c0e0825c98
This removes one further custom impl of QEMUFile, in favour of a QIOChannel based impl. Reviewed-by: Eric Blake <eblake@redhat.com> Signed-off-by: Daniel P. Berrangé <berrange@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
4367 lines
131 KiB
C
4367 lines
131 KiB
C
/*
|
|
* QEMU System Emulator
|
|
*
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
* Copyright (c) 2011-2015 Red Hat Inc
|
|
*
|
|
* Authors:
|
|
* Juan Quintela <quintela@redhat.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "qemu/madvise.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "io/channel-null.h"
|
|
#include "xbzrle.h"
|
|
#include "ram.h"
|
|
#include "migration.h"
|
|
#include "migration/register.h"
|
|
#include "migration/misc.h"
|
|
#include "migration/qemu-file-channel.h"
|
|
#include "qemu-file.h"
|
|
#include "postcopy-ram.h"
|
|
#include "page_cache.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/qapi-types-migration.h"
|
|
#include "qapi/qapi-events-migration.h"
|
|
#include "qapi/qmp/qerror.h"
|
|
#include "trace.h"
|
|
#include "exec/ram_addr.h"
|
|
#include "exec/target_page.h"
|
|
#include "qemu/rcu_queue.h"
|
|
#include "migration/colo.h"
|
|
#include "block.h"
|
|
#include "sysemu/cpu-throttle.h"
|
|
#include "savevm.h"
|
|
#include "qemu/iov.h"
|
|
#include "multifd.h"
|
|
#include "sysemu/runstate.h"
|
|
|
|
#include "hw/boards.h" /* for machine_dump_guest_core() */
|
|
|
|
#if defined(__linux__)
|
|
#include "qemu/userfaultfd.h"
|
|
#endif /* defined(__linux__) */
|
|
|
|
/***********************************************************/
|
|
/* ram save/restore */
|
|
|
|
/* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
|
|
* worked for pages that where filled with the same char. We switched
|
|
* it to only search for the zero value. And to avoid confusion with
|
|
* RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
|
|
*/
|
|
|
|
#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
|
|
#define RAM_SAVE_FLAG_ZERO 0x02
|
|
#define RAM_SAVE_FLAG_MEM_SIZE 0x04
|
|
#define RAM_SAVE_FLAG_PAGE 0x08
|
|
#define RAM_SAVE_FLAG_EOS 0x10
|
|
#define RAM_SAVE_FLAG_CONTINUE 0x20
|
|
#define RAM_SAVE_FLAG_XBZRLE 0x40
|
|
/* 0x80 is reserved in migration.h start with 0x100 next */
|
|
#define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100
|
|
|
|
XBZRLECacheStats xbzrle_counters;
|
|
|
|
/* struct contains XBZRLE cache and a static page
|
|
used by the compression */
|
|
static struct {
|
|
/* buffer used for XBZRLE encoding */
|
|
uint8_t *encoded_buf;
|
|
/* buffer for storing page content */
|
|
uint8_t *current_buf;
|
|
/* Cache for XBZRLE, Protected by lock. */
|
|
PageCache *cache;
|
|
QemuMutex lock;
|
|
/* it will store a page full of zeros */
|
|
uint8_t *zero_target_page;
|
|
/* buffer used for XBZRLE decoding */
|
|
uint8_t *decoded_buf;
|
|
} XBZRLE;
|
|
|
|
static void XBZRLE_cache_lock(void)
|
|
{
|
|
if (migrate_use_xbzrle()) {
|
|
qemu_mutex_lock(&XBZRLE.lock);
|
|
}
|
|
}
|
|
|
|
static void XBZRLE_cache_unlock(void)
|
|
{
|
|
if (migrate_use_xbzrle()) {
|
|
qemu_mutex_unlock(&XBZRLE.lock);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* xbzrle_cache_resize: resize the xbzrle cache
|
|
*
|
|
* This function is called from migrate_params_apply in main
|
|
* thread, possibly while a migration is in progress. A running
|
|
* migration may be using the cache and might finish during this call,
|
|
* hence changes to the cache are protected by XBZRLE.lock().
|
|
*
|
|
* Returns 0 for success or -1 for error
|
|
*
|
|
* @new_size: new cache size
|
|
* @errp: set *errp if the check failed, with reason
|
|
*/
|
|
int xbzrle_cache_resize(uint64_t new_size, Error **errp)
|
|
{
|
|
PageCache *new_cache;
|
|
int64_t ret = 0;
|
|
|
|
/* Check for truncation */
|
|
if (new_size != (size_t)new_size) {
|
|
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
|
|
"exceeding address space");
|
|
return -1;
|
|
}
|
|
|
|
if (new_size == migrate_xbzrle_cache_size()) {
|
|
/* nothing to do */
|
|
return 0;
|
|
}
|
|
|
|
XBZRLE_cache_lock();
|
|
|
|
if (XBZRLE.cache != NULL) {
|
|
new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
|
|
if (!new_cache) {
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
cache_fini(XBZRLE.cache);
|
|
XBZRLE.cache = new_cache;
|
|
}
|
|
out:
|
|
XBZRLE_cache_unlock();
|
|
return ret;
|
|
}
|
|
|
|
bool ramblock_is_ignored(RAMBlock *block)
|
|
{
|
|
return !qemu_ram_is_migratable(block) ||
|
|
(migrate_ignore_shared() && qemu_ram_is_shared(block));
|
|
}
|
|
|
|
#undef RAMBLOCK_FOREACH
|
|
|
|
int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
|
|
{
|
|
RAMBlock *block;
|
|
int ret = 0;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
ret = func(block, opaque);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void ramblock_recv_map_init(void)
|
|
{
|
|
RAMBlock *rb;
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
|
|
assert(!rb->receivedmap);
|
|
rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
|
|
}
|
|
}
|
|
|
|
int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
|
|
{
|
|
return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
|
|
rb->receivedmap);
|
|
}
|
|
|
|
bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
|
|
{
|
|
return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
|
|
}
|
|
|
|
void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
|
|
{
|
|
set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
|
|
}
|
|
|
|
void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
|
|
size_t nr)
|
|
{
|
|
bitmap_set_atomic(rb->receivedmap,
|
|
ramblock_recv_bitmap_offset(host_addr, rb),
|
|
nr);
|
|
}
|
|
|
|
#define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL)
|
|
|
|
/*
|
|
* Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
|
|
*
|
|
* Returns >0 if success with sent bytes, or <0 if error.
|
|
*/
|
|
int64_t ramblock_recv_bitmap_send(QEMUFile *file,
|
|
const char *block_name)
|
|
{
|
|
RAMBlock *block = qemu_ram_block_by_name(block_name);
|
|
unsigned long *le_bitmap, nbits;
|
|
uint64_t size;
|
|
|
|
if (!block) {
|
|
error_report("%s: invalid block name: %s", __func__, block_name);
|
|
return -1;
|
|
}
|
|
|
|
nbits = block->postcopy_length >> TARGET_PAGE_BITS;
|
|
|
|
/*
|
|
* Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
|
|
* machines we may need 4 more bytes for padding (see below
|
|
* comment). So extend it a bit before hand.
|
|
*/
|
|
le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
|
|
|
|
/*
|
|
* Always use little endian when sending the bitmap. This is
|
|
* required that when source and destination VMs are not using the
|
|
* same endianness. (Note: big endian won't work.)
|
|
*/
|
|
bitmap_to_le(le_bitmap, block->receivedmap, nbits);
|
|
|
|
/* Size of the bitmap, in bytes */
|
|
size = DIV_ROUND_UP(nbits, 8);
|
|
|
|
/*
|
|
* size is always aligned to 8 bytes for 64bit machines, but it
|
|
* may not be true for 32bit machines. We need this padding to
|
|
* make sure the migration can survive even between 32bit and
|
|
* 64bit machines.
|
|
*/
|
|
size = ROUND_UP(size, 8);
|
|
|
|
qemu_put_be64(file, size);
|
|
qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
|
|
/*
|
|
* Mark as an end, in case the middle part is screwed up due to
|
|
* some "mysterious" reason.
