qemu/hw/misc/npcm7xx_clk.c
Peter Maydell 5ee0abed51 clock: Add ClockEvent parameter to callbacks
The Clock framework allows users to specify a callback which is
called after the clock's period has been updated.  Some users need to
also have a callback which is called before the clock period is
updated.

As the first step in adding support for notifying Clock users on
pre-update events, add an argument to the ClockCallback to specify
what event is being notified, and add an argument to the various
functions for registering a callback to specify which events are
of interest to that callback.

Note that the documentation update renders correct the previously
incorrect claim in 'Adding a new clock' that callbacks "will be
explained in a following section".

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Luc Michel <luc@lmichel.fr>
Tested-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210219144617.4782-2-peter.maydell@linaro.org
2021-03-08 17:20:01 +00:00

1096 lines
32 KiB
C

/*
* Nuvoton NPCM7xx Clock Control Registers.
*
* Copyright 2020 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "hw/misc/npcm7xx_clk.h"
#include "hw/timer/npcm7xx_timer.h"
#include "hw/qdev-clock.h"
#include "migration/vmstate.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/timer.h"
#include "qemu/units.h"
#include "trace.h"
#include "sysemu/watchdog.h"
/*
* The reference clock hz, and the SECCNT and CNTR25M registers in this module,
* is always 25 MHz.
*/
#define NPCM7XX_CLOCK_REF_HZ (25000000)
/* Register Field Definitions */
#define NPCM7XX_CLK_WDRCR_CA9C BIT(0) /* Cortex A9 Cores */
#define PLLCON_LOKI BIT(31)
#define PLLCON_LOKS BIT(30)
#define PLLCON_PWDEN BIT(12)
#define PLLCON_FBDV(con) extract32((con), 16, 12)
#define PLLCON_OTDV2(con) extract32((con), 13, 3)
#define PLLCON_OTDV1(con) extract32((con), 8, 3)
#define PLLCON_INDV(con) extract32((con), 0, 6)
enum NPCM7xxCLKRegisters {
NPCM7XX_CLK_CLKEN1,
NPCM7XX_CLK_CLKSEL,
NPCM7XX_CLK_CLKDIV1,
NPCM7XX_CLK_PLLCON0,
NPCM7XX_CLK_PLLCON1,
NPCM7XX_CLK_SWRSTR,
NPCM7XX_CLK_IPSRST1 = 0x20 / sizeof(uint32_t),
NPCM7XX_CLK_IPSRST2,
NPCM7XX_CLK_CLKEN2,
NPCM7XX_CLK_CLKDIV2,
NPCM7XX_CLK_CLKEN3,
NPCM7XX_CLK_IPSRST3,
NPCM7XX_CLK_WD0RCR,
NPCM7XX_CLK_WD1RCR,
NPCM7XX_CLK_WD2RCR,
NPCM7XX_CLK_SWRSTC1,
NPCM7XX_CLK_SWRSTC2,
NPCM7XX_CLK_SWRSTC3,
NPCM7XX_CLK_SWRSTC4,
NPCM7XX_CLK_PLLCON2,
NPCM7XX_CLK_CLKDIV3,
NPCM7XX_CLK_CORSTC,
NPCM7XX_CLK_PLLCONG,
NPCM7XX_CLK_AHBCKFI,
NPCM7XX_CLK_SECCNT,
NPCM7XX_CLK_CNTR25M,
NPCM7XX_CLK_REGS_END,
};
/*
* These reset values were taken from version 0.91 of the NPCM750R data sheet.
*
* All are loaded on power-up reset. CLKENx and SWRSTR should also be loaded on
* core domain reset, but this reset type is not yet supported by QEMU.
