
* such error, it is accurate enough. Now compute the square of
|
|
* that approximation.
|
|
*/
|
|
mul128To256(tsig0, tsig1, tsig0, tsig1,
|
|
&t2sig0, &t2sig1, &t2sig2, &t2sig3);
|
|
t2 = normalizeRoundAndPackFloatx80(floatx80_precision_x, false,
|
|
texp + texp - 0x3ffe,
|
|
t2sig0, t2sig1, &env->fp_status);
|
|
|
|
/* Compute the lower parts of the polynomial expansion. */
|
|
accum = floatx80_mul(fyl2x_coeff_9, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_8, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_7, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_6, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_5, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_4, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_3, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_2, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_1, accum, &env->fp_status);
|
|
accum = floatx80_mul(accum, t2, &env->fp_status);
|
|
accum = floatx80_add(fyl2x_coeff_0_low, accum, &env->fp_status);
|
|
|
|
/*
|
|
* The full polynomial expansion is fyl2x_coeff_0 + accum (where
|
|
* accum has much lower magnitude, and so, in particular, carry
|
|
* out of the addition is not possible), multiplied by t. (This
|
|
* expansion is only accurate to about 70 bits, not 128 bits.)
|
|
*/
|
|
aexp = extractFloatx80Exp(fyl2x_coeff_0);
|
|
asign = extractFloatx80Sign(fyl2x_coeff_0);
|
|
shift128RightJamming(extractFloatx80Frac(accum), 0,
|
|
aexp - extractFloatx80Exp(accum),
|
|
&asig0, &asig1);
|
|
bsig0 = extractFloatx80Frac(fyl2x_coeff_0);
|
|
bsig1 = 0;
|
|
if (asign == extractFloatx80Sign(accum)) {
|
|
add128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
|
|
} else {
|
|
sub128(bsig0, bsig1, asig0, asig1, &asig0, &asig1);
|
|
}
|
|
/* Multiply by t to compute the required result. */
|
|
mul128To256(asig0, asig1, tsig0, tsig1,
|
|
&asig0, &asig1, &asig2, &asig3);
|
|
aexp += texp - 0x3ffe;
|
|
*exp = aexp;
|
|
*sig0 = asig0;
|
|
*sig1 = asig1;
|
|
}
|
|
|
|
void helper_fyl2xp1(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
uint64_t arg0_sig = extractFloatx80Frac(ST0);
|
|
int32_t arg0_exp = extractFloatx80Exp(ST0);
|
|
bool arg0_sign = extractFloatx80Sign(ST0);
|
|
uint64_t arg1_sig = extractFloatx80Frac(ST1);
|
|
int32_t arg1_exp = extractFloatx80Exp(ST1);
|
|
bool arg1_sign = extractFloatx80Sign(ST1);
|
|
|
|
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_silence_nan(ST0, &env->fp_status);
|
|
} else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_silence_nan(ST1, &env->fp_status);
|
|
} else if (floatx80_invalid_encoding(ST0) ||
|
|
floatx80_invalid_encoding(ST1)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_default_nan(&env->fp_status);
|
|
} else if (floatx80_is_any_nan(ST0)) {
|
|
ST1 = ST0;
|
|
} else if (floatx80_is_any_nan(ST1)) {
|
|
/* Pass this NaN through. */
|
|
} else if (arg0_exp > 0x3ffd ||
|
|
(arg0_exp == 0x3ffd && arg0_sig > (arg0_sign ?
|
|
0x95f619980c4336f7ULL :
|
|
0xd413cccfe7799211ULL))) {
|
|
/*
|
|
* Out of range for the instruction (ST0 must have absolute
|
|
* value less than 1 - sqrt(2)/2 = 0.292..., according to
|
|
* Intel manuals; AMD manuals allow a range from sqrt(2)/2 - 1
|
|
* to sqrt(2) - 1, which we allow here), treat as invalid.
|
|
*/
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_default_nan(&env->fp_status);
|
|
} else if (floatx80_is_zero(ST0) || floatx80_is_zero(ST1) ||
|
|
arg1_exp == 0x7fff) {
|
|
/*
|
|
* One argument is zero, or multiplying by infinity; correct
|
|
* result is exact and can be obtained by multiplying the
|
|
* arguments.
|
|
*/
|
|
ST1 = floatx80_mul(ST0, ST1, &env->fp_status);
|
|
} else if (arg0_exp < 0x3fb0) {
|
|
/*
|
|
* Multiplying both arguments and an extra-precision version
|
|
* of log2(e) is sufficiently precise.
|
|
*/
|
|
uint64_t sig0, sig1, sig2;
|
|
int32_t exp;
|
|
if (arg0_exp == 0) {
|
|
normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
|
|
}
|
|
if (arg1_exp == 0) {
|
|
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
|
|
}
|
|
mul128By64To192(log2_e_sig_high, log2_e_sig_low, arg0_sig,
|
|
&sig0, &sig1, &sig2);
|
|
exp = arg0_exp + 1;
|
|
mul128By64To192(sig0, sig1, arg1_sig, &sig0, &sig1, &sig2);
|
|
exp += arg1_exp - 0x3ffe;
|
|
/* This result is inexact. */
|
|
sig1 |= 1;
|
|
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
|
|
arg0_sign ^ arg1_sign, exp,
|
|
sig0, sig1, &env->fp_status);
|
|
} else {
|
|
int32_t aexp;
|
|
uint64_t asig0, asig1, asig2;
|
|
FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
|
|
FloatX80RoundPrec save_prec =
|
|
env->fp_status.floatx80_rounding_precision;
|
|
env->fp_status.float_rounding_mode = float_round_nearest_even;
|
|
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
|
|
|
|
helper_fyl2x_common(env, ST0, &aexp, &asig0, &asig1);
|
|
/*
|
|
* Multiply by the second argument to compute the required
|
|
* result.