|
|
*/
|
|
qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
|
|
qemu_fflush(file);
|
|
|
|
g_free(le_bitmap);
|
|
|
|
if (qemu_file_get_error(file)) {
|
|
return qemu_file_get_error(file);
|
|
}
|
|
|
|
return size + sizeof(size);
|
|
}
|
|
|
|
/*
|
|
* An outstanding page request, on the source, having been received
|
|
* and queued
|
|
*/
|
|
struct RAMSrcPageRequest {
|
|
RAMBlock *rb;
|
|
hwaddr offset;
|
|
hwaddr len;
|
|
|
|
QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
|
|
};
|
|
|
|
/* State of RAM for migration */
|
|
struct RAMState {
|
|
/* QEMUFile used for this migration */
|
|
QEMUFile *f;
|
|
/* UFFD file descriptor, used in 'write-tracking' migration */
|
|
int uffdio_fd;
|
|
/* Last block that we have visited searching for dirty pages */
|
|
RAMBlock *last_seen_block;
|
|
/* Last block from where we have sent data */
|
|
RAMBlock *last_sent_block;
|
|
/* Last dirty target page we have sent */
|
|
ram_addr_t last_page;
|
|
/* last ram version we have seen */
|
|
uint32_t last_version;
|
|
/* How many times we have dirty too many pages */
|
|
int dirty_rate_high_cnt;
|
|
/* these variables are used for bitmap sync */
|
|
/* last time we did a full bitmap_sync */
|
|
int64_t time_last_bitmap_sync;
|
|
/* bytes transferred at start_time */
|
|
uint64_t bytes_xfer_prev;
|
|
/* number of dirty pages since start_time */
|
|
uint64_t num_dirty_pages_period;
|
|
/* xbzrle misses since the beginning of the period */
|
|
uint64_t xbzrle_cache_miss_prev;
|
|
/* Amount of xbzrle pages since the beginning of the period */
|
|
uint64_t xbzrle_pages_prev;
|
|
/* Amount of xbzrle encoded bytes since the beginning of the period */
|
|
uint64_t xbzrle_bytes_prev;
|
|
/* Start using XBZRLE (e.g., after the first round). */
|
|
bool xbzrle_enabled;
|
|
/* Are we on the last stage of migration */
|
|
bool last_stage;
|
|
/* compression statistics since the beginning of the period */
|
|
/* amount of count that no free thread to compress data */
|
|
uint64_t compress_thread_busy_prev;
|
|
/* amount bytes after compression */
|
|
uint64_t compressed_size_prev;
|
|
/* amount of compressed pages */
|
|
uint64_t compress_pages_prev;
|
|
|
|
/* total handled target pages at the beginning of period */
|
|
uint64_t target_page_count_prev;
|
|
/* total handled target pages since start */
|
|
uint64_t target_page_count;
|
|
/* number of dirty bits in the bitmap */
|
|
uint64_t migration_dirty_pages;
|
|
/* Protects modification of the bitmap and migration dirty pages */
|
|
QemuMutex bitmap_mutex;
|
|
/* The RAMBlock used in the last src_page_requests */
|
|
RAMBlock *last_req_rb;
|
|
/* Queue of outstanding page requests from the destination */
|
|
QemuMutex src_page_req_mutex;
|
|
QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
|
|
};
|
|
typedef struct RAMState RAMState;
|
|
|
|
static RAMState *ram_state;
|
|
|
|
static NotifierWithReturnList precopy_notifier_list;
|
|
|
|
/* Whether postcopy has queued requests? */
|
|
static bool postcopy_has_request(RAMState *rs)
|
|
{
|
|
return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
|
|
}
|
|
|
|
void precopy_infrastructure_init(void)
|
|
{
|
|
notifier_with_return_list_init(&precopy_notifier_list);
|
|
}
|
|
|
|
void precopy_add_notifier(NotifierWithReturn *n)
|
|
{
|
|
notifier_with_return_list_add(&precopy_notifier_list, n);
|
|
}
|
|
|
|
void precopy_remove_notifier(NotifierWithReturn *n)
|
|
{
|
|
notifier_with_return_remove(n);
|
|
}
|
|
|
|
int precopy_notify(PrecopyNotifyReason reason, Error **errp)
|
|
{
|
|
PrecopyNotifyData pnd;
|
|
pnd.reason = reason;
|
|
pnd.errp = errp;
|
|
|
|
return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
|
|
}
|
|
|
|
uint64_t ram_bytes_remaining(void)
|
|
{
|
|
return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
|
|
0;
|
|
}
|
|
|
|
MigrationStats ram_counters;
|
|
|
|
static void ram_transferred_add(uint64_t bytes)
|
|
{
|
|
if (runstate_is_running()) {
|
|
ram_counters.precopy_bytes += bytes;
|
|
} else if (migration_in_postcopy()) {
|
|
ram_counters.postcopy_bytes += bytes;
|
|
} else {
|
|
ram_counters.downtime_bytes += bytes;
|
|
}
|
|
ram_counters.transferred += bytes;
|
|
}
|
|
|
|
/* used by the search for pages to send */
|
|
struct PageSearchStatus {
|
|
/* Current block being searched */
|
|
RAMBlock *block;
|
|
/* Current page to search from */
|
|
unsigned long page;
|
|
/* Set once we wrap around */
|
|
bool complete_round;
|
|
/* Whether current page is explicitly requested by postcopy */
|
|
bool postcopy_requested;
|
|
};
|
|
typedef struct PageSearchStatus PageSearchStatus;
|
|
|
|
CompressionStats compression_counters;
|
|
|
|
struct CompressParam {
|
|
bool done;
|
|
bool quit;
|
|
bool zero_page;
|
|
QEMUFile *file;
|
|
QemuMutex mutex;
|
|
QemuCond cond;
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
|
|
/* internally used fields */
|
|
z_stream stream;
|
|
uint8_t *originbuf;
|
|
};
|
|
typedef struct CompressParam CompressParam;
|
|
|
|
struct DecompressParam {
|
|
bool done;
|
|
bool quit;
|
|
QemuMutex mutex;
|
|
QemuCond cond;
|
|
void *des;
|
|
uint8_t *compbuf;
|
|
int len;
|
|
z_stream stream;
|
|
};
|
|
typedef struct DecompressParam DecompressParam;
|
|
|
|
static CompressParam *comp_param;
|
|
static QemuThread *compress_threads;
|
|
/* comp_done_cond is used to wake up the migration thread when
|
|
* one of the compression threads has finished the compression.
|
|
* comp_done_lock is used to co-work with comp_done_cond.
|
|
*/
|
|
static QemuMutex comp_done_lock;
|
|
static QemuCond comp_done_cond;
|
|
|
|
static QEMUFile *decomp_file;
|
|
static DecompressParam *decomp_param;
|
|
static QemuThread *decompress_threads;
|
|
static QemuMutex decomp_done_lock;
|
|
static QemuCond decomp_done_cond;
|
|
|
|
static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
|
|
ram_addr_t offset, uint8_t *source_buf);
|
|
|
|
static void *do_data_compress(void *opaque)
|
|
{
|
|
CompressParam *param = opaque;
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
bool zero_page;
|
|
|
|
qemu_mutex_lock(¶m->mutex);
|
|
while (!param->quit) {
|
|
if (param->block) {
|
|
block = param->block;
|
|
offset = param->offset;
|
|
param->block = NULL;
|
|
qemu_mutex_unlock(¶m->mutex);
|
|
|
|
zero_page = do_compress_ram_page(param->file, ¶m->stream,
|
|
block, offset, param->originbuf);
|
|
|
|
qemu_mutex_lock(&comp_done_lock);
|
|
param->done = true;
|
|
param->zero_page = zero_page;
|
|
qemu_cond_signal(&comp_done_cond);
|
|
qemu_mutex_unlock(&comp_done_lock);
|
|
|
|
qemu_mutex_lock(¶m->mutex);
|
|
} else {
|
|
qemu_cond_wait(¶m->cond, ¶m->mutex);
|
|
}
|
|
}
|
|
qemu_mutex_unlock(¶m->mutex);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void compress_threads_save_cleanup(void)
|
|
{
|
|
int i, thread_count;
|
|
|
|
if (!migrate_use_compression() || !comp_param) {
|
|
return;
|
|
}
|
|
|
|
thread_count = migrate_compress_threads();
|
|
for (i = 0; i < thread_count; i++) {
|
|
/*
|
|
* we use it as a indicator which shows if the thread is
|
|
* properly init'd or not
|
|
*/
|
|
if (!comp_param[i].file) {
|
|
break;
|
|
}
|
|
|
|
qemu_mutex_lock(&comp_param[i].mutex);
|
|
comp_param[i].quit = true;
|
|
qemu_cond_signal(&comp_param[i].cond);
|
|
qemu_mutex_unlock(&comp_param[i].mutex);
|
|
|
|
qemu_thread_join(compress_threads + i);
|
|
qemu_mutex_destroy(&comp_param[i].mutex);
|
|
qemu_cond_destroy(&comp_param[i].cond);
|
|
deflateEnd(&comp_param[i].stream);
|
|
g_free(comp_param[i].originbuf);
|
|
qemu_fclose(comp_param[i].file);
|
|
comp_param[i].file = NULL;
|
|
}
|
|
qemu_mutex_destroy(&comp_done_lock);
|
|
qemu_cond_destroy(&comp_done_cond);
|
|
g_free(compress_threads);
|
|
g_free(comp_param);
|
|
compress_threads = NULL;
|
|
comp_param = NULL;
|
|
}
|
|
|
|
static int compress_threads_save_setup(void)
|
|
{
|
|
int i, thread_count;
|
|
|
|
if (!migrate_use_compression()) {
|
|
return 0;
|
|
}
|
|
thread_count = migrate_compress_threads();
|
|
compress_threads = g_new0(QemuThread, thread_count);
|
|
comp_param = g_new0(CompressParam, thread_count);
|
|
qemu_cond_init(&comp_done_cond);
|
|
qemu_mutex_init(&comp_done_lock);
|
|
for (i = 0; i < thread_count; i++) {
|
|
comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
|
|
if (!comp_param[i].originbuf) {
|
|
goto exit;
|
|
}
|
|
|
|
if (deflateInit(&comp_param[i].stream,
|
|
migrate_compress_level()) != Z_OK) {
|
|
g_free(comp_param[i].originbuf);
|
|
goto exit;
|
|
}
|
|
|
|
/* comp_param[i].file is just used as a dummy buffer to save data,
|
|
* set its ops to empty.