*/
static const uint32_t cold_reset_values[NPCM7XX_CLK_NR_REGS] = {
[NPCM7XX_CLK_CLKEN1] = 0xffffffff,
[NPCM7XX_CLK_CLKSEL] = 0x004aaaaa,
[NPCM7XX_CLK_CLKDIV1] = 0x5413f855,
[NPCM7XX_CLK_PLLCON0] = 0x00222101 | PLLCON_LOKI,
[NPCM7XX_CLK_PLLCON1] = 0x00202101 | PLLCON_LOKI,
[NPCM7XX_CLK_IPSRST1] = 0x00001000,
[NPCM7XX_CLK_IPSRST2] = 0x80000000,
[NPCM7XX_CLK_CLKEN2] = 0xffffffff,
[NPCM7XX_CLK_CLKDIV2] = 0xaa4f8f9f,
[NPCM7XX_CLK_CLKEN3] = 0xffffffff,
[NPCM7XX_CLK_IPSRST3] = 0x03000000,
[NPCM7XX_CLK_WD0RCR] = 0xffffffff,
[NPCM7XX_CLK_WD1RCR] = 0xffffffff,
[NPCM7XX_CLK_WD2RCR] = 0xffffffff,
[NPCM7XX_CLK_SWRSTC1] = 0x00000003,
[NPCM7XX_CLK_PLLCON2] = 0x00c02105 | PLLCON_LOKI,
[NPCM7XX_CLK_CORSTC] = 0x04000003,
[NPCM7XX_CLK_PLLCONG] = 0x01228606 | PLLCON_LOKI,
[NPCM7XX_CLK_AHBCKFI] = 0x000000c8,
};
/* The number of watchdogs that can trigger a reset. */
#define NPCM7XX_NR_WATCHDOGS (3)
/* Clock converter functions */
#define TYPE_NPCM7XX_CLOCK_PLL "npcm7xx-clock-pll"
#define NPCM7XX_CLOCK_PLL(obj) OBJECT_CHECK(NPCM7xxClockPLLState, \
(obj), TYPE_NPCM7XX_CLOCK_PLL)
#define TYPE_NPCM7XX_CLOCK_SEL "npcm7xx-clock-sel"
#define NPCM7XX_CLOCK_SEL(obj) OBJECT_CHECK(NPCM7xxClockSELState, \
(obj), TYPE_NPCM7XX_CLOCK_SEL)
#define TYPE_NPCM7XX_CLOCK_DIVIDER "npcm7xx-clock-divider"
#define NPCM7XX_CLOCK_DIVIDER(obj) OBJECT_CHECK(NPCM7xxClockDividerState, \
(obj), TYPE_NPCM7XX_CLOCK_DIVIDER)
static void npcm7xx_clk_update_pll(void *opaque)
{
NPCM7xxClockPLLState *s = opaque;
uint32_t con = s->clk->regs[s->reg];
uint64_t freq;
/* The PLL is grounded if it is not locked yet. */
if (con & PLLCON_LOKI) {
freq = clock_get_hz(s->clock_in);
freq *= PLLCON_FBDV(con);
freq /= PLLCON_INDV(con) * PLLCON_OTDV1(con) * PLLCON_OTDV2(con);
} else {
freq = 0;
}
clock_update_hz(s->clock_out, freq);
}
static void npcm7xx_clk_update_sel(void *opaque)
{
NPCM7xxClockSELState *s = opaque;
uint32_t index = extract32(s->clk->regs[NPCM7XX_CLK_CLKSEL], s->offset,
s->len);
if (index >= s->input_size) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: SEL index: %u out of range\n",
__func__, index);
index = 0;
}
clock_update_hz(s->clock_out, clock_get_hz(s->clock_in[index]));
}
static void npcm7xx_clk_update_divider(void *opaque)
{
NPCM7xxClockDividerState *s = opaque;
uint32_t freq;
freq = s->divide(s);
clock_update_hz(s->clock_out, freq);
}
static uint32_t divide_by_constant(NPCM7xxClockDividerState *s)
{
return clock_get_hz(s->clock_in) / s->divisor;
}
static uint32_t divide_by_reg_divisor(NPCM7xxClockDividerState *s)
{
return clock_get_hz(s->clock_in) /
(extract32(s->clk->regs[s->reg], s->offset, s->len) + 1);
}
static uint32_t divide_by_reg_divisor_times_2(NPCM7xxClockDividerState *s)
{
return divide_by_reg_divisor(s) / 2;
}
static uint32_t shift_by_reg_divisor(NPCM7xxClockDividerState *s)
{
return clock_get_hz(s->clock_in) >>
extract32(s->clk->regs[s->reg], s->offset, s->len);
}
static NPCM7xxClockPLL find_pll_by_reg(enum NPCM7xxCLKRegisters reg)
{
switch (reg) {
case NPCM7XX_CLK_PLLCON0:
return NPCM7XX_CLOCK_PLL0;
case NPCM7XX_CLK_PLLCON1:
return NPCM7XX_CLOCK_PLL1;
case NPCM7XX_CLK_PLLCON2:
return NPCM7XX_CLOCK_PLL2;
case NPCM7XX_CLK_PLLCONG:
return NPCM7XX_CLOCK_PLLG;
default:
g_assert_not_reached();
}
}
static void npcm7xx_clk_update_all_plls(NPCM7xxCLKState *clk)
{
int i;
for (i = 0; i < NPCM7XX_CLOCK_NR_PLLS; ++i) {
npcm7xx_clk_update_pll(&clk->plls[i]);
}
}
static void npcm7xx_clk_update_all_sels(NPCM7xxCLKState *clk)
{
int i;
for (i = 0; i < NPCM7XX_CLOCK_NR_SELS; ++i) {