|
|
*/
|
|
if (arg1_exp == 0) {
|
|
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
|
|
}
|
|
mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2);
|
|
aexp += arg1_exp - 0x3ffe;
|
|
/* This result is inexact. */
|
|
asig1 |= 1;
|
|
env->fp_status.float_rounding_mode = save_mode;
|
|
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
|
|
arg0_sign ^ arg1_sign, aexp,
|
|
asig0, asig1, &env->fp_status);
|
|
env->fp_status.floatx80_rounding_precision = save_prec;
|
|
}
|
|
fpop(env);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fyl2x(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
uint64_t arg0_sig = extractFloatx80Frac(ST0);
|
|
int32_t arg0_exp = extractFloatx80Exp(ST0);
|
|
bool arg0_sign = extractFloatx80Sign(ST0);
|
|
uint64_t arg1_sig = extractFloatx80Frac(ST1);
|
|
int32_t arg1_exp = extractFloatx80Exp(ST1);
|
|
bool arg1_sign = extractFloatx80Sign(ST1);
|
|
|
|
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_silence_nan(ST0, &env->fp_status);
|
|
} else if (floatx80_is_signaling_nan(ST1, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_silence_nan(ST1, &env->fp_status);
|
|
} else if (floatx80_invalid_encoding(ST0) ||
|
|
floatx80_invalid_encoding(ST1)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_default_nan(&env->fp_status);
|
|
} else if (floatx80_is_any_nan(ST0)) {
|
|
ST1 = ST0;
|
|
} else if (floatx80_is_any_nan(ST1)) {
|
|
/* Pass this NaN through. */
|
|
} else if (arg0_sign && !floatx80_is_zero(ST0)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_default_nan(&env->fp_status);
|
|
} else if (floatx80_is_infinity(ST1)) {
|
|
FloatRelation cmp = floatx80_compare(ST0, floatx80_one,
|
|
&env->fp_status);
|
|
switch (cmp) {
|
|
case float_relation_less:
|
|
ST1 = floatx80_chs(ST1);
|
|
break;
|
|
case float_relation_greater:
|
|
/* Result is infinity of the same sign as ST1. */
|
|
break;
|
|
default:
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_default_nan(&env->fp_status);
|
|
break;
|
|
}
|
|
} else if (floatx80_is_infinity(ST0)) {
|
|
if (floatx80_is_zero(ST1)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_default_nan(&env->fp_status);
|
|
} else if (arg1_sign) {
|
|
ST1 = floatx80_chs(ST0);
|
|
} else {
|
|
ST1 = ST0;
|
|
}
|
|
} else if (floatx80_is_zero(ST0)) {
|
|
if (floatx80_is_zero(ST1)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST1 = floatx80_default_nan(&env->fp_status);
|
|
} else {
|
|
/* Result is infinity with opposite sign to ST1. */
|
|
float_raise(float_flag_divbyzero, &env->fp_status);
|
|
ST1 = make_floatx80(arg1_sign ? 0x7fff : 0xffff,
|
|
0x8000000000000000ULL);
|
|
}
|
|
} else if (floatx80_is_zero(ST1)) {
|
|
if (floatx80_lt(ST0, floatx80_one, &env->fp_status)) {
|
|
ST1 = floatx80_chs(ST1);
|
|
}
|
|
/* Otherwise, ST1 is already the correct result. */
|
|
} else if (floatx80_eq(ST0, floatx80_one, &env->fp_status)) {
|
|
if (arg1_sign) {
|
|
ST1 = floatx80_chs(floatx80_zero);
|
|
} else {
|
|
ST1 = floatx80_zero;
|
|
}
|
|
} else {
|
|
int32_t int_exp;
|
|
floatx80 arg0_m1;
|
|
FloatRoundMode save_mode = env->fp_status.float_rounding_mode;
|
|
FloatX80RoundPrec save_prec =
|
|
env->fp_status.floatx80_rounding_precision;
|
|
env->fp_status.float_rounding_mode = float_round_nearest_even;
|
|
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
|
|
|
|
if (arg0_exp == 0) {
|
|
normalizeFloatx80Subnormal(arg0_sig, &arg0_exp, &arg0_sig);
|
|
}
|
|
if (arg1_exp == 0) {
|
|
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
|
|
}
|
|
int_exp = arg0_exp - 0x3fff;
|
|
if (arg0_sig > 0xb504f333f9de6484ULL) {
|
|
++int_exp;
|
|
}
|
|
arg0_m1 = floatx80_sub(floatx80_scalbn(ST0, -int_exp,
|
|
&env->fp_status),
|
|
floatx80_one, &env->fp_status);
|
|
if (floatx80_is_zero(arg0_m1)) {
|
|
/* Exact power of 2; multiply by ST1. */
|
|
env->fp_status.float_rounding_mode = save_mode;
|
|
ST1 = floatx80_mul(int32_to_floatx80(int_exp, &env->fp_status),
|
|
ST1, &env->fp_status);
|
|
} else {
|
|
bool asign = extractFloatx80Sign(arg0_m1);
|
|
int32_t aexp;
|
|
uint64_t asig0, asig1, asig2;
|
|
helper_fyl2x_common(env, arg0_m1, &aexp, &asig0, &asig1);
|
|
if (int_exp != 0) {
|
|
bool isign = (int_exp < 0);
|
|
int32_t iexp;
|
|
uint64_t isig;
|
|
int shift;
|
|
int_exp = isign ? -int_exp : int_exp;
|
|
shift = clz32(int_exp) + 32;
|
|
isig = int_exp;
|
|
isig <<= shift;
|
|
iexp = 0x403e - shift;
|
|
shift128RightJamming(asig0, asig1, iexp - aexp,
|
|
&asig0, &asig1);
|
|
if (asign == isign) {
|
|
add128(isig, 0, asig0, asig1, &asig0, &asig1);
|
|
} else {
|
|
sub128(isig, 0, asig0, asig1, &asig0, &asig1);
|
|
}
|
|
aexp = iexp;
|
|
asign = isign;
|
|
}
|
|
/*
|
|
* Multiply by the second argument to compute the required
|
|
* result.