|
|
*/
|
|
comp_param[i].file = qemu_fopen_channel_output(
|
|
QIO_CHANNEL(qio_channel_null_new()));
|
|
comp_param[i].done = true;
|
|
comp_param[i].quit = false;
|
|
qemu_mutex_init(&comp_param[i].mutex);
|
|
qemu_cond_init(&comp_param[i].cond);
|
|
qemu_thread_create(compress_threads + i, "compress",
|
|
do_data_compress, comp_param + i,
|
|
QEMU_THREAD_JOINABLE);
|
|
}
|
|
return 0;
|
|
|
|
exit:
|
|
compress_threads_save_cleanup();
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* save_page_header: write page header to wire
|
|
*
|
|
* If this is the 1st block, it also writes the block identification
|
|
*
|
|
* Returns the number of bytes written
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
* in the lower bits, it contains flags
|
|
*/
|
|
static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
size_t size, len;
|
|
|
|
if (block == rs->last_sent_block) {
|
|
offset |= RAM_SAVE_FLAG_CONTINUE;
|
|
}
|
|
qemu_put_be64(f, offset);
|
|
size = 8;
|
|
|
|
if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
|
|
len = strlen(block->idstr);
|
|
qemu_put_byte(f, len);
|
|
qemu_put_buffer(f, (uint8_t *)block->idstr, len);
|
|
size += 1 + len;
|
|
rs->last_sent_block = block;
|
|
}
|
|
return size;
|
|
}
|
|
|
|
/**
|
|
* mig_throttle_guest_down: throttle down the guest
|
|
*
|
|
* Reduce amount of guest cpu execution to hopefully slow down memory
|
|
* writes. If guest dirty memory rate is reduced below the rate at
|
|
* which we can transfer pages to the destination then we should be
|
|
* able to complete migration. Some workloads dirty memory way too
|
|
* fast and will not effectively converge, even with auto-converge.
|
|
*/
|
|
static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
|
|
uint64_t bytes_dirty_threshold)
|
|
{
|
|
MigrationState *s = migrate_get_current();
|
|
uint64_t pct_initial = s->parameters.cpu_throttle_initial;
|
|
uint64_t pct_increment = s->parameters.cpu_throttle_increment;
|
|
bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
|
|
int pct_max = s->parameters.max_cpu_throttle;
|
|
|
|
uint64_t throttle_now = cpu_throttle_get_percentage();
|
|
uint64_t cpu_now, cpu_ideal, throttle_inc;
|
|
|
|
/* We have not started throttling yet. Let's start it. */
|
|
if (!cpu_throttle_active()) {
|
|
cpu_throttle_set(pct_initial);
|
|
} else {
|
|
/* Throttling already on, just increase the rate */
|
|
if (!pct_tailslow) {
|
|
throttle_inc = pct_increment;
|
|
} else {
|
|
/* Compute the ideal CPU percentage used by Guest, which may
|
|
* make the dirty rate match the dirty rate threshold. */
|
|
cpu_now = 100 - throttle_now;
|
|
cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
|
|
bytes_dirty_period);
|
|
throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
|
|
}
|
|
cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
|
|
}
|
|
}
|
|
|
|
void mig_throttle_counter_reset(void)
|
|
{
|
|
RAMState *rs = ram_state;
|
|
|
|
rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
|
|
rs->num_dirty_pages_period = 0;
|
|
rs->bytes_xfer_prev = ram_counters.transferred;
|
|
}
|
|
|
|
/**
|
|
* xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
|
|
*
|
|
* @rs: current RAM state
|
|
* @current_addr: address for the zero page
|
|
*
|
|
* Update the xbzrle cache to reflect a page that's been sent as all 0.
|
|
* The important thing is that a stale (not-yet-0'd) page be replaced
|
|
* by the new data.
|
|
* As a bonus, if the page wasn't in the cache it gets added so that
|
|
* when a small write is made into the 0'd page it gets XBZRLE sent.
|
|
*/
|
|
static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
|
|
{
|
|
if (!rs->xbzrle_enabled) {
|
|
return;
|
|
}
|
|
|
|
/* We don't care if this fails to allocate a new cache page
|
|
* as long as it updated an old one */
|
|
cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
|
|
ram_counters.dirty_sync_count);
|
|
}
|
|
|
|
#define ENCODING_FLAG_XBZRLE 0x1
|
|
|
|
/**
|
|
* save_xbzrle_page: compress and send current page
|
|
*
|
|
* Returns: 1 means that we wrote the page
|
|
* 0 means that page is identical to the one already sent
|
|
* -1 means that xbzrle would be longer than normal
|
|
*
|
|
* @rs: current RAM state
|
|
* @current_data: pointer to the address of the page contents
|
|
* @current_addr: addr of the page
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
*/
|
|
static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
|
|
ram_addr_t current_addr, RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
int encoded_len = 0, bytes_xbzrle;
|
|
uint8_t *prev_cached_page;
|
|
|
|
if (!cache_is_cached(XBZRLE.cache, current_addr,
|
|
ram_counters.dirty_sync_count)) {
|
|
xbzrle_counters.cache_miss++;
|
|
if (!rs->last_stage) {
|
|
if (cache_insert(XBZRLE.cache, current_addr, *current_data,
|
|
ram_counters.dirty_sync_count) == -1) {
|
|
return -1;
|
|
} else {
|
|
/* update *current_data when the page has been
|
|
inserted into cache */
|
|
*current_data = get_cached_data(XBZRLE.cache, current_addr);
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Reaching here means the page has hit the xbzrle cache, no matter what
|
|
* encoding result it is (normal encoding, overflow or skipping the page),
|
|
* count the page as encoded. This is used to calculate the encoding rate.
|
|
*
|
|
* Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
|
|
* 2nd page turns out to be skipped (i.e. no new bytes written to the
|
|
* page), the overall encoding rate will be 8KB / 2KB = 4, which has the
|
|
* skipped page included. In this way, the encoding rate can tell if the
|
|
* guest page is good for xbzrle encoding.
|
|
*/
|
|
xbzrle_counters.pages++;
|
|
prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
|
|
|
|
/* save current buffer into memory */
|
|
memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
|
|
|
|
/* XBZRLE encoding (if there is no overflow) */
|
|
encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
|
|
TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
|
|
TARGET_PAGE_SIZE);
|
|
|
|
/*
|
|
* Update the cache contents, so that it corresponds to the data
|
|
* sent, in all cases except where we skip the page.
|
|
*/
|
|
if (!rs->last_stage && encoded_len != 0) {
|
|
memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
|
|
/*
|
|
* In the case where we couldn't compress, ensure that the caller
|
|
* sends the data from the cache, since the guest might have
|
|
* changed the RAM since we copied it.
|
|
*/
|
|
*current_data = prev_cached_page;
|
|
}
|
|
|
|
if (encoded_len == 0) {
|
|
trace_save_xbzrle_page_skipping();
|
|
return 0;
|
|
} else if (encoded_len == -1) {
|
|
trace_save_xbzrle_page_overflow();
|
|
xbzrle_counters.overflow++;
|
|
xbzrle_counters.bytes += TARGET_PAGE_SIZE;
|
|
return -1;
|
|
}
|
|
|
|
/* Send XBZRLE based compressed page */
|
|
bytes_xbzrle = save_page_header(rs, rs->f, block,
|
|
offset | RAM_SAVE_FLAG_XBZRLE);
|
|
qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
|
|
qemu_put_be16(rs->f, encoded_len);
|
|
qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
|
|
bytes_xbzrle += encoded_len + 1 + 2;
|
|
/*
|
|
* Like compressed_size (please see update_compress_thread_counts),
|
|
* the xbzrle encoded bytes don't count the 8 byte header with
|
|
* RAM_SAVE_FLAG_CONTINUE.
|
|
*/
|
|
xbzrle_counters.bytes += bytes_xbzrle - 8;
|
|
ram_transferred_add(bytes_xbzrle);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* migration_bitmap_find_dirty: find the next dirty page from start
|
|
*
|
|
* Returns the page offset within memory region of the start of a dirty page
|
|
*
|
|
* @rs: current RAM state
|
|
* @rb: RAMBlock where to search for dirty pages
|
|
* @start: page where we start the search
|
|
*/
|
|
static inline
|
|
unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
|
|
unsigned long start)
|
|
{
|
|
unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
|
|
unsigned long *bitmap = rb->bmap;
|
|
|
|
if (ramblock_is_ignored(rb)) {
|
|
return size;
|
|
}
|
|
|
|
return find_next_bit(bitmap, size, start);
|
|
}
|
|
|
|
static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
|
|
unsigned long page)
|
|
{
|
|
uint8_t shift;
|
|
hwaddr size, start;
|
|
|
|
if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
|
|
return;
|
|
}
|
|
|
|
shift = rb->clear_bmap_shift;
|
|
/*
|
|
* CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
|
|
* can make things easier sometimes since then start address
|
|
* of the small chunk will always be 64 pages aligned so the
|
|
* bitmap will always be aligned to unsigned long. We should
|
|
* even be able to remove this restriction but I'm simply
|
|
* keeping it.
|
|
*/
|
|
assert(shift >= 6);
|
|
|
|
size = 1ULL << (TARGET_PAGE_BITS + shift);
|
|
start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
|
|
trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
|
|
memory_region_clear_dirty_bitmap(rb->mr, start, size);
|
|
}
|
|
|
|
static void
|
|
migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
|
|
unsigned long start,
|
|
unsigned long npages)
|
|
{
|
|
unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
|
|
unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
|
|
unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
|
|
|
|
/*
|
|
* Clear pages from start to start + npages - 1, so the end boundary is
|
|
* exclusive.