npcm7xx_clk_update_sel(&clk->sels[i]);
}
}
static void npcm7xx_clk_update_all_dividers(NPCM7xxCLKState *clk)
{
int i;
for (i = 0; i < NPCM7XX_CLOCK_NR_DIVIDERS; ++i) {
npcm7xx_clk_update_divider(&clk->dividers[i]);
}
}
static void npcm7xx_clk_update_all_clocks(NPCM7xxCLKState *clk)
{
clock_update_hz(clk->clkref, NPCM7XX_CLOCK_REF_HZ);
npcm7xx_clk_update_all_plls(clk);
npcm7xx_clk_update_all_sels(clk);
npcm7xx_clk_update_all_dividers(clk);
}
/* Types of clock sources. */
typedef enum ClockSrcType {
CLKSRC_REF,
CLKSRC_PLL,
CLKSRC_SEL,
CLKSRC_DIV,
} ClockSrcType;
typedef struct PLLInitInfo {
const char *name;
ClockSrcType src_type;
int src_index;
int reg;
const char *public_name;
} PLLInitInfo;
typedef struct SELInitInfo {
const char *name;
uint8_t input_size;
ClockSrcType src_type[NPCM7XX_CLK_SEL_MAX_INPUT];
int src_index[NPCM7XX_CLK_SEL_MAX_INPUT];
int offset;
int len;
const char *public_name;
} SELInitInfo;
typedef struct DividerInitInfo {
const char *name;
ClockSrcType src_type;
int src_index;
uint32_t (*divide)(NPCM7xxClockDividerState *s);
int reg; /* not used when type == CONSTANT */
int offset; /* not used when type == CONSTANT */
int len; /* not used when type == CONSTANT */
int divisor; /* used only when type == CONSTANT */
const char *public_name;
} DividerInitInfo;
static const PLLInitInfo pll_init_info_list[] = {
[NPCM7XX_CLOCK_PLL0] = {
.name = "pll0",
.src_type = CLKSRC_REF,
.reg = NPCM7XX_CLK_PLLCON0,
},
[NPCM7XX_CLOCK_PLL1] = {
.name = "pll1",
.src_type = CLKSRC_REF,
.reg = NPCM7XX_CLK_PLLCON1,
},
[NPCM7XX_CLOCK_PLL2] = {
.name = "pll2",
.src_type = CLKSRC_REF,
.reg = NPCM7XX_CLK_PLLCON2,
},
[NPCM7XX_CLOCK_PLLG] = {
.name = "pllg",
.src_type = CLKSRC_REF,
.reg = NPCM7XX_CLK_PLLCONG,
},
};
static const SELInitInfo sel_init_info_list[] = {
[NPCM7XX_CLOCK_PIXCKSEL] = {
.name = "pixcksel",
.input_size = 2,
.src_type = {CLKSRC_PLL, CLKSRC_REF},
.src_index = {NPCM7XX_CLOCK_PLLG, 0},
.offset = 5,
.len = 1,
.public_name = "pixel-clock",
},
[NPCM7XX_CLOCK_MCCKSEL] = {
.name = "mccksel",
.input_size = 4,
.src_type = {CLKSRC_DIV, CLKSRC_REF, CLKSRC_REF,
/*MCBPCK, shouldn't be used in normal operation*/
CLKSRC_REF},
.src_index = {NPCM7XX_CLOCK_PLL1D2, 0, 0, 0},
.offset = 12,
.len = 2,
.public_name = "mc-phy-clock",
},
[NPCM7XX_CLOCK_CPUCKSEL] = {
.name = "cpucksel",
.input_size = 4,
.src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF,
/*SYSBPCK, shouldn't be used in normal operation*/
CLKSRC_REF},
.src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0, 0},
.offset = 0,
.len = 2,
.public_name = "system-clock",
},
[NPCM7XX_CLOCK_CLKOUTSEL] = {
.name = "clkoutsel",
.input_size = 5,
.src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF,
CLKSRC_PLL, CLKSRC_DIV},
.src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
NPCM7XX_CLOCK_PLLG, NPCM7XX_CLOCK_PLL2D2},
.offset = 18,
.len = 3,
.public_name = "tock",
},
[NPCM7XX_CLOCK_UARTCKSEL] = {
.name = "uartcksel",
.input_size = 4,
.src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF, CLKSRC_DIV},
.src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
NPCM7XX_CLOCK_PLL2D2},
.offset = 8,
.len = 2,
},
[NPCM7XX_CLOCK_TIMCKSEL] = {
.name = "timcksel",
.input_size = 4,
.src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF, CLKSRC_DIV},
.src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
NPCM7XX_CLOCK_PLL2D2},
.offset = 14,
.len = 2,
},
[NPCM7XX_CLOCK_SDCKSEL] = {
.name = "sdcksel",
.input_size = 4,
.src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF, CLKSRC_DIV},