|
|
*/
|
|
if (arg1_exp == 0) {
|
|
normalizeFloatx80Subnormal(arg1_sig, &arg1_exp, &arg1_sig);
|
|
}
|
|
mul128By64To192(asig0, asig1, arg1_sig, &asig0, &asig1, &asig2);
|
|
aexp += arg1_exp - 0x3ffe;
|
|
/* This result is inexact. */
|
|
asig1 |= 1;
|
|
env->fp_status.float_rounding_mode = save_mode;
|
|
ST1 = normalizeRoundAndPackFloatx80(floatx80_precision_x,
|
|
asign ^ arg1_sign, aexp,
|
|
asig0, asig1, &env->fp_status);
|
|
}
|
|
|
|
env->fp_status.floatx80_rounding_precision = save_prec;
|
|
}
|
|
fpop(env);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fsqrt(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
if (floatx80_is_neg(ST0)) {
|
|
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
|
|
env->fpus |= 0x400;
|
|
}
|
|
ST0 = floatx80_sqrt(ST0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fsincos(CPUX86State *env)
|
|
{
|
|
double fptemp = floatx80_to_double(env, ST0);
|
|
|
|
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
|
|
env->fpus |= 0x400;
|
|
} else {
|
|
ST0 = double_to_floatx80(env, sin(fptemp));
|
|
fpush(env);
|
|
ST0 = double_to_floatx80(env, cos(fptemp));
|
|
env->fpus &= ~0x400; /* C2 <-- 0 */
|
|
/* the above code is for |arg| < 2**63 only */
|
|
}
|
|
}
|
|
|
|
void helper_frndint(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
ST0 = floatx80_round_to_int(ST0, &env->fp_status);
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fscale(CPUX86State *env)
|
|
{
|
|
uint8_t old_flags = save_exception_flags(env);
|
|
if (floatx80_invalid_encoding(ST1) || floatx80_invalid_encoding(ST0)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_default_nan(&env->fp_status);
|
|
} else if (floatx80_is_any_nan(ST1)) {
|
|
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
}
|
|
ST0 = ST1;
|
|
if (floatx80_is_signaling_nan(ST0, &env->fp_status)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_silence_nan(ST0, &env->fp_status);
|
|
}
|
|
} else if (floatx80_is_infinity(ST1) &&
|
|
!floatx80_invalid_encoding(ST0) &&
|
|
!floatx80_is_any_nan(ST0)) {
|
|
if (floatx80_is_neg(ST1)) {
|
|
if (floatx80_is_infinity(ST0)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_default_nan(&env->fp_status);
|
|
} else {
|
|
ST0 = (floatx80_is_neg(ST0) ?
|
|
floatx80_chs(floatx80_zero) :
|
|
floatx80_zero);
|
|
}
|
|
} else {
|
|
if (floatx80_is_zero(ST0)) {
|
|
float_raise(float_flag_invalid, &env->fp_status);
|
|
ST0 = floatx80_default_nan(&env->fp_status);
|
|
} else {
|
|
ST0 = (floatx80_is_neg(ST0) ?
|
|
floatx80_chs(floatx80_infinity) :
|
|
floatx80_infinity);
|
|
}
|
|
}
|
|
} else {
|
|
int n;
|
|
FloatX80RoundPrec save = env->fp_status.floatx80_rounding_precision;
|
|
uint8_t save_flags = get_float_exception_flags(&env->fp_status);
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status);
|
|
set_float_exception_flags(save_flags, &env->fp_status);
|
|
env->fp_status.floatx80_rounding_precision = floatx80_precision_x;
|
|
ST0 = floatx80_scalbn(ST0, n, &env->fp_status);
|
|
env->fp_status.floatx80_rounding_precision = save;
|
|
}
|
|
merge_exception_flags(env, old_flags);
|
|
}
|
|
|
|
void helper_fsin(CPUX86State *env)
|
|
{
|
|
double fptemp = floatx80_to_double(env, ST0);
|
|
|
|
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
|
|
env->fpus |= 0x400;
|
|
} else {
|
|
ST0 = double_to_floatx80(env, sin(fptemp));
|
|
env->fpus &= ~0x400; /* C2 <-- 0 */
|
|
/* the above code is for |arg| < 2**53 only */
|
|
}
|
|
}
|
|
|
|
void helper_fcos(CPUX86State *env)
|
|
{
|
|
double fptemp = floatx80_to_double(env, ST0);
|
|
|
|
if ((fptemp > MAXTAN) || (fptemp < -MAXTAN)) {
|
|
env->fpus |= 0x400;
|
|
} else {
|
|
ST0 = double_to_floatx80(env, cos(fptemp));
|
|
env->fpus &= ~0x400; /* C2 <-- 0 */
|
|
/* the above code is for |arg| < 2**63 only */
|
|
}
|
|
}
|
|
|
|
void helper_fxam_ST0(CPUX86State *env)
|
|
{
|
|
CPU_LDoubleU temp;
|
|
int expdif;
|
|
|
|
temp.d = ST0;
|
|
|
|
env->fpus &= ~0x4700; /* (C3,C2,C1,C0) <-- 0000 */
|
|
if (SIGND(temp)) {
|
|
env->fpus |= 0x200; /* C1 <-- 1 */
|
|
}
|
|
|
|
if (env->fptags[env->fpstt]) {
|
|
env->fpus |= 0x4100; /* Empty */
|
|
return;
|
|
}
|
|
|
|
expdif = EXPD(temp);
|
|
if (expdif == MAXEXPD) {
|
|
if (MANTD(temp) == 0x8000000000000000ULL) {
|
|
env->fpus |= 0x500; /* Infinity */
|
|
} else if (MANTD(temp) & 0x8000000000000000ULL) {
|
|
env->fpus |= 0x100; /* NaN */
|
|
}
|
|
} else if (expdif == 0) {
|
|
if (MANTD(temp) == 0) {
|
|
env->fpus |= 0x4000; /* Zero */
|
|
} else {
|
|
env->fpus |= 0x4400; /* Denormal */
|
|
}
|
|
} else if (MANTD(temp) & 0x8000000000000000ULL) {
|
|
env->fpus |= 0x400;
|
|
}
|
|
}
|
|
|
|