|
|
*/
|
|
for (i = chunk_start; i < chunk_end; i += chunk_pages) {
|
|
migration_clear_memory_region_dirty_bitmap(rb, i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* colo_bitmap_find_diry:find contiguous dirty pages from start
|
|
*
|
|
* Returns the page offset within memory region of the start of the contiguout
|
|
* dirty page
|
|
*
|
|
* @rs: current RAM state
|
|
* @rb: RAMBlock where to search for dirty pages
|
|
* @start: page where we start the search
|
|
* @num: the number of contiguous dirty pages
|
|
*/
|
|
static inline
|
|
unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
|
|
unsigned long start, unsigned long *num)
|
|
{
|
|
unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
|
|
unsigned long *bitmap = rb->bmap;
|
|
unsigned long first, next;
|
|
|
|
*num = 0;
|
|
|
|
if (ramblock_is_ignored(rb)) {
|
|
return size;
|
|
}
|
|
|
|
first = find_next_bit(bitmap, size, start);
|
|
if (first >= size) {
|
|
return first;
|
|
}
|
|
next = find_next_zero_bit(bitmap, size, first + 1);
|
|
assert(next >= first);
|
|
*num = next - first;
|
|
return first;
|
|
}
|
|
|
|
static inline bool migration_bitmap_clear_dirty(RAMState *rs,
|
|
RAMBlock *rb,
|
|
unsigned long page)
|
|
{
|
|
bool ret;
|
|
|
|
/*
|
|
* Clear dirty bitmap if needed. This _must_ be called before we
|
|
* send any of the page in the chunk because we need to make sure
|
|
* we can capture further page content changes when we sync dirty
|
|
* log the next time. So as long as we are going to send any of
|
|
* the page in the chunk we clear the remote dirty bitmap for all.
|
|
* Clearing it earlier won't be a problem, but too late will.
|
|
*/
|
|
migration_clear_memory_region_dirty_bitmap(rb, page);
|
|
|
|
ret = test_and_clear_bit(page, rb->bmap);
|
|
if (ret) {
|
|
rs->migration_dirty_pages--;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void dirty_bitmap_clear_section(MemoryRegionSection *section,
|
|
void *opaque)
|
|
{
|
|
const hwaddr offset = section->offset_within_region;
|
|
const hwaddr size = int128_get64(section->size);
|
|
const unsigned long start = offset >> TARGET_PAGE_BITS;
|
|
const unsigned long npages = size >> TARGET_PAGE_BITS;
|
|
RAMBlock *rb = section->mr->ram_block;
|
|
uint64_t *cleared_bits = opaque;
|
|
|
|
/*
|
|
* We don't grab ram_state->bitmap_mutex because we expect to run
|
|
* only when starting migration or during postcopy recovery where
|
|
* we don't have concurrent access.
|
|
*/
|
|
if (!migration_in_postcopy() && !migrate_background_snapshot()) {
|
|
migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
|
|
}
|
|
*cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
|
|
bitmap_clear(rb->bmap, start, npages);
|
|
}
|
|
|
|
/*
|
|
* Exclude all dirty pages from migration that fall into a discarded range as
|
|
* managed by a RamDiscardManager responsible for the mapped memory region of
|
|
* the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
|
|
*
|
|
* Discarded pages ("logically unplugged") have undefined content and must
|
|
* not get migrated, because even reading these pages for migration might
|
|
* result in undesired behavior.
|
|
*
|
|
* Returns the number of cleared bits in the RAMBlock dirty bitmap.
|
|
*
|
|
* Note: The result is only stable while migrating (precopy/postcopy).
|
|
*/
|
|
static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
|
|
{
|
|
uint64_t cleared_bits = 0;
|
|
|
|
if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
|
|
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
|
|
MemoryRegionSection section = {
|
|
.mr = rb->mr,
|
|
.offset_within_region = 0,
|
|
.size = int128_make64(qemu_ram_get_used_length(rb)),
|
|
};
|
|
|
|
ram_discard_manager_replay_discarded(rdm, §ion,
|
|
dirty_bitmap_clear_section,
|
|
&cleared_bits);
|
|
}
|
|
return cleared_bits;
|
|
}
|
|
|
|
/*
|
|
* Check if a host-page aligned page falls into a discarded range as managed by
|
|
* a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
|
|
*
|
|
* Note: The result is only stable while migrating (precopy/postcopy).
|
|
*/
|
|
bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
|
|
{
|
|
if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
|
|
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
|
|
MemoryRegionSection section = {
|
|
.mr = rb->mr,
|
|
.offset_within_region = start,
|
|
.size = int128_make64(qemu_ram_pagesize(rb)),
|
|
};
|
|
|
|
return !ram_discard_manager_is_populated(rdm, §ion);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Called with RCU critical section */
|
|
static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
|
|
{
|
|
uint64_t new_dirty_pages =
|
|
cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
|
|
|
|
rs->migration_dirty_pages += new_dirty_pages;
|
|
rs->num_dirty_pages_period += new_dirty_pages;
|
|
}
|
|
|
|
/**
|
|
* ram_pagesize_summary: calculate all the pagesizes of a VM
|
|
*
|
|
* Returns a summary bitmap of the page sizes of all RAMBlocks
|
|
*
|
|
* For VMs with just normal pages this is equivalent to the host page
|
|
* size. If it's got some huge pages then it's the OR of all the
|
|
* different page sizes.
|
|
*/
|
|
uint64_t ram_pagesize_summary(void)
|
|
{
|
|
RAMBlock *block;
|
|
uint64_t summary = 0;
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
summary |= block->page_size;
|
|
}
|
|
|
|
return summary;
|
|
}
|
|
|
|
uint64_t ram_get_total_transferred_pages(void)
|
|
{
|
|
return ram_counters.normal + ram_counters.duplicate +
|
|
compression_counters.pages + xbzrle_counters.pages;
|
|
}
|
|
|
|
static void migration_update_rates(RAMState *rs, int64_t end_time)
|
|
{
|
|
uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
|
|
double compressed_size;
|
|
|
|
/* calculate period counters */
|
|
ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
|
|
/ (end_time - rs->time_last_bitmap_sync);
|
|
|
|
if (!page_count) {
|
|
return;
|
|
}
|
|
|
|
if (migrate_use_xbzrle()) {
|
|
double encoded_size, unencoded_size;
|
|
|
|
xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
|
|
rs->xbzrle_cache_miss_prev) / page_count;
|
|
rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
|
|
unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
|
|
TARGET_PAGE_SIZE;
|
|
encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
|
|
if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
|
|
xbzrle_counters.encoding_rate = 0;
|
|
} else {
|
|
xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
|
|
}
|
|
rs->xbzrle_pages_prev = xbzrle_counters.pages;
|
|
rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
|
|
}
|
|
|
|
if (migrate_use_compression()) {
|
|
compression_counters.busy_rate = (double)(compression_counters.busy -
|
|
rs->compress_thread_busy_prev) / page_count;
|
|
rs->compress_thread_busy_prev = compression_counters.busy;
|
|
|
|
compressed_size = compression_counters.compressed_size -
|
|
rs->compressed_size_prev;
|
|
if (compressed_size) {
|
|
double uncompressed_size = (compression_counters.pages -
|
|
rs->compress_pages_prev) * TARGET_PAGE_SIZE;
|
|
|
|
/* Compression-Ratio = Uncompressed-size / Compressed-size */
|
|
compression_counters.compression_rate =
|
|
uncompressed_size / compressed_size;
|
|
|
|
rs->compress_pages_prev = compression_counters.pages;
|
|
rs->compressed_size_prev = compression_counters.compressed_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void migration_trigger_throttle(RAMState *rs)
|
|
{
|
|
MigrationState *s = migrate_get_current();
|
|
uint64_t threshold = s->parameters.throttle_trigger_threshold;
|
|
|
|
uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
|
|
uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
|
|
uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
|
|
|
|
/* During block migration the auto-converge logic incorrectly detects
|
|
* that ram migration makes no progress. Avoid this by disabling the
|
|
* throttling logic during the bulk phase of block migration. */
|
|
if (migrate_auto_converge() && !blk_mig_bulk_active()) {
|
|
/* The following detection logic can be refined later. For now:
|
|
Check to see if the ratio between dirtied bytes and the approx.
|
|
amount of bytes that just got transferred since the last time
|
|
we were in this routine reaches the threshold. If that happens
|
|
twice, start or increase throttling. */
|
|
|
|
if ((bytes_dirty_period > bytes_dirty_threshold) &&
|
|
(++rs->dirty_rate_high_cnt >= 2)) {
|
|
trace_migration_throttle();
|
|
rs->dirty_rate_high_cnt = 0;
|
|
mig_throttle_guest_down(bytes_dirty_period,
|
|
bytes_dirty_threshold);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void migration_bitmap_sync(RAMState *rs)
|
|
{
|
|
RAMBlock *block;
|
|
int64_t end_time;
|
|
|
|
ram_counters.dirty_sync_count++;
|
|
|
|
if (!rs->time_last_bitmap_sync) {
|
|
rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
|
|
}
|
|
|
|
trace_migration_bitmap_sync_start();
|
|
memory_global_dirty_log_sync();
|
|
|
|
qemu_mutex_lock(&rs->bitmap_mutex);
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
ramblock_sync_dirty_bitmap(rs, block);
|
|
}
|
|
ram_counters.remaining = ram_bytes_remaining();
|
|
}
|
|
qemu_mutex_unlock(&rs->bitmap_mutex);
|
|
|
|
memory_global_after_dirty_log_sync();
|
|
trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
|
|
|
|
end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
|
|
|
|
/* more than 1 second = 1000 millisecons */
|
|
if (end_time > rs->time_last_bitmap_sync + 1000) {
|
|
migration_trigger_throttle(rs);
|
|
|
|
migration_update_rates(rs, end_time);
|
|
|
|
rs->target_page_count_prev = rs->target_page_count;
|
|
|
|
/* reset period counters */
|
|
rs->time_last_bitmap_sync = end_time;
|
|
rs->num_dirty_pages_period = 0;
|
|
rs->bytes_xfer_prev = ram_counters.transferred;
|
|
}
|
|
if (migrate_use_events()) {
|
|
qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
|
|
}
|
|
}
|
|
|
|
static void migration_bitmap_sync_precopy(RAMState *rs)
|
|
{
|
|
Error *local_err = NULL;
|
|
|
|
/*
|
|
* The current notifier usage is just an optimization to migration, so we
|
|
* don't stop the normal migration process in the error case.