.src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
NPCM7XX_CLOCK_PLL2D2},
.offset = 6,
.len = 2,
},
[NPCM7XX_CLOCK_GFXMSEL] = {
.name = "gfxmksel",
.input_size = 2,
.src_type = {CLKSRC_REF, CLKSRC_PLL},
.src_index = {0, NPCM7XX_CLOCK_PLL2},
.offset = 21,
.len = 1,
},
[NPCM7XX_CLOCK_SUCKSEL] = {
.name = "sucksel",
.input_size = 4,
.src_type = {CLKSRC_PLL, CLKSRC_DIV, CLKSRC_REF, CLKSRC_DIV},
.src_index = {NPCM7XX_CLOCK_PLL0, NPCM7XX_CLOCK_PLL1D2, 0,
NPCM7XX_CLOCK_PLL2D2},
.offset = 10,
.len = 2,
},
};
static const DividerInitInfo divider_init_info_list[] = {
[NPCM7XX_CLOCK_PLL1D2] = {
.name = "pll1d2",
.src_type = CLKSRC_PLL,
.src_index = NPCM7XX_CLOCK_PLL1,
.divide = divide_by_constant,
.divisor = 2,
},
[NPCM7XX_CLOCK_PLL2D2] = {
.name = "pll2d2",
.src_type = CLKSRC_PLL,
.src_index = NPCM7XX_CLOCK_PLL2,
.divide = divide_by_constant,
.divisor = 2,
},
[NPCM7XX_CLOCK_MC_DIVIDER] = {
.name = "mc-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_MCCKSEL,
.divide = divide_by_constant,
.divisor = 2,
.public_name = "mc-clock"
},
[NPCM7XX_CLOCK_AXI_DIVIDER] = {
.name = "axi-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_CPUCKSEL,
.divide = shift_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV1,
.offset = 0,
.len = 1,
.public_name = "clk2"
},
[NPCM7XX_CLOCK_AHB_DIVIDER] = {
.name = "ahb-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AXI_DIVIDER,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV1,
.offset = 26,
.len = 2,
.public_name = "clk4"
},
[NPCM7XX_CLOCK_AHB3_DIVIDER] = {
.name = "ahb3-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV1,
.offset = 6,
.len = 5,
.public_name = "ahb3-spi3-clock"
},
[NPCM7XX_CLOCK_SPI0_DIVIDER] = {
.name = "spi0-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV3,
.offset = 6,
.len = 5,
.public_name = "spi0-clock",
},
[NPCM7XX_CLOCK_SPIX_DIVIDER] = {
.name = "spix-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV3,
.offset = 1,
.len = 5,
.public_name = "spix-clock",
},
[NPCM7XX_CLOCK_APB1_DIVIDER] = {
.name = "apb1-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
.divide = shift_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV2,
.offset = 24,
.len = 2,
.public_name = "apb1-clock",
},
[NPCM7XX_CLOCK_APB2_DIVIDER] = {
.name = "apb2-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
.divide = shift_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV2,
.offset = 26,
.len = 2,
.public_name = "apb2-clock",
},
[NPCM7XX_CLOCK_APB3_DIVIDER] = {
.name = "apb3-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
.divide = shift_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV2,
.offset = 28,
.len = 2,
.public_name = "apb3-clock",
},
[NPCM7XX_CLOCK_APB4_DIVIDER] = {
.name = "apb4-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
.divide = shift_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV2,
.offset = 30,
.len = 2,
.public_name = "apb4-clock",
},
[NPCM7XX_CLOCK_APB5_DIVIDER] = {
.name = "apb5-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_AHB_DIVIDER,
.divide = shift_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV2,
.offset = 22,
.len = 2,
.public_name = "apb5-clock",
},
[NPCM7XX_CLOCK_CLKOUT_DIVIDER] = {
.name = "clkout-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_CLKOUTSEL,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV2,
.offset = 16,
.len = 5,
.public_name = "clkout",
},
[NPCM7XX_CLOCK_UART_DIVIDER] = {
.name = "uart-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_UARTCKSEL,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV1,
.offset = 16,