static void do_fstenv(CPUX86State *env, target_ulong ptr, int data32,
|
|
uintptr_t retaddr)
|
|
{
|
|
int fpus, fptag, exp, i;
|
|
uint64_t mant;
|
|
CPU_LDoubleU tmp;
|
|
|
|
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
|
|
fptag = 0;
|
|
for (i = 7; i >= 0; i--) {
|
|
fptag <<= 2;
|
|
if (env->fptags[i]) {
|
|
fptag |= 3;
|
|
} else {
|
|
tmp.d = env->fpregs[i].d;
|
|
exp = EXPD(tmp);
|
|
mant = MANTD(tmp);
|
|
if (exp == 0 && mant == 0) {
|
|
/* zero */
|
|
fptag |= 1;
|
|
} else if (exp == 0 || exp == MAXEXPD
|
|
|| (mant & (1LL << 63)) == 0) {
|
|
/* NaNs, infinity, denormal */
|
|
fptag |= 2;
|
|
}
|
|
}
|
|
}
|
|
if (data32) {
|
|
/* 32 bit */
|
|
cpu_stl_data_ra(env, ptr, env->fpuc, retaddr);
|
|
cpu_stl_data_ra(env, ptr + 4, fpus, retaddr);
|
|
cpu_stl_data_ra(env, ptr + 8, fptag, retaddr);
|
|
cpu_stl_data_ra(env, ptr + 12, env->fpip, retaddr); /* fpip */
|
|
cpu_stl_data_ra(env, ptr + 16, env->fpcs, retaddr); /* fpcs */
|
|
cpu_stl_data_ra(env, ptr + 20, env->fpdp, retaddr); /* fpoo */
|
|
cpu_stl_data_ra(env, ptr + 24, env->fpds, retaddr); /* fpos */
|
|
} else {
|
|
/* 16 bit */
|
|
cpu_stw_data_ra(env, ptr, env->fpuc, retaddr);
|
|
cpu_stw_data_ra(env, ptr + 2, fpus, retaddr);
|
|
cpu_stw_data_ra(env, ptr + 4, fptag, retaddr);
|
|
cpu_stw_data_ra(env, ptr + 6, env->fpip, retaddr);
|
|
cpu_stw_data_ra(env, ptr + 8, env->fpcs, retaddr);
|
|
cpu_stw_data_ra(env, ptr + 10, env->fpdp, retaddr);
|
|
cpu_stw_data_ra(env, ptr + 12, env->fpds, retaddr);
|
|
}
|
|
}
|
|
|
|
void helper_fstenv(CPUX86State *env, target_ulong ptr, int data32)
|
|
{
|
|
do_fstenv(env, ptr, data32, GETPC());
|
|
}
|
|
|
|
static void cpu_set_fpus(CPUX86State *env, uint16_t fpus)
|
|
{
|
|
env->fpstt = (fpus >> 11) & 7;
|
|
env->fpus = fpus & ~0x3800 & ~FPUS_B;
|
|
env->fpus |= env->fpus & FPUS_SE ? FPUS_B : 0;
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
if (!(env->fpus & FPUS_SE)) {
|
|
/*
|
|
* Here the processor deasserts FERR#; in response, the chipset deasserts
|
|
* IGNNE#.
|
|
*/
|
|
cpu_clear_ignne();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void do_fldenv(CPUX86State *env, target_ulong ptr, int data32,
|
|
uintptr_t retaddr)
|
|
{
|
|
int i, fpus, fptag;
|
|
|
|
if (data32) {
|
|
cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr));
|
|
fpus = cpu_lduw_data_ra(env, ptr + 4, retaddr);
|
|
fptag = cpu_lduw_data_ra(env, ptr + 8, retaddr);
|
|
} else {
|
|
cpu_set_fpuc(env, cpu_lduw_data_ra(env, ptr, retaddr));
|
|
fpus = cpu_lduw_data_ra(env, ptr + 2, retaddr);
|
|
fptag = cpu_lduw_data_ra(env, ptr + 4, retaddr);
|
|
}
|
|
cpu_set_fpus(env, fpus);
|
|
for (i = 0; i < 8; i++) {
|
|
env->fptags[i] = ((fptag & 3) == 3);
|
|
fptag >>= 2;
|
|
}
|
|
}
|
|
|
|
void helper_fldenv(CPUX86State *env, target_ulong ptr, int data32)
|
|
{
|
|
do_fldenv(env, ptr, data32, GETPC());
|
|
}
|
|
|
|
static void do_fsave(CPUX86State *env, target_ulong ptr, int data32,
|
|
uintptr_t retaddr)
|
|
{
|
|
floatx80 tmp;
|
|
int i;
|
|
|
|
do_fstenv(env, ptr, data32, retaddr);
|
|
|
|
ptr += (14 << data32);
|
|
for (i = 0; i < 8; i++) {
|
|
tmp = ST(i);
|
|
do_fstt(env, tmp, ptr, retaddr);
|
|
ptr += 10;
|
|
}
|
|
|
|
do_fninit(env);
|
|
}
|
|
|
|
void helper_fsave(CPUX86State *env, target_ulong ptr, int data32)
|
|
{
|
|
do_fsave(env, ptr, data32, GETPC());
|
|
}
|
|
|
|
static void do_frstor(CPUX86State *env, target_ulong ptr, int data32,
|
|
uintptr_t retaddr)
|
|
{
|
|
floatx80 tmp;
|
|
int i;
|
|
|
|
do_fldenv(env, ptr, data32, retaddr);
|
|
ptr += (14 << data32);
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
tmp = do_fldt(env, ptr, retaddr);
|
|
ST(i) = tmp;
|
|
ptr += 10;
|
|
}
|
|
}
|
|
|
|
void helper_frstor(CPUX86State *env, target_ulong ptr, int data32)
|
|
{
|
|
do_frstor(env, ptr, data32, GETPC());
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void cpu_x86_fsave(CPUX86State *env, target_ulong ptr, int data32)
|
|
{
|
|
do_fsave(env, ptr, data32, 0);
|
|
}
|
|
|
|
void cpu_x86_frstor(CPUX86State *env, target_ulong ptr, int data32)
|
|
{
|
|
do_frstor(env, ptr, data32, 0);
|
|
}
|
|
#endif
|
|
|
|
#define XO(X) offsetof(X86XSaveArea, X)
|
|
|
|
static void do_xsave_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
int fpus, fptag, i;
|
|
target_ulong addr;
|
|
|
|
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
|
|
fptag = 0;
|
|
for (i = 0; i < 8; i++) {
|
|
fptag |= (env->fptags[i] << i);
|
|
}
|
|
|
|
cpu_stw_data_ra(env, ptr + XO(legacy.fcw), env->fpuc, ra);
|
|
cpu_stw_data_ra(env, ptr + XO(legacy.fsw), fpus, ra);
|
|
cpu_stw_data_ra(env, ptr + XO(legacy.ftw), fptag ^ 0xff, ra);
|
|
|
|
/* In 32-bit mode this is eip, sel, dp, sel.