|
|
*/
|
|
if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
|
|
error_report_err(local_err);
|
|
local_err = NULL;
|
|
}
|
|
|
|
migration_bitmap_sync(rs);
|
|
|
|
if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
|
|
error_report_err(local_err);
|
|
}
|
|
}
|
|
|
|
static void ram_release_page(const char *rbname, uint64_t offset)
|
|
{
|
|
if (!migrate_release_ram() || !migration_in_postcopy()) {
|
|
return;
|
|
}
|
|
|
|
ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
|
|
}
|
|
|
|
/**
|
|
* save_zero_page_to_file: send the zero page to the file
|
|
*
|
|
* Returns the size of data written to the file, 0 means the page is not
|
|
* a zero page
|
|
*
|
|
* @rs: current RAM state
|
|
* @file: the file where the data is saved
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
*/
|
|
static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
|
|
RAMBlock *block, ram_addr_t offset)
|
|
{
|
|
uint8_t *p = block->host + offset;
|
|
int len = 0;
|
|
|
|
if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
|
|
len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
|
|
qemu_put_byte(file, 0);
|
|
len += 1;
|
|
ram_release_page(block->idstr, offset);
|
|
}
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* save_zero_page: send the zero page to the stream
|
|
*
|
|
* Returns the number of pages written.
|
|
*
|
|
* @rs: current RAM state
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
*/
|
|
static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
|
|
{
|
|
int len = save_zero_page_to_file(rs, rs->f, block, offset);
|
|
|
|
if (len) {
|
|
ram_counters.duplicate++;
|
|
ram_transferred_add(len);
|
|
return 1;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* @pages: the number of pages written by the control path,
|
|
* < 0 - error
|
|
* > 0 - number of pages written
|
|
*
|
|
* Return true if the pages has been saved, otherwise false is returned.
|
|
*/
|
|
static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
|
|
int *pages)
|
|
{
|
|
uint64_t bytes_xmit = 0;
|
|
int ret;
|
|
|
|
*pages = -1;
|
|
ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
|
|
&bytes_xmit);
|
|
if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
|
|
return false;
|
|
}
|
|
|
|
if (bytes_xmit) {
|
|
ram_transferred_add(bytes_xmit);
|
|
*pages = 1;
|
|
}
|
|
|
|
if (ret == RAM_SAVE_CONTROL_DELAYED) {
|
|
return true;
|
|
}
|
|
|
|
if (bytes_xmit > 0) {
|
|
ram_counters.normal++;
|
|
} else if (bytes_xmit == 0) {
|
|
ram_counters.duplicate++;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* directly send the page to the stream
|
|
*
|
|
* Returns the number of pages written.
|
|
*
|
|
* @rs: current RAM state
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
* @buf: the page to be sent
|
|
* @async: send to page asyncly
|
|
*/
|
|
static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
|
|
uint8_t *buf, bool async)
|
|
{
|
|
ram_transferred_add(save_page_header(rs, rs->f, block,
|
|
offset | RAM_SAVE_FLAG_PAGE));
|
|
if (async) {
|
|
qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
|
|
migrate_release_ram() &&
|
|
migration_in_postcopy());
|
|
} else {
|
|
qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
|
|
}
|
|
ram_transferred_add(TARGET_PAGE_SIZE);
|
|
ram_counters.normal++;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ram_save_page: send the given page to the stream
|
|
*
|
|
* Returns the number of pages written.
|
|
* < 0 - error
|
|
* >=0 - Number of pages written - this might legally be 0
|
|
* if xbzrle noticed the page was the same.
|
|
*
|
|
* @rs: current RAM state
|
|
* @block: block that contains the page we want to send
|
|
* @offset: offset inside the block for the page
|
|
*/
|
|
static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
|
|
{
|
|
int pages = -1;
|
|
uint8_t *p;
|
|
bool send_async = true;
|
|
RAMBlock *block = pss->block;
|
|
ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
|
|
ram_addr_t current_addr = block->offset + offset;
|
|
|
|
p = block->host + offset;
|
|
trace_ram_save_page(block->idstr, (uint64_t)offset, p);
|
|
|
|
XBZRLE_cache_lock();
|
|
if (rs->xbzrle_enabled && !migration_in_postcopy()) {
|
|
pages = save_xbzrle_page(rs, &p, current_addr, block,
|
|
offset);
|
|
if (!rs->last_stage) {
|
|
/* Can't send this cached data async, since the cache page
|
|
* might get updated before it gets to the wire
|
|
*/
|
|
send_async = false;
|
|
}
|
|
}
|
|
|
|
/* XBZRLE overflow or normal page */
|
|
if (pages == -1) {
|
|
pages = save_normal_page(rs, block, offset, p, send_async);
|
|
}
|
|
|
|
XBZRLE_cache_unlock();
|
|
|
|
return pages;
|
|
}
|
|
|
|
static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
if (multifd_queue_page(rs->f, block, offset) < 0) {
|
|
return -1;
|
|
}
|
|
ram_counters.normal++;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
|
|
ram_addr_t offset, uint8_t *source_buf)
|
|
{
|
|
RAMState *rs = ram_state;
|
|
uint8_t *p = block->host + offset;
|
|
int ret;
|
|
|
|
if (save_zero_page_to_file(rs, f, block, offset)) {
|
|
return true;
|
|
}
|
|
|
|
save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
|
|
|
|
/*
|
|
* copy it to a internal buffer to avoid it being modified by VM
|
|
* so that we can catch up the error during compression and
|
|
* decompression
|
|
*/
|
|
memcpy(source_buf, p, TARGET_PAGE_SIZE);
|
|
ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
|
|
if (ret < 0) {
|
|
qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
|
|
error_report("compressed data failed!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
|
|
{
|
|
ram_transferred_add(bytes_xmit);
|
|
|
|
if (param->zero_page) {
|
|
ram_counters.duplicate++;
|
|
return;
|
|
}
|
|
|
|
/* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
|
|
compression_counters.compressed_size += bytes_xmit - 8;
|
|
compression_counters.pages++;
|
|
}
|
|
|
|
static bool save_page_use_compression(RAMState *rs);
|
|
|
|
static void flush_compressed_data(RAMState *rs)
|
|
{
|
|
int idx, len, thread_count;
|
|
|
|
if (!save_page_use_compression(rs)) {
|
|
return;
|
|
}
|
|
thread_count = migrate_compress_threads();
|
|
|
|
qemu_mutex_lock(&comp_done_lock);
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
while (!comp_param[idx].done) {
|
|
qemu_cond_wait(&comp_done_cond, &comp_done_lock);
|
|
}
|
|
}
|
|
qemu_mutex_unlock(&comp_done_lock);
|
|
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
qemu_mutex_lock(&comp_param[idx].mutex);
|
|
if (!comp_param[idx].quit) {
|
|
len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
|
|
/*
|
|
* it's safe to fetch zero_page without holding comp_done_lock
|
|
* as there is no further request submitted to the thread,
|
|
* i.e, the thread should be waiting for a request at this point.
|
|
*/
|
|
update_compress_thread_counts(&comp_param[idx], len);
|
|
}
|
|
qemu_mutex_unlock(&comp_param[idx].mutex);
|
|
}
|
|
}
|
|
|
|
static inline void set_compress_params(CompressParam *param, RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
param->block = block;
|
|
param->offset = offset;
|
|
}
|
|
|
|
static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
int idx, thread_count, bytes_xmit = -1, pages = -1;
|
|
bool wait = migrate_compress_wait_thread();
|
|
|
|
thread_count = migrate_compress_threads();
|
|
qemu_mutex_lock(&comp_done_lock);
|
|
retry:
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
if (comp_param[idx].done) {
|
|
comp_param[idx].done = false;
|
|
bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
|
|
qemu_mutex_lock(&comp_param[idx].mutex);
|
|
set_compress_params(&comp_param[idx], block, offset);
|
|
qemu_cond_signal(&comp_param[idx].cond);
|
|
qemu_mutex_unlock(&comp_param[idx].mutex);
|
|
pages = 1;
|
|
update_compress_thread_counts(&comp_param[idx], bytes_xmit);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* wait for the free thread if the user specifies 'compress-wait-thread',
|
|
* otherwise we will post the page out in the main thread as normal page.
|
|
*/
|
|
if (pages < 0 && wait) {
|
|
qemu_cond_wait(&comp_done_cond, &comp_done_lock);
|
|
goto retry;
|
|
}
|
|
qemu_mutex_unlock(&comp_done_lock);
|
|
|
|
return pages;
|
|
}
|
|
|
|
/**
|
|
* find_dirty_block: find the next dirty page and update any state
|
|
* associated with the search process.