.len = 5,
.public_name = "uart-clock",
},
[NPCM7XX_CLOCK_TIMER_DIVIDER] = {
.name = "timer-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_TIMCKSEL,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV1,
.offset = 21,
.len = 5,
.public_name = "timer-clock",
},
[NPCM7XX_CLOCK_ADC_DIVIDER] = {
.name = "adc-divider",
.src_type = CLKSRC_DIV,
.src_index = NPCM7XX_CLOCK_TIMER_DIVIDER,
.divide = shift_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV1,
.offset = 28,
.len = 3,
.public_name = "adc-clock",
},
[NPCM7XX_CLOCK_MMC_DIVIDER] = {
.name = "mmc-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_SDCKSEL,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV1,
.offset = 11,
.len = 5,
.public_name = "mmc-clock",
},
[NPCM7XX_CLOCK_SDHC_DIVIDER] = {
.name = "sdhc-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_SDCKSEL,
.divide = divide_by_reg_divisor_times_2,
.reg = NPCM7XX_CLK_CLKDIV2,
.offset = 0,
.len = 4,
.public_name = "sdhc-clock",
},
[NPCM7XX_CLOCK_GFXM_DIVIDER] = {
.name = "gfxm-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_GFXMSEL,
.divide = divide_by_constant,
.divisor = 3,
.public_name = "gfxm-clock",
},
[NPCM7XX_CLOCK_UTMI_DIVIDER] = {
.name = "utmi-divider",
.src_type = CLKSRC_SEL,
.src_index = NPCM7XX_CLOCK_SUCKSEL,
.divide = divide_by_reg_divisor,
.reg = NPCM7XX_CLK_CLKDIV2,
.offset = 8,
.len = 5,
.public_name = "utmi-clock",
},
};
static void npcm7xx_clk_update_pll_cb(void *opaque, ClockEvent event)
{
npcm7xx_clk_update_pll(opaque);
}
static void npcm7xx_clk_pll_init(Object *obj)
{
NPCM7xxClockPLLState *pll = NPCM7XX_CLOCK_PLL(obj);
pll->clock_in = qdev_init_clock_in(DEVICE(pll), "clock-in",
npcm7xx_clk_update_pll_cb, pll,
ClockUpdate);
pll->clock_out = qdev_init_clock_out(DEVICE(pll), "clock-out");
}
static void npcm7xx_clk_update_sel_cb(void *opaque, ClockEvent event)
{
npcm7xx_clk_update_sel(opaque);
}
static void npcm7xx_clk_sel_init(Object *obj)
{
int i;
NPCM7xxClockSELState *sel = NPCM7XX_CLOCK_SEL(obj);
for (i = 0; i < NPCM7XX_CLK_SEL_MAX_INPUT; ++i) {
sel->clock_in[i] = qdev_init_clock_in(DEVICE(sel),
g_strdup_printf("clock-in[%d]", i),
npcm7xx_clk_update_sel_cb, sel, ClockUpdate);
}
sel->clock_out = qdev_init_clock_out(DEVICE(sel), "clock-out");
}
static void npcm7xx_clk_update_divider_cb(void *opaque, ClockEvent event)
{
npcm7xx_clk_update_divider(opaque);
}
static void npcm7xx_clk_divider_init(Object *obj)
{
NPCM7xxClockDividerState *div = NPCM7XX_CLOCK_DIVIDER(obj);
div->clock_in = qdev_init_clock_in(DEVICE(div), "clock-in",
npcm7xx_clk_update_divider_cb,
div, ClockUpdate);
div->clock_out = qdev_init_clock_out(DEVICE(div), "clock-out");
}
static void npcm7xx_init_clock_pll(NPCM7xxClockPLLState *pll,
NPCM7xxCLKState *clk, const PLLInitInfo *init_info)
{
pll->name = init_info->name;
pll->clk = clk;
pll->reg = init_info->reg;
if (init_info->public_name != NULL) {
qdev_alias_clock(DEVICE(pll), "clock-out", DEVICE(clk),
init_info->public_name);
}
}
static void npcm7xx_init_clock_sel(NPCM7xxClockSELState *sel,
NPCM7xxCLKState *clk, const SELInitInfo *init_info)
{
int input_size = init_info->input_size;
sel->name = init_info->name;
sel->clk = clk;
sel->input_size = init_info->input_size;
g_assert(input_size <= NPCM7XX_CLK_SEL_MAX_INPUT);
sel->offset = init_info->offset;
sel->len = init_info->len;
if (init_info->public_name != NULL) {
qdev_alias_clock(DEVICE(sel), "clock-out", DEVICE(clk),
init_info->public_name);
}
}
static void npcm7xx_init_clock_divider(NPCM7xxClockDividerState *div,