|
|
In 64-bit mode this is rip, rdp.
|
|
But in either case we don't write actual data, just zeros. */
|
|
cpu_stq_data_ra(env, ptr + XO(legacy.fpip), 0, ra); /* eip+sel; rip */
|
|
cpu_stq_data_ra(env, ptr + XO(legacy.fpdp), 0, ra); /* edp+sel; rdp */
|
|
|
|
addr = ptr + XO(legacy.fpregs);
|
|
for (i = 0; i < 8; i++) {
|
|
floatx80 tmp = ST(i);
|
|
do_fstt(env, tmp, addr, ra);
|
|
addr += 16;
|
|
}
|
|
}
|
|
|
|
static void do_xsave_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
update_mxcsr_from_sse_status(env);
|
|
cpu_stl_data_ra(env, ptr + XO(legacy.mxcsr), env->mxcsr, ra);
|
|
cpu_stl_data_ra(env, ptr + XO(legacy.mxcsr_mask), 0x0000ffff, ra);
|
|
}
|
|
|
|
static void do_xsave_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
int i, nb_xmm_regs;
|
|
target_ulong addr;
|
|
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
nb_xmm_regs = 16;
|
|
} else {
|
|
nb_xmm_regs = 8;
|
|
}
|
|
|
|
addr = ptr + XO(legacy.xmm_regs);
|
|
for (i = 0; i < nb_xmm_regs; i++) {
|
|
cpu_stq_data_ra(env, addr, env->xmm_regs[i].ZMM_Q(0), ra);
|
|
cpu_stq_data_ra(env, addr + 8, env->xmm_regs[i].ZMM_Q(1), ra);
|
|
addr += 16;
|
|
}
|
|
}
|
|
|
|
static void do_xsave_bndregs(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
target_ulong addr = ptr + offsetof(XSaveBNDREG, bnd_regs);
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++, addr += 16) {
|
|
cpu_stq_data_ra(env, addr, env->bnd_regs[i].lb, ra);
|
|
cpu_stq_data_ra(env, addr + 8, env->bnd_regs[i].ub, ra);
|
|
}
|
|
}
|
|
|
|
static void do_xsave_bndcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
cpu_stq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.cfgu),
|
|
env->bndcs_regs.cfgu, ra);
|
|
cpu_stq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.sts),
|
|
env->bndcs_regs.sts, ra);
|
|
}
|
|
|
|
static void do_xsave_pkru(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
cpu_stq_data_ra(env, ptr, env->pkru, ra);
|
|
}
|
|
|
|
static void do_fxsave(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
/* The operand must be 16 byte aligned */
|
|
if (ptr & 0xf) {
|
|
raise_exception_ra(env, EXCP0D_GPF, ra);
|
|
}
|
|
|
|
do_xsave_fpu(env, ptr, ra);
|
|
|
|
if (env->cr[4] & CR4_OSFXSR_MASK) {
|
|
do_xsave_mxcsr(env, ptr, ra);
|
|
/* Fast FXSAVE leaves out the XMM registers */
|
|
if (!(env->efer & MSR_EFER_FFXSR)
|
|
|| (env->hflags & HF_CPL_MASK)
|
|
|| !(env->hflags & HF_LMA_MASK)) {
|
|
do_xsave_sse(env, ptr, ra);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_fxsave(CPUX86State *env, target_ulong ptr)
|
|
{
|
|
do_fxsave(env, ptr, GETPC());
|
|
}
|
|
|
|
static uint64_t get_xinuse(CPUX86State *env)
|
|
{
|
|
uint64_t inuse = -1;
|
|
|
|
/* For the most part, we don't track XINUSE. We could calculate it
|
|
here for all components, but it's probably less work to simply
|
|
indicate in use. That said, the state of BNDREGS is important
|
|
enough to track in HFLAGS, so we might as well use that here. */
|
|
if ((env->hflags & HF_MPX_IU_MASK) == 0) {
|
|
inuse &= ~XSTATE_BNDREGS_MASK;
|
|
}
|
|
return inuse;
|
|
}
|
|
|
|
static void do_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm,
|
|
uint64_t inuse, uint64_t opt, uintptr_t ra)
|
|
{
|
|
uint64_t old_bv, new_bv;
|
|
|
|
/* The OS must have enabled XSAVE. */
|
|
if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
|
|
raise_exception_ra(env, EXCP06_ILLOP, ra);
|
|
}
|
|
|
|
/* The operand must be 64 byte aligned. */
|
|
if (ptr & 63) {
|
|
raise_exception_ra(env, EXCP0D_GPF, ra);
|
|
}
|
|
|
|
/* Never save anything not enabled by XCR0. */
|
|
rfbm &= env->xcr0;
|
|
opt &= rfbm;
|
|
|
|
if (opt & XSTATE_FP_MASK) {
|
|
do_xsave_fpu(env, ptr, ra);
|
|
}
|
|
if (rfbm & XSTATE_SSE_MASK) {
|
|
/* Note that saving MXCSR is not suppressed by XSAVEOPT. */
