qemu/target-lm32
Peter Maydell 2472b6c07b gdbstub: Allow target CPUs to specify watchpoint STOP_BEFORE_ACCESS flag
GDB assumes that watchpoint set via the gdbstub remote protocol will
behave in the same way as hardware watchpoints for the target. In
particular, whether the CPU stops with the PC before or after the insn
which triggers the watchpoint is target dependent. Allow guest CPU
code to specify which behaviour to use. This fixes a bug where with
guest CPUs which stop before the accessing insn GDB would manually
step forward over what it thought was the insn and end up one insn
further forward than it should be.

We set this flag for the CPU architectures which set
gdbarch_have_nonsteppable_watchpoint in gdb 7.7:
ARM, CRIS, LM32, MIPS and Xtensa.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Tested-by: Max Filippov <jcmvbkbc@gmail.com>
Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Tested-by: Michael Walle <michael@walle.cc> (for lm32)
Message-id: 1410545057-14014-1-git-send-email-peter.maydell@linaro.org
2014-10-06 14:25:43 +01:00
..
cpu-qom.h
cpu.c
cpu.h
gdbstub.c
helper.c
helper.h
lm32-semi.c
machine.c
Makefile.objs
op_helper.c
README
TODO
translate.c

LatticeMico32 target
--------------------

General
-------
All opcodes including the JUART CSRs are supported.


JTAG UART
---------
JTAG UART is routed to a serial console device. For the current boards it
is the second one. Ie to enable it in the qemu virtual console window use
the following command line parameters:
  -serial vc -serial vc
This will make serial0 (the lm32_uart) and serial1 (the JTAG UART)
available as virtual consoles.


Semihosting
-----------
Semihosting on this target is supported. Some system calls like read, write
and exit are executed on the host if semihosting is enabled. See
target/lm32-semi.c for all supported system calls. Emulation aware programs
can use this mechanism to shut down the virtual machine and print to the
host console. See the tcg tests for an example.


Special instructions
--------------------
The translation recognizes one special instruction to halt the cpu:
  and r0, r0, r0
On real hardware this instruction is a nop. It is not used by GCC and
should (hopefully) not be used within hand-crafted assembly.
Insert this instruction in your idle loop to reduce the cpu load on the
host.


Ignoring the MSB of the address bus
-----------------------------------
Some SoC ignores the MSB on the address bus. Thus creating a shadow memory
area. As a general rule, 0x00000000-0x7fffffff is cached, whereas
0x80000000-0xffffffff is not cached and used to access IO devices. This
behaviour can be enabled with:
  cpu_lm32_set_phys_msb_ignore(env, 1);