NPCM7xxCLKState *clk, const DividerInitInfo *init_info)
{
div->name = init_info->name;
div->clk = clk;
div->divide = init_info->divide;
if (div->divide == divide_by_constant) {
div->divisor = init_info->divisor;
} else {
div->reg = init_info->reg;
div->offset = init_info->offset;
div->len = init_info->len;
}
if (init_info->public_name != NULL) {
qdev_alias_clock(DEVICE(div), "clock-out", DEVICE(clk),
init_info->public_name);
}
}
static Clock *npcm7xx_get_clock(NPCM7xxCLKState *clk, ClockSrcType type,
int index)
{
switch (type) {
case CLKSRC_REF:
return clk->clkref;
case CLKSRC_PLL:
return clk->plls[index].clock_out;
case CLKSRC_SEL:
return clk->sels[index].clock_out;
case CLKSRC_DIV:
return clk->dividers[index].clock_out;
default:
g_assert_not_reached();
}
}
static void npcm7xx_connect_clocks(NPCM7xxCLKState *clk)
{
int i, j;
Clock *src;
for (i = 0; i < NPCM7XX_CLOCK_NR_PLLS; ++i) {
src = npcm7xx_get_clock(clk, pll_init_info_list[i].src_type,
pll_init_info_list[i].src_index);
clock_set_source(clk->plls[i].clock_in, src);
}
for (i = 0; i < NPCM7XX_CLOCK_NR_SELS; ++i) {
for (j = 0; j < sel_init_info_list[i].input_size; ++j) {
src = npcm7xx_get_clock(clk, sel_init_info_list[i].src_type[j],
sel_init_info_list[i].src_index[j]);
clock_set_source(clk->sels[i].clock_in[j], src);
}
}
for (i = 0; i < NPCM7XX_CLOCK_NR_DIVIDERS; ++i) {
src = npcm7xx_get_clock(clk, divider_init_info_list[i].src_type,
divider_init_info_list[i].src_index);
clock_set_source(clk->dividers[i].clock_in, src);
}
}
static uint64_t npcm7xx_clk_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t reg = offset / sizeof(uint32_t);
NPCM7xxCLKState *s = opaque;
int64_t now_ns;
uint32_t value = 0;
if (reg >= NPCM7XX_CLK_NR_REGS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: offset 0x%04" HWADDR_PRIx " out of range\n",
__func__, offset);
return 0;
}
switch (reg) {
case NPCM7XX_CLK_SWRSTR:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: register @ 0x%04" HWADDR_PRIx " is write-only\n",
__func__, offset);
break;
case NPCM7XX_CLK_SECCNT:
now_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
value = (now_ns - s->ref_ns) / NANOSECONDS_PER_SECOND;
break;
case NPCM7XX_CLK_CNTR25M:
now_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/*
* This register counts 25 MHz cycles, updating every 640 ns. It rolls
* over to zero every second.
*
* The 4 LSBs are always zero: (1e9 / 640) << 4 = 25000000.
*/
value = (((now_ns - s->ref_ns) / 640) << 4) % NPCM7XX_CLOCK_REF_HZ;
break;
default:
value = s->regs[reg];
break;
};
trace_npcm7xx_clk_read(offset, value);
return value;
}
static void npcm7xx_clk_write(void *opaque, hwaddr offset,
uint64_t v, unsigned size)
{
uint32_t reg = offset / sizeof(uint32_t);
NPCM7xxCLKState *s = opaque;
uint32_t value = v;
trace_npcm7xx_clk_write(offset, value);
if (reg >= NPCM7XX_CLK_NR_REGS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: offset 0x%04" HWADDR_PRIx " out of range\n",
__func__, offset);
return;
}
switch (reg) {
case NPCM7XX_CLK_SWRSTR:
qemu_log_mask(LOG_UNIMP, "%s: SW reset not implemented: 0x%02x\n",
__func__, value);
value = 0;
break;
case NPCM7XX_CLK_PLLCON0:
case NPCM7XX_CLK_PLLCON1:
case NPCM7XX_CLK_PLLCON2:
case NPCM7XX_CLK_PLLCONG:
if (value & PLLCON_PWDEN) {
/* Power down -- clear lock and indicate loss of lock */
value &= ~PLLCON_LOKI;
value |= PLLCON_LOKS;
} else {
/* Normal mode -- assume always locked */
value |= PLLCON_LOKI;
/* Keep LOKS unchanged unless cleared by writing 1 */
if (value & PLLCON_LOKS) {
value &= ~PLLCON_LOKS;
} else {