|
|
do_xsave_mxcsr(env, ptr, ra);
|
|
}
|
|
if (opt & XSTATE_SSE_MASK) {
|
|
do_xsave_sse(env, ptr, ra);
|
|
}
|
|
if (opt & XSTATE_BNDREGS_MASK) {
|
|
do_xsave_bndregs(env, ptr + XO(bndreg_state), ra);
|
|
}
|
|
if (opt & XSTATE_BNDCSR_MASK) {
|
|
do_xsave_bndcsr(env, ptr + XO(bndcsr_state), ra);
|
|
}
|
|
if (opt & XSTATE_PKRU_MASK) {
|
|
do_xsave_pkru(env, ptr + XO(pkru_state), ra);
|
|
}
|
|
|
|
/* Update the XSTATE_BV field. */
|
|
old_bv = cpu_ldq_data_ra(env, ptr + XO(header.xstate_bv), ra);
|
|
new_bv = (old_bv & ~rfbm) | (inuse & rfbm);
|
|
cpu_stq_data_ra(env, ptr + XO(header.xstate_bv), new_bv, ra);
|
|
}
|
|
|
|
void helper_xsave(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
|
|
{
|
|
do_xsave(env, ptr, rfbm, get_xinuse(env), -1, GETPC());
|
|
}
|
|
|
|
void helper_xsaveopt(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
|
|
{
|
|
uint64_t inuse = get_xinuse(env);
|
|
do_xsave(env, ptr, rfbm, inuse, inuse, GETPC());
|
|
}
|
|
|
|
static void do_xrstor_fpu(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
int i, fpuc, fpus, fptag;
|
|
target_ulong addr;
|
|
|
|
fpuc = cpu_lduw_data_ra(env, ptr + XO(legacy.fcw), ra);
|
|
fpus = cpu_lduw_data_ra(env, ptr + XO(legacy.fsw), ra);
|
|
fptag = cpu_lduw_data_ra(env, ptr + XO(legacy.ftw), ra);
|
|
cpu_set_fpuc(env, fpuc);
|
|
cpu_set_fpus(env, fpus);
|
|
fptag ^= 0xff;
|
|
for (i = 0; i < 8; i++) {
|
|
env->fptags[i] = ((fptag >> i) & 1);
|
|
}
|
|
|
|
addr = ptr + XO(legacy.fpregs);
|
|
for (i = 0; i < 8; i++) {
|
|
floatx80 tmp = do_fldt(env, addr, ra);
|
|
ST(i) = tmp;
|
|
addr += 16;
|
|
}
|
|
}
|
|
|
|
static void do_xrstor_mxcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
cpu_set_mxcsr(env, cpu_ldl_data_ra(env, ptr + XO(legacy.mxcsr), ra));
|
|
}
|
|
|
|
static void do_xrstor_sse(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
int i, nb_xmm_regs;
|
|
target_ulong addr;
|
|
|
|
if (env->hflags & HF_CS64_MASK) {
|
|
nb_xmm_regs = 16;
|
|
} else {
|
|
nb_xmm_regs = 8;
|
|
}
|
|
|
|
addr = ptr + XO(legacy.xmm_regs);
|
|
for (i = 0; i < nb_xmm_regs; i++) {
|
|
env->xmm_regs[i].ZMM_Q(0) = cpu_ldq_data_ra(env, addr, ra);
|
|
env->xmm_regs[i].ZMM_Q(1) = cpu_ldq_data_ra(env, addr + 8, ra);
|
|
addr += 16;
|
|
}
|
|
}
|
|
|
|
static void do_xrstor_bndregs(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
target_ulong addr = ptr + offsetof(XSaveBNDREG, bnd_regs);
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++, addr += 16) {
|
|
env->bnd_regs[i].lb = cpu_ldq_data_ra(env, addr, ra);
|
|
env->bnd_regs[i].ub = cpu_ldq_data_ra(env, addr + 8, ra);
|
|
}
|
|
}
|
|
|
|
static void do_xrstor_bndcsr(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
/* FIXME: Extend highest implemented bit of linear address. */
|
|
env->bndcs_regs.cfgu
|
|
= cpu_ldq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.cfgu), ra);
|
|
env->bndcs_regs.sts
|
|
= cpu_ldq_data_ra(env, ptr + offsetof(XSaveBNDCSR, bndcsr.sts), ra);
|
|
}
|
|
|
|
static void do_xrstor_pkru(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
env->pkru = cpu_ldq_data_ra(env, ptr, ra);
|
|
}
|
|
|
|
static void do_fxrstor(CPUX86State *env, target_ulong ptr, uintptr_t ra)
|
|
{
|
|
/* The operand must be 16 byte aligned */
|
|
if (ptr & 0xf) {
|
|
raise_exception_ra(env, EXCP0D_GPF, ra);
|
|
}
|
|
|
|
do_xrstor_fpu(env, ptr, ra);
|
|
|
|
if (env->cr[4] & CR4_OSFXSR_MASK) {
|
|
do_xrstor_mxcsr(env, ptr, ra);
|
|
/* Fast FXRSTOR leaves out the XMM registers */
|
|
if (!(env->efer & MSR_EFER_FFXSR)
|
|
|| (env->hflags & HF_CPL_MASK)
|
|
|| !(env->hflags & HF_LMA_MASK)) {
|
|
do_xrstor_sse(env, ptr, ra);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_fxrstor(CPUX86State *env, target_ulong ptr)
|
|
{
|
|
do_fxrstor(env, ptr, GETPC());