|
|
*
|
|
* Returns true if a page is found
|
|
*
|
|
* @rs: current RAM state
|
|
* @pss: data about the state of the current dirty page scan
|
|
* @again: set to false if the search has scanned the whole of RAM
|
|
*/
|
|
static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
|
|
{
|
|
/* This is not a postcopy requested page */
|
|
pss->postcopy_requested = false;
|
|
|
|
pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
|
|
if (pss->complete_round && pss->block == rs->last_seen_block &&
|
|
pss->page >= rs->last_page) {
|
|
/*
|
|
* We've been once around the RAM and haven't found anything.
|
|
* Give up.
|
|
*/
|
|
*again = false;
|
|
return false;
|
|
}
|
|
if (!offset_in_ramblock(pss->block,
|
|
((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
|
|
/* Didn't find anything in this RAM Block */
|
|
pss->page = 0;
|
|
pss->block = QLIST_NEXT_RCU(pss->block, next);
|
|
if (!pss->block) {
|
|
/*
|
|
* If memory migration starts over, we will meet a dirtied page
|
|
* which may still exists in compression threads's ring, so we
|
|
* should flush the compressed data to make sure the new page
|
|
* is not overwritten by the old one in the destination.
|
|
*
|
|
* Also If xbzrle is on, stop using the data compression at this
|
|
* point. In theory, xbzrle can do better than compression.
|
|
*/
|
|
flush_compressed_data(rs);
|
|
|
|
/* Hit the end of the list */
|
|
pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
|
|
/* Flag that we've looped */
|
|
pss->complete_round = true;
|
|
/* After the first round, enable XBZRLE. */
|
|
if (migrate_use_xbzrle()) {
|
|
rs->xbzrle_enabled = true;
|
|
}
|
|
}
|
|
/* Didn't find anything this time, but try again on the new block */
|
|
*again = true;
|
|
return false;
|
|
} else {
|
|
/* Can go around again, but... */
|
|
*again = true;
|
|
/* We've found something so probably don't need to */
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* unqueue_page: gets a page of the queue
|
|
*
|
|
* Helper for 'get_queued_page' - gets a page off the queue
|
|
*
|
|
* Returns the block of the page (or NULL if none available)
|
|
*
|
|
* @rs: current RAM state
|
|
* @offset: used to return the offset within the RAMBlock
|
|
*/
|
|
static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
|
|
{
|
|
struct RAMSrcPageRequest *entry;
|
|
RAMBlock *block = NULL;
|
|
size_t page_size;
|
|
|
|
if (!postcopy_has_request(rs)) {
|
|
return NULL;
|
|
}
|
|
|
|
QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
|
|
|
|
/*
|
|
* This should _never_ change even after we take the lock, because no one
|
|
* should be taking anything off the request list other than us.
|
|
*/
|
|
assert(postcopy_has_request(rs));
|
|
|
|
entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
|
|
block = entry->rb;
|
|
*offset = entry->offset;
|
|
page_size = qemu_ram_pagesize(block);
|
|
/* Each page request should only be multiple page size of the ramblock */
|
|
assert((entry->len % page_size) == 0);
|
|
|
|
if (entry->len > page_size) {
|
|
entry->len -= page_size;
|
|
entry->offset += page_size;
|
|
} else {
|
|
memory_region_unref(block->mr);
|
|
QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
|
|
g_free(entry);
|
|
migration_consume_urgent_request();
|
|
}
|
|
|
|
trace_unqueue_page(block->idstr, *offset,
|
|
test_bit((*offset >> TARGET_PAGE_BITS), block->bmap));
|
|
|
|
return block;
|
|
}
|
|
|
|
#if defined(__linux__)
|
|
/**
|
|
* poll_fault_page: try to get next UFFD write fault page and, if pending fault
|
|
* is found, return RAM block pointer and page offset
|
|
*
|
|
* Returns pointer to the RAMBlock containing faulting page,
|
|
* NULL if no write faults are pending
|
|
*
|
|
* @rs: current RAM state
|
|
* @offset: page offset from the beginning of the block
|
|
*/
|
|
static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
|
|
{
|
|
struct uffd_msg uffd_msg;
|
|
void *page_address;
|
|
RAMBlock *block;
|
|
int res;
|
|
|
|
if (!migrate_background_snapshot()) {
|
|
return NULL;
|
|
}
|
|
|
|
res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
|
|
if (res <= 0) {
|
|
return NULL;
|
|
}
|
|
|
|
page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
|
|
block = qemu_ram_block_from_host(page_address, false, offset);
|
|
assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
|
|
return block;
|
|
}
|
|
|
|
/**
|
|
* ram_save_release_protection: release UFFD write protection after
|
|
* a range of pages has been saved
|
|
*
|
|
* @rs: current RAM state
|
|
* @pss: page-search-status structure
|
|
* @start_page: index of the first page in the range relative to pss->block
|
|
*
|
|
* Returns 0 on success, negative value in case of an error
|
|
*/
|
|
static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
|
|
unsigned long start_page)
|
|
{
|
|
int res = 0;
|
|
|
|
/* Check if page is from UFFD-managed region. */
|
|
if (pss->block->flags & RAM_UF_WRITEPROTECT) {
|
|
void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
|
|
uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
|
|
|
|
/* Flush async buffers before un-protect. */
|
|
qemu_fflush(rs->f);
|
|
/* Un-protect memory range. */
|
|
res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
|
|
false, false);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* ram_write_tracking_available: check if kernel supports required UFFD features
|
|
*
|
|
* Returns true if supports, false otherwise
|
|
*/
|
|
bool ram_write_tracking_available(void)
|
|
{
|
|
uint64_t uffd_features;
|
|
int res;
|
|
|
|
res = uffd_query_features(&uffd_features);
|
|
return (res == 0 &&
|
|
(uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
|
|
}
|
|
|
|
/* ram_write_tracking_compatible: check if guest configuration is
|
|
* compatible with 'write-tracking'
|
|
*
|
|
* Returns true if compatible, false otherwise
|
|
*/
|
|
bool ram_write_tracking_compatible(void)
|
|
{
|
|
const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
|
|
int uffd_fd;
|
|
RAMBlock *block;
|
|
bool ret = false;
|
|
|
|
/* Open UFFD file descriptor */
|
|
uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
|
|
if (uffd_fd < 0) {
|
|
return false;
|
|
}
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
uint64_t uffd_ioctls;
|
|
|
|
/* Nothing to do with read-only and MMIO-writable regions */
|
|
if (block->mr->readonly || block->mr->rom_device) {
|
|
continue;
|
|
}
|
|
/* Try to register block memory via UFFD-IO to track writes */
|
|
if (uffd_register_memory(uffd_fd, block->host, block->max_length,
|
|
UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
|
|
goto out;
|
|
}
|
|
if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
|
|
goto out;
|
|
}
|
|
}
|
|
ret = true;
|
|
|
|
out:
|
|
uffd_close_fd(uffd_fd);
|
|
return ret;
|
|
}
|
|
|
|
static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
|
|
ram_addr_t size)
|
|
{
|
|
/*
|
|
* We read one byte of each page; this will preallocate page tables if
|
|
* required and populate the shared zeropage on MAP_PRIVATE anonymous memory
|
|
* where no page was populated yet. This might require adaption when
|
|
* supporting other mappings, like shmem.
|
|
*/
|
|
for (; offset < size; offset += block->page_size) {
|
|
char tmp = *((char *)block->host + offset);
|
|
|
|
/* Don't optimize the read out */
|
|
asm volatile("" : "+r" (tmp));
|
|
}
|
|
}
|
|
|
|
static inline int populate_read_section(MemoryRegionSection *section,
|
|
void *opaque)
|
|
{
|
|
const hwaddr size = int128_get64(section->size);
|
|
hwaddr offset = section->offset_within_region;
|
|
RAMBlock *block = section->mr->ram_block;
|
|
|
|
populate_read_range(block, offset, size);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ram_block_populate_read: preallocate page tables and populate pages in the
|
|
* RAM block by reading a byte of each page.
|
|
*
|
|
* Since it's solely used for userfault_fd WP feature, here we just
|
|
* hardcode page size to qemu_real_host_page_size.
|
|
*
|
|
* @block: RAM block to populate
|
|
*/
|
|
static void ram_block_populate_read(RAMBlock *rb)
|
|
{
|
|
/*
|
|
* Skip populating all pages that fall into a discarded range as managed by
|
|
* a RamDiscardManager responsible for the mapped memory region of the
|
|
* RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
|
|
* must not get populated automatically. We don't have to track
|
|
* modifications via userfaultfd WP reliably, because these pages will
|
|
* not be part of the migration stream either way -- see
|
|
* ramblock_dirty_bitmap_exclude_discarded_pages().
|
|
*
|
|
* Note: The result is only stable while migrating (precopy/postcopy).
|
|
*/
|
|
if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
|
|
RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
|
|
MemoryRegionSection section = {
|
|
.mr = rb->mr,
|
|
.offset_within_region = 0,
|
|
.size = rb->mr->size,
|
|
};
|
|
|
|
ram_discard_manager_replay_populated(rdm, §ion,
|
|
populate_read_section, NULL);
|
|
} else {
|
|
populate_read_range(rb, 0, rb->used_length);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
|
|
*/
|
|
void ram_write_tracking_prepare(void)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
/* Nothing to do with read-only and MMIO-writable regions */
|
|
if (block->mr->readonly || block->mr->rom_device) {
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Populate pages of the RAM block before enabling userfault_fd
|
|
* write protection.