value |= (value & PLLCON_LOKS);
}
}
/* Only update PLL when it is locked. */
if (value & PLLCON_LOKI) {
npcm7xx_clk_update_pll(&s->plls[find_pll_by_reg(reg)]);
}
break;
case NPCM7XX_CLK_CLKSEL:
npcm7xx_clk_update_all_sels(s);
break;
case NPCM7XX_CLK_CLKDIV1:
case NPCM7XX_CLK_CLKDIV2:
case NPCM7XX_CLK_CLKDIV3:
npcm7xx_clk_update_all_dividers(s);
break;
case NPCM7XX_CLK_CNTR25M:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: register @ 0x%04" HWADDR_PRIx " is read-only\n",
__func__, offset);
return;
}
s->regs[reg] = value;
}
/* Perform reset action triggered by a watchdog */
static void npcm7xx_clk_perform_watchdog_reset(void *opaque, int n,
int level)
{
NPCM7xxCLKState *clk = NPCM7XX_CLK(opaque);
uint32_t rcr;
g_assert(n >= 0 && n <= NPCM7XX_NR_WATCHDOGS);
rcr = clk->regs[NPCM7XX_CLK_WD0RCR + n];
if (rcr & NPCM7XX_CLK_WDRCR_CA9C) {
watchdog_perform_action();
} else {
qemu_log_mask(LOG_UNIMP,
"%s: only CPU reset is implemented. (requested 0x%" PRIx32")\n",
__func__, rcr);
}
}
static const struct MemoryRegionOps npcm7xx_clk_ops = {
.read = npcm7xx_clk_read,
.write = npcm7xx_clk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void npcm7xx_clk_enter_reset(Object *obj, ResetType type)
{
NPCM7xxCLKState *s = NPCM7XX_CLK(obj);
QEMU_BUILD_BUG_ON(sizeof(s->regs) != sizeof(cold_reset_values));
switch (type) {
case RESET_TYPE_COLD:
memcpy(s->regs, cold_reset_values, sizeof(cold_reset_values));
s->ref_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
npcm7xx_clk_update_all_clocks(s);
return;
}
/*
* A small number of registers need to be reset on a core domain reset,
* but no such reset type exists yet.
*/
qemu_log_mask(LOG_UNIMP, "%s: reset type %d not implemented.",
__func__, type);
}
static void npcm7xx_clk_init_clock_hierarchy(NPCM7xxCLKState *s)
{
int i;
s->clkref = qdev_init_clock_in(DEVICE(s), "clkref", NULL, NULL, 0);
/* First pass: init all converter modules */
QEMU_BUILD_BUG_ON(ARRAY_SIZE(pll_init_info_list) != NPCM7XX_CLOCK_NR_PLLS);
QEMU_BUILD_BUG_ON(ARRAY_SIZE(sel_init_info_list) != NPCM7XX_CLOCK_NR_SELS);
QEMU_BUILD_BUG_ON(ARRAY_SIZE(divider_init_info_list)
!= NPCM7XX_CLOCK_NR_DIVIDERS);
for (i = 0; i < NPCM7XX_CLOCK_NR_PLLS; ++i) {
object_initialize_child(OBJECT(s), pll_init_info_list[i].name,
&s->plls[i], TYPE_NPCM7XX_CLOCK_PLL);
npcm7xx_init_clock_pll(&s->plls[i], s,
&pll_init_info_list[i]);
}
for (i = 0; i < NPCM7XX_CLOCK_NR_SELS; ++i) {
object_initialize_child(OBJECT(s), sel_init_info_list[i].name,
&s->sels[i], TYPE_NPCM7XX_CLOCK_SEL);
npcm7xx_init_clock_sel(&s->sels[i], s,
&sel_init_info_list[i]);
}
for (i = 0; i < NPCM7XX_CLOCK_NR_DIVIDERS; ++i) {
object_initialize_child(OBJECT(s), divider_init_info_list[i].name,
&s->dividers[i], TYPE_NPCM7XX_CLOCK_DIVIDER);
npcm7xx_init_clock_divider(&s->dividers[i], s,
&divider_init_info_list[i]);
}
/* Second pass: connect converter modules */
npcm7xx_connect_clocks(s);
clock_update_hz(s->clkref, NPCM7XX_CLOCK_REF_HZ);
}
static void npcm7xx_clk_init(Object *obj)
{
NPCM7xxCLKState *s = NPCM7XX_CLK(obj);
memory_region_init_io(&s->iomem, obj, &npcm7xx_clk_ops, s,
TYPE_NPCM7XX_CLK, 4 * KiB);
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->iomem);
}
static int npcm7xx_clk_post_load(void *opaque, int version_id)
{
if (version_id >= 1) {
NPCM7xxCLKState *clk = opaque;
npcm7xx_clk_update_all_clocks(clk);
}
return 0;
}
static void npcm7xx_clk_realize(DeviceState *dev, Error **errp)
{
int i;
NPCM7xxCLKState *s = NPCM7XX_CLK(dev);
qdev_init_gpio_in_named(DEVICE(s), npcm7xx_clk_perform_watchdog_reset,