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void cpu_x86_fxsave(CPUX86State *env, target_ulong ptr)
|
|
{
|
|
do_fxsave(env, ptr, 0);
|
|
}
|
|
|
|
void cpu_x86_fxrstor(CPUX86State *env, target_ulong ptr)
|
|
{
|
|
do_fxrstor(env, ptr, 0);
|
|
}
|
|
#endif
|
|
|
|
void helper_xrstor(CPUX86State *env, target_ulong ptr, uint64_t rfbm)
|
|
{
|
|
uintptr_t ra = GETPC();
|
|
uint64_t xstate_bv, xcomp_bv, reserve0;
|
|
|
|
rfbm &= env->xcr0;
|
|
|
|
/* The OS must have enabled XSAVE. */
|
|
if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
|
|
raise_exception_ra(env, EXCP06_ILLOP, ra);
|
|
}
|
|
|
|
/* The operand must be 64 byte aligned. */
|
|
if (ptr & 63) {
|
|
raise_exception_ra(env, EXCP0D_GPF, ra);
|
|
}
|
|
|
|
xstate_bv = cpu_ldq_data_ra(env, ptr + XO(header.xstate_bv), ra);
|
|
|
|
if ((int64_t)xstate_bv < 0) {
|
|
/* FIXME: Compact form. */
|
|
raise_exception_ra(env, EXCP0D_GPF, ra);
|
|
}
|
|
|
|
/* Standard form. */
|
|
|
|
/* The XSTATE_BV field must not set bits not present in XCR0. */
|
|
if (xstate_bv & ~env->xcr0) {
|
|
raise_exception_ra(env, EXCP0D_GPF, ra);
|
|
}
|
|
|
|
/* The XCOMP_BV field must be zero. Note that, as of the April 2016
|
|
revision, the description of the XSAVE Header (Vol 1, Sec 13.4.2)
|
|
describes only XCOMP_BV, but the description of the standard form
|
|
of XRSTOR (Vol 1, Sec 13.8.1) checks bytes 23:8 for zero, which
|
|
includes the next 64-bit field. */
|
|
xcomp_bv = cpu_ldq_data_ra(env, ptr + XO(header.xcomp_bv), ra);
|
|
reserve0 = cpu_ldq_data_ra(env, ptr + XO(header.reserve0), ra);
|
|
if (xcomp_bv || reserve0) {
|
|
raise_exception_ra(env, EXCP0D_GPF, ra);
|
|
}
|
|
|
|
if (rfbm & XSTATE_FP_MASK) {
|
|
if (xstate_bv & XSTATE_FP_MASK) {
|
|
do_xrstor_fpu(env, ptr, ra);
|
|
} else {
|
|
do_fninit(env);
|
|
memset(env->fpregs, 0, sizeof(env->fpregs));
|
|
}
|
|
}
|
|
if (rfbm & XSTATE_SSE_MASK) {
|
|
/* Note that the standard form of XRSTOR loads MXCSR from memory
|
|
whether or not the XSTATE_BV bit is set. */
|
|
do_xrstor_mxcsr(env, ptr, ra);
|
|
if (xstate_bv & XSTATE_SSE_MASK) {
|
|
do_xrstor_sse(env, ptr, ra);
|
|
} else {
|
|
/* ??? When AVX is implemented, we may have to be more
|
|
selective in the clearing. */
|
|
memset(env->xmm_regs, 0, sizeof(env->xmm_regs));
|
|
}
|
|
}
|
|
if (rfbm & XSTATE_BNDREGS_MASK) {
|
|
if (xstate_bv & XSTATE_BNDREGS_MASK) {
|
|
do_xrstor_bndregs(env, ptr + XO(bndreg_state), ra);
|
|
env->hflags |= HF_MPX_IU_MASK;
|
|
} else {
|
|
memset(env->bnd_regs, 0, sizeof(env->bnd_regs));
|
|
env->hflags &= ~HF_MPX_IU_MASK;
|
|
}
|
|
}
|
|
if (rfbm & XSTATE_BNDCSR_MASK) {
|
|
if (xstate_bv & XSTATE_BNDCSR_MASK) {
|
|
do_xrstor_bndcsr(env, ptr + XO(bndcsr_state), ra);
|
|
} else {
|
|
memset(&env->bndcs_regs, 0, sizeof(env->bndcs_regs));
|
|
}
|
|
cpu_sync_bndcs_hflags(env);
|
|
}
|
|
if (rfbm & XSTATE_PKRU_MASK) {
|
|
uint64_t old_pkru = env->pkru;
|
|
if (xstate_bv & XSTATE_PKRU_MASK) {
|
|
do_xrstor_pkru(env, ptr + XO(pkru_state), ra);
|
|
} else {
|
|
env->pkru = 0;
|
|
}
|
|
if (env->pkru != old_pkru) {
|
|
CPUState *cs = env_cpu(env);
|
|
tlb_flush(cs);
|
|
}
|
|
}
|
|
}
|
|
|
|
#undef XO
|
|
|
|
uint64_t helper_xgetbv(CPUX86State *env, uint32_t ecx)
|
|
{
|
|
/* The OS must have enabled XSAVE. */
|
|
if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
|
|
raise_exception_ra(env, EXCP06_ILLOP, GETPC());
|
|
}
|
|
|
|
switch (ecx) {
|
|
case 0:
|
|
return env->xcr0;
|
|
case 1:
|
|
if (env->features[FEAT_XSAVE] & CPUID_XSAVE_XGETBV1) {
|
|
return env->xcr0 & get_xinuse(env);
|
|
}
|
|
break;
|
|
}
|
|
raise_exception_ra(env, EXCP0D_GPF, GETPC());
|
|
}
|
|
|
|
void helper_xsetbv(CPUX86State *env, uint32_t ecx, uint64_t mask)
|
|
{
|
|
uint32_t dummy, ena_lo, ena_hi;
|
|