|
|
*
|
|
* This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
|
|
* UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
|
|
* pages with pte_none() entries in page table.
|
|
*/
|
|
ram_block_populate_read(block);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ram_write_tracking_start: start UFFD-WP memory tracking
|
|
*
|
|
* Returns 0 for success or negative value in case of error
|
|
*/
|
|
int ram_write_tracking_start(void)
|
|
{
|
|
int uffd_fd;
|
|
RAMState *rs = ram_state;
|
|
RAMBlock *block;
|
|
|
|
/* Open UFFD file descriptor */
|
|
uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
|
|
if (uffd_fd < 0) {
|
|
return uffd_fd;
|
|
}
|
|
rs->uffdio_fd = uffd_fd;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
/* Nothing to do with read-only and MMIO-writable regions */
|
|
if (block->mr->readonly || block->mr->rom_device) {
|
|
continue;
|
|
}
|
|
|
|
/* Register block memory with UFFD to track writes */
|
|
if (uffd_register_memory(rs->uffdio_fd, block->host,
|
|
block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
|
|
goto fail;
|
|
}
|
|
/* Apply UFFD write protection to the block memory range */
|
|
if (uffd_change_protection(rs->uffdio_fd, block->host,
|
|
block->max_length, true, false)) {
|
|
goto fail;
|
|
}
|
|
block->flags |= RAM_UF_WRITEPROTECT;
|
|
memory_region_ref(block->mr);
|
|
|
|
trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
|
|
block->host, block->max_length);
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
error_report("ram_write_tracking_start() failed: restoring initial memory state");
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
|
|
continue;
|
|
}
|
|
/*
|
|
* In case some memory block failed to be write-protected
|
|
* remove protection and unregister all succeeded RAM blocks
|
|
*/
|
|
uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
|
|
false, false);
|
|
uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
|
|
/* Cleanup flags and remove reference */
|
|
block->flags &= ~RAM_UF_WRITEPROTECT;
|
|
memory_region_unref(block->mr);
|
|
}
|
|
|
|
uffd_close_fd(uffd_fd);
|
|
rs->uffdio_fd = -1;
|
|
return -1;
|
|
}
|
|
|
|
/**
|
|
* ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
|
|
*/
|
|
void ram_write_tracking_stop(void)
|
|
{
|
|
RAMState *rs = ram_state;
|
|
RAMBlock *block;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
|
|
continue;
|
|
}
|
|
/* Remove protection and unregister all affected RAM blocks */
|
|
uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
|
|
false, false);
|
|
uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
|
|
|
|
trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
|
|
block->host, block->max_length);
|
|
|
|
/* Cleanup flags and remove reference */
|
|
block->flags &= ~RAM_UF_WRITEPROTECT;
|
|
memory_region_unref(block->mr);
|
|
}
|
|
|
|
/* Finally close UFFD file descriptor */
|
|
uffd_close_fd(rs->uffdio_fd);
|
|
rs->uffdio_fd = -1;
|
|
}
|
|
|
|
#else
|
|
/* No target OS support, stubs just fail or ignore */
|
|
|
|
static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
|
|
{
|
|
(void) rs;
|
|
(void) offset;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
|
|
unsigned long start_page)
|
|
{
|
|
(void) rs;
|
|
(void) pss;
|
|
(void) start_page;
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool ram_write_tracking_available(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool ram_write_tracking_compatible(void)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
int ram_write_tracking_start(void)
|
|
{
|
|
assert(0);
|
|
return -1;
|
|
}
|
|
|
|
void ram_write_tracking_stop(void)
|
|
{
|
|
assert(0);
|
|
}
|
|
#endif /* defined(__linux__) */
|
|
|
|
/**
|
|
* get_queued_page: unqueue a page from the postcopy requests
|
|
*
|
|
* Skips pages that are already sent (!dirty)
|
|
*
|
|
* Returns true if a queued page is found
|
|
*
|
|
* @rs: current RAM state
|
|
* @pss: data about the state of the current dirty page scan
|
|
*/
|
|
static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
|
|
block = unqueue_page(rs, &offset);
|
|
|
|
if (!block) {
|
|
/*
|
|
* Poll write faults too if background snapshot is enabled; that's
|
|
* when we have vcpus got blocked by the write protected pages.
|
|
*/
|
|
block = poll_fault_page(rs, &offset);
|
|
}
|
|
|
|
if (block) {
|
|
/*
|
|
* We want the background search to continue from the queued page
|
|
* since the guest is likely to want other pages near to the page
|
|
* it just requested.
|
|
*/
|
|
pss->block = block;
|
|
pss->page = offset >> TARGET_PAGE_BITS;
|
|
|
|
/*
|
|
* This unqueued page would break the "one round" check, even is
|
|
* really rare.
|
|
*/
|
|
pss->complete_round = false;
|
|
pss->postcopy_requested = true;
|
|
}
|
|
|
|
return !!block;
|
|
}
|
|
|
|
/**
|
|
* migration_page_queue_free: drop any remaining pages in the ram
|
|
* request queue
|
|
*
|
|
* It should be empty at the end anyway, but in error cases there may
|
|
* be some left. in case that there is any page left, we drop it.
|
|
*
|
|
*/
|
|
static void migration_page_queue_free(RAMState *rs)
|
|
{
|
|
struct RAMSrcPageRequest *mspr, *next_mspr;
|
|
/* This queue generally should be empty - but in the case of a failed
|
|
* migration might have some droppings in.
|
|
*/
|
|
RCU_READ_LOCK_GUARD();
|
|
QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
|
|
memory_region_unref(mspr->rb->mr);
|
|
QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
|
|
g_free(mspr);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ram_save_queue_pages: queue the page for transmission
|
|
*
|
|
* A request from postcopy destination for example.
|
|
*
|
|
* Returns zero on success or negative on error
|
|
*
|
|
* @rbname: Name of the RAMBLock of the request. NULL means the
|
|
* same that last one.
|
|
* @start: starting address from the start of the RAMBlock
|
|
* @len: length (in bytes) to send
|
|
*/
|
|
int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
|
|
{
|
|
RAMBlock *ramblock;
|
|
RAMState *rs = ram_state;
|
|
|
|
ram_counters.postcopy_requests++;
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
if (!rbname) {
|
|
/* Reuse last RAMBlock */
|
|
ramblock = rs->last_req_rb;
|
|
|
|
if (!ramblock) {
|
|
/*
|
|
* Shouldn't happen, we can't reuse the last RAMBlock if
|
|
* it's the 1st request.
|
|
*/
|
|
error_report("ram_save_queue_pages no previous block");
|
|
return -1;
|
|
}
|
|
} else {
|
|
ramblock = qemu_ram_block_by_name(rbname);
|
|
|
|
if (!ramblock) {
|
|
/* We shouldn't be asked for a non-existent RAMBlock */
|
|
error_report("ram_save_queue_pages no block '%s'", rbname);
|
|
return -1;
|
|
}
|
|
rs->last_req_rb = ramblock;
|
|
}
|
|
trace_ram_save_queue_pages(ramblock->idstr, start, len);
|
|
if (!offset_in_ramblock(ramblock, start + len - 1)) {
|
|
error_report("%s request overrun start=" RAM_ADDR_FMT " len="
|
|
RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
|
|
__func__, start, len, ramblock->used_length);
|
|
return -1;
|
|
}
|
|
|
|
struct RAMSrcPageRequest *new_entry =
|
|
g_new0(struct RAMSrcPageRequest, 1);
|
|
new_entry->rb = ramblock;
|
|
new_entry->offset = start;
|
|
new_entry->len = len;
|
|
|
|
memory_region_ref(ramblock->mr);
|
|
qemu_mutex_lock(&rs->src_page_req_mutex);
|
|
QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
|
|
migration_make_urgent_request();
|
|
qemu_mutex_unlock(&rs->src_page_req_mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool save_page_use_compression(RAMState *rs)
|
|
{
|
|
if (!migrate_use_compression()) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If xbzrle is enabled (e.g., after first round of migration), stop
|
|
* using the data compression. In theory, xbzrle can do better than
|
|
* compression.
|
|
*/
|
|
if (rs->xbzrle_enabled) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* try to compress the page before posting it out, return true if the page
|
|
* has been properly handled by compression, otherwise needs other
|
|
* paths to handle it
|
|
*/
|
|
static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
|
|
{
|
|
if (!save_page_use_compression(rs)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* When starting the process of a new block, the first page of
|
|
* the block should be sent out before other pages in the same
|
|
* block, and all the pages in last block should have been sent
|
|
* out, keeping this order is important, because the 'cont' flag
|
|
* is used to avoid resending the block name.
|
|
*
|
|
* We post the fist page as normal page as compression will take
|
|
* much CPU resource.