NPCM7XX_WATCHDOG_RESET_GPIO_IN, NPCM7XX_NR_WATCHDOGS);
npcm7xx_clk_init_clock_hierarchy(s);
/* Realize child devices */
for (i = 0; i < NPCM7XX_CLOCK_NR_PLLS; ++i) {
if (!qdev_realize(DEVICE(&s->plls[i]), NULL, errp)) {
return;
}
}
for (i = 0; i < NPCM7XX_CLOCK_NR_SELS; ++i) {
if (!qdev_realize(DEVICE(&s->sels[i]), NULL, errp)) {
return;
}
}
for (i = 0; i < NPCM7XX_CLOCK_NR_DIVIDERS; ++i) {
if (!qdev_realize(DEVICE(&s->dividers[i]), NULL, errp)) {
return;
}
}
}
static const VMStateDescription vmstate_npcm7xx_clk_pll = {
.name = "npcm7xx-clock-pll",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(clock_in, NPCM7xxClockPLLState),
VMSTATE_END_OF_LIST(),
},
};
static const VMStateDescription vmstate_npcm7xx_clk_sel = {
.name = "npcm7xx-clock-sel",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(clock_in, NPCM7xxClockSELState,
NPCM7XX_CLK_SEL_MAX_INPUT, 0, vmstate_clock, Clock),
VMSTATE_END_OF_LIST(),
},
};
static const VMStateDescription vmstate_npcm7xx_clk_divider = {
.name = "npcm7xx-clock-divider",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_CLOCK(clock_in, NPCM7xxClockDividerState),
VMSTATE_END_OF_LIST(),
},
};
static const VMStateDescription vmstate_npcm7xx_clk = {
.name = "npcm7xx-clk",
.version_id = 1,
.minimum_version_id = 1,
.post_load = npcm7xx_clk_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, NPCM7xxCLKState, NPCM7XX_CLK_NR_REGS),
VMSTATE_INT64(ref_ns, NPCM7xxCLKState),
VMSTATE_CLOCK(clkref, NPCM7xxCLKState),
VMSTATE_END_OF_LIST(),
},
};
static void npcm7xx_clk_pll_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "NPCM7xx Clock PLL Module";
dc->vmsd = &vmstate_npcm7xx_clk_pll;
}
static void npcm7xx_clk_sel_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "NPCM7xx Clock SEL Module";
dc->vmsd = &vmstate_npcm7xx_clk_sel;
}
static void npcm7xx_clk_divider_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "NPCM7xx Clock Divider Module";
dc->vmsd = &vmstate_npcm7xx_clk_divider;
}
static void npcm7xx_clk_class_init(ObjectClass *klass, void *data)
{
ResettableClass *rc = RESETTABLE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
QEMU_BUILD_BUG_ON(NPCM7XX_CLK_REGS_END > NPCM7XX_CLK_NR_REGS);
dc->desc = "NPCM7xx Clock Control Registers";
dc->vmsd = &vmstate_npcm7xx_clk;
dc->realize = npcm7xx_clk_realize;
rc->phases.enter = npcm7xx_clk_enter_reset;
}
static const TypeInfo npcm7xx_clk_pll_info = {
.name = TYPE_NPCM7XX_CLOCK_PLL,
.parent = TYPE_DEVICE,
.instance_size = sizeof(NPCM7xxClockPLLState),
.instance_init = npcm7xx_clk_pll_init,
.class_init = npcm7xx_clk_pll_class_init,
};
static const TypeInfo npcm7xx_clk_sel_info = {
.name = TYPE_NPCM7XX_CLOCK_SEL,
.parent = TYPE_DEVICE,
.instance_size = sizeof(NPCM7xxClockSELState),
.instance_init = npcm7xx_clk_sel_init,
.class_init = npcm7xx_clk_sel_class_init,
};
static const TypeInfo npcm7xx_clk_divider_info = {
.name = TYPE_NPCM7XX_CLOCK_DIVIDER,
.parent = TYPE_DEVICE,
.instance_size = sizeof(NPCM7xxClockDividerState),
.instance_init = npcm7xx_clk_divider_init,
.class_init = npcm7xx_clk_divider_class_init,
};
static const TypeInfo npcm7xx_clk_info = {
.name = TYPE_NPCM7XX_CLK,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NPCM7xxCLKState),
.instance_init = npcm7xx_clk_init,
.class_init = npcm7xx_clk_class_init,
};
static void npcm7xx_clk_register_type(void)
{
type_register_static(&npcm7xx_clk_pll_info);
type_register_static(&npcm7xx_clk_sel_info);
type_register_static(&npcm7xx_clk_divider_info);
type_register_static(&npcm7xx_clk_info);
}
type_init(npcm7xx_clk_register_type);