uint64_t ena;
|
|
|
|
/* The OS must have enabled XSAVE. */
|
|
if (!(env->cr[4] & CR4_OSXSAVE_MASK)) {
|
|
raise_exception_ra(env, EXCP06_ILLOP, GETPC());
|
|
}
|
|
|
|
/* Only XCR0 is defined at present; the FPU may not be disabled. */
|
|
if (ecx != 0 || (mask & XSTATE_FP_MASK) == 0) {
|
|
goto do_gpf;
|
|
}
|
|
|
|
/* Disallow enabling unimplemented features. */
|
|
cpu_x86_cpuid(env, 0x0d, 0, &ena_lo, &dummy, &dummy, &ena_hi);
|
|
ena = ((uint64_t)ena_hi << 32) | ena_lo;
|
|
if (mask & ~ena) {
|
|
goto do_gpf;
|
|
}
|
|
|
|
/* Disallow enabling only half of MPX. */
|
|
if ((mask ^ (mask * (XSTATE_BNDCSR_MASK / XSTATE_BNDREGS_MASK)))
|
|
& XSTATE_BNDCSR_MASK) {
|
|
goto do_gpf;
|
|
}
|
|
|
|
env->xcr0 = mask;
|
|
cpu_sync_bndcs_hflags(env);
|
|
return;
|
|
|
|
do_gpf:
|
|
raise_exception_ra(env, EXCP0D_GPF, GETPC());
|
|
}
|
|
|
|
/* MMX/SSE */
|
|
/* XXX: optimize by storing fptt and fptags in the static cpu state */
|
|
|
|
#define SSE_DAZ 0x0040
|
|
#define SSE_RC_MASK 0x6000
|
|
#define SSE_RC_NEAR 0x0000
|
|
#define SSE_RC_DOWN 0x2000
|
|
#define SSE_RC_UP 0x4000
|
|
#define SSE_RC_CHOP 0x6000
|
|
#define SSE_FZ 0x8000
|
|
|
|
void update_mxcsr_status(CPUX86State *env)
|
|
{
|
|
uint32_t mxcsr = env->mxcsr;
|
|
int rnd_type;
|
|
|
|
/* set rounding mode */
|
|
switch (mxcsr & SSE_RC_MASK) {
|
|
default:
|
|
case SSE_RC_NEAR:
|
|
rnd_type = float_round_nearest_even;
|
|
break;
|
|
case SSE_RC_DOWN:
|
|
rnd_type = float_round_down;
|
|
break;
|
|
case SSE_RC_UP:
|
|
rnd_type = float_round_up;
|
|
break;
|
|
case SSE_RC_CHOP:
|
|
rnd_type = float_round_to_zero;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(rnd_type, &env->sse_status);
|
|
|
|
/* Set exception flags. */
|
|
set_float_exception_flags((mxcsr & FPUS_IE ? float_flag_invalid : 0) |
|
|
(mxcsr & FPUS_ZE ? float_flag_divbyzero : 0) |
|
|
(mxcsr & FPUS_OE ? float_flag_overflow : 0) |
|
|
(mxcsr & FPUS_UE ? float_flag_underflow : 0) |
|
|
(mxcsr & FPUS_PE ? float_flag_inexact : 0),
|
|
&env->sse_status);
|
|
|
|
/* set denormals are zero */
|
|
set_flush_inputs_to_zero((mxcsr & SSE_DAZ) ? 1 : 0, &env->sse_status);
|
|
|
|
/* set flush to zero */
|
|
set_flush_to_zero((mxcsr & SSE_FZ) ? 1 : 0, &env->sse_status);
|
|
}
|
|
|
|
void update_mxcsr_from_sse_status(CPUX86State *env)
|
|
{
|
|
uint8_t flags = get_float_exception_flags(&env->sse_status);
|
|
/*
|
|
* The MXCSR denormal flag has opposite semantics to
|
|
* float_flag_input_denormal (the softfloat code sets that flag
|
|
* only when flushing input denormals to zero, but SSE sets it
|
|
* only when not flushing them to zero), so is not converted
|
|
* here.
|
|
*/
|
|
env->mxcsr |= ((flags & float_flag_invalid ? FPUS_IE : 0) |
|
|
(flags & float_flag_divbyzero ? FPUS_ZE : 0) |
|
|
(flags & float_flag_overflow ? FPUS_OE : 0) |
|
|
(flags & float_flag_underflow ? FPUS_UE : 0) |
|
|
(flags & float_flag_inexact ? FPUS_PE : 0) |
|
|
(flags & float_flag_output_denormal ? FPUS_UE | FPUS_PE :
|
|
0));
|
|
}
|
|
|
|
void helper_update_mxcsr(CPUX86State *env)
|
|
{
|
|
update_mxcsr_from_sse_status(env);
|
|
}
|
|
|
|
void helper_ldmxcsr(CPUX86State *env, uint32_t val)
|
|
{
|
|
cpu_set_mxcsr(env, val);
|
|
}
|
|
|
|
void helper_enter_mmx(CPUX86State *env)
|
|
{
|
|
env->fpstt = 0;
|
|
*(uint32_t *)(env->fptags) = 0;
|
|
*(uint32_t *)(env->fptags + 4) = 0;
|
|
}
|
|
|
|
void helper_emms(CPUX86State *env)
|
|
{
|
|
/* set to empty state */
|
|
*(uint32_t *)(env->fptags) = 0x01010101;
|
|
*(uint32_t *)(env->fptags + 4) = 0x01010101;
|
|
}
|
|
|
|
/* XXX: suppress */
|
|
void helper_movq(CPUX86State *env, void *d, void *s)
|
|
{
|
|
*(uint64_t *)d = *(uint64_t *)s;
|
|
}
|
|
|
|
#define SHIFT 0
|
|
#include "ops_sse.h"
|
|
|
|
#define SHIFT 1
|
|
#include "ops_sse.h"
|