|
|
*/
|
|
if (block != rs->last_sent_block) {
|
|
flush_compressed_data(rs);
|
|
return false;
|
|
}
|
|
|
|
if (compress_page_with_multi_thread(rs, block, offset) > 0) {
|
|
return true;
|
|
}
|
|
|
|
compression_counters.busy++;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* ram_save_target_page: save one target page
|
|
*
|
|
* Returns the number of pages written
|
|
*
|
|
* @rs: current RAM state
|
|
* @pss: data about the page we want to send
|
|
*/
|
|
static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
|
|
{
|
|
RAMBlock *block = pss->block;
|
|
ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
|
|
int res;
|
|
|
|
if (control_save_page(rs, block, offset, &res)) {
|
|
return res;
|
|
}
|
|
|
|
if (save_compress_page(rs, block, offset)) {
|
|
return 1;
|
|
}
|
|
|
|
res = save_zero_page(rs, block, offset);
|
|
if (res > 0) {
|
|
/* Must let xbzrle know, otherwise a previous (now 0'd) cached
|
|
* page would be stale
|
|
*/
|
|
if (!save_page_use_compression(rs)) {
|
|
XBZRLE_cache_lock();
|
|
xbzrle_cache_zero_page(rs, block->offset + offset);
|
|
XBZRLE_cache_unlock();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Do not use multifd for:
|
|
* 1. Compression as the first page in the new block should be posted out
|
|
* before sending the compressed page
|
|
* 2. In postcopy as one whole host page should be placed
|
|
*/
|
|
if (!save_page_use_compression(rs) && migrate_use_multifd()
|
|
&& !migration_in_postcopy()) {
|
|
return ram_save_multifd_page(rs, block, offset);
|
|
}
|
|
|
|
return ram_save_page(rs, pss);
|
|
}
|
|
|
|
/**
|
|
* ram_save_host_page: save a whole host page
|
|
*
|
|
* Starting at *offset send pages up to the end of the current host
|
|
* page. It's valid for the initial offset to point into the middle of
|
|
* a host page in which case the remainder of the hostpage is sent.
|
|
* Only dirty target pages are sent. Note that the host page size may
|
|
* be a huge page for this block.
|
|
* The saving stops at the boundary of the used_length of the block
|
|
* if the RAMBlock isn't a multiple of the host page size.
|
|
*
|
|
* Returns the number of pages written or negative on error
|
|
*
|
|
* @rs: current RAM state
|
|
* @pss: data about the page we want to send
|
|
*/
|
|
static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
|
|
{
|
|
int tmppages, pages = 0;
|
|
size_t pagesize_bits =
|
|
qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
|
|
unsigned long hostpage_boundary =
|
|
QEMU_ALIGN_UP(pss->page + 1, pagesize_bits);
|
|
unsigned long start_page = pss->page;
|
|
int res;
|
|
|
|
if (ramblock_is_ignored(pss->block)) {
|
|
error_report("block %s should not be migrated !", pss->block->idstr);
|
|
return 0;
|
|
}
|
|
|
|
do {
|
|
/* Check the pages is dirty and if it is send it */
|
|
if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
|
|
tmppages = ram_save_target_page(rs, pss);
|
|
if (tmppages < 0) {
|
|
return tmppages;
|
|
}
|
|
|
|
pages += tmppages;
|
|
/*
|
|
* Allow rate limiting to happen in the middle of huge pages if
|
|
* something is sent in the current iteration.
|
|
*/
|
|
if (pagesize_bits > 1 && tmppages > 0) {
|
|
migration_rate_limit();
|
|
}
|
|
}
|
|
pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
|
|
} while ((pss->page < hostpage_boundary) &&
|
|
offset_in_ramblock(pss->block,
|
|
((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
|
|
/* The offset we leave with is the min boundary of host page and block */
|
|
pss->page = MIN(pss->page, hostpage_boundary);
|
|
|
|
res = ram_save_release_protection(rs, pss, start_page);
|
|
return (res < 0 ? res : pages);
|
|
}
|
|
|
|
/**
|
|
* ram_find_and_save_block: finds a dirty page and sends it to f
|
|
*
|
|
* Called within an RCU critical section.
|
|
*
|
|
* Returns the number of pages written where zero means no dirty pages,
|
|
* or negative on error
|
|
*
|
|
* @rs: current RAM state
|
|
*
|
|
* On systems where host-page-size > target-page-size it will send all the
|
|
* pages in a host page that are dirty.
|
|
*/
|
|
static int ram_find_and_save_block(RAMState *rs)
|
|
{
|
|
PageSearchStatus pss;
|
|
int pages = 0;
|
|
bool again, found;
|
|
|
|
/* No dirty page as there is zero RAM */
|
|
if (!ram_bytes_total()) {
|
|
return pages;
|
|
}
|
|
|
|
pss.block = rs->last_seen_block;
|
|
pss.page = rs->last_page;
|
|
pss.complete_round = false;
|
|
|
|
if (!pss.block) {
|
|
pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
|
|
}
|
|
|
|
do {
|
|
again = true;
|
|
found = get_queued_page(rs, &pss);
|
|
|
|
if (!found) {
|
|
/* priority queue empty, so just search for something dirty */
|
|
found = find_dirty_block(rs, &pss, &again);
|
|
}
|
|
|
|
if (found) {
|
|
pages = ram_save_host_page(rs, &pss);
|
|
}
|
|
} while (!pages && again);
|
|
|
|
rs->last_seen_block = pss.block;
|
|
rs->last_page = pss.page;
|
|
|
|
return pages;
|
|
}
|
|
|
|
void acct_update_position(QEMUFile *f, size_t size, bool zero)
|
|
{
|
|
uint64_t pages = size / TARGET_PAGE_SIZE;
|
|
|
|
if (zero) {
|
|
ram_counters.duplicate += pages;
|
|
} else {
|
|
ram_counters.normal += pages;
|
|
ram_transferred_add(size);
|
|
qemu_update_position(f, size);
|
|
}
|
|
}
|
|
|
|
static uint64_t ram_bytes_total_common(bool count_ignored)
|
|
{
|
|
RAMBlock *block;
|
|
uint64_t total = 0;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
if (count_ignored) {
|
|
RAMBLOCK_FOREACH_MIGRATABLE(block) {
|
|
total += block->used_length;
|
|
}
|
|
} else {
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
total += block->used_length;
|
|
}
|
|
}
|
|
return total;
|
|
}
|
|
|
|
uint64_t ram_bytes_total(void)
|
|
{
|
|
return ram_bytes_total_common(false);
|
|
}
|
|
|
|
static void xbzrle_load_setup(void)
|
|
{
|
|
XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
|
|
}
|
|
|
|
static void xbzrle_load_cleanup(void)
|
|
{
|
|
g_free(XBZRLE.decoded_buf);
|
|
XBZRLE.decoded_buf = NULL;
|
|
}
|
|
|
|
static void ram_state_cleanup(RAMState **rsp)
|
|
{
|
|
if (*rsp) {
|
|
migration_page_queue_free(*rsp);
|
|
qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
|
|
qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
|
|
g_free(*rsp);
|
|
*rsp = NULL;
|
|
}
|
|
}
|
|
|
|
static void xbzrle_cleanup(void)
|
|
{
|
|
XBZRLE_cache_lock();
|
|
if (XBZRLE.cache) {
|
|
cache_fini(XBZRLE.cache);
|
|
g_free(XBZRLE.encoded_buf);
|
|
g_free(XBZRLE.current_buf);
|
|
g_free(XBZRLE.zero_target_page);
|
|
XBZRLE.cache = NULL;
|
|
XBZRLE.encoded_buf = NULL;
|
|
XBZRLE.current_buf = NULL;
|
|
XBZRLE.zero_target_page = NULL;
|
|
}
|
|
XBZRLE_cache_unlock();
|
|
}
|
|
|
|
static void ram_save_cleanup(void *opaque)
|
|
{
|
|
RAMState **rsp = opaque;
|
|
RAMBlock *block;
|
|
|
|
/* We don't use dirty log with background snapshots */
|
|
if (!migrate_background_snapshot()) {
|
|
/* caller have hold iothread lock or is in a bh, so there is
|
|
* no writing race against the migration bitmap
|
|
*/
|
|
if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
|
|
/*
|
|
* do not stop dirty log without starting it, since
|
|
* memory_global_dirty_log_stop will assert that
|
|
* memory_global_dirty_log_start/stop used in pairs
|
|
*/
|
|
memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
|
|
}
|
|
}
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
g_free(block->clear_bmap);
|
|
block->clear_bmap = NULL;
|
|
g_free(block->bmap);
|
|
block->bmap = NULL;
|
|
}
|
|
|
|
xbzrle_cleanup();
|
|
compress_threads_save_cleanup();
|
|
ram_state_cleanup(rsp);
|
|
}
|
|
|
|
static void ram_state_reset(RAMState *rs)
|
|
{
|
|
rs->last_seen_block = NULL;
|
|
rs->last_sent_block = NULL;
|
|
rs->last_page = 0;
|
|
rs->last_version = ram_list.version;
|
|
rs->xbzrle_enabled = false;
|
|
}
|
|
|
|
#define MAX_WAIT 50 /* ms, half buffered_file limit */
|
|
|
|
/* **** functions for postcopy ***** */
|
|
|
|
void ram_postcopy_migrated_memory_release(MigrationState *ms)
|
|
{
|
|
struct RAMBlock *block;
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
unsigned long *bitmap = block->bmap;
|
|
unsigned long range = block->used_length >> TARGET_PAGE_BITS;
|
|
unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
|
|
|
|
while (run_start < range) {
|
|
unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
|
|
ram_discard_range(block->idstr,
|
|
((ram_addr_t)run_start) << TARGET_PAGE_BITS,
|
|
((ram_addr_t)(run_end - run_start))
|
|
<< TARGET_PAGE_BITS);
|
|
run_start = find_next_zero_bit(bitmap, range, run_end + 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* postcopy_send_discard_bm_ram: discard a RAMBlock
|
|
*
|
|
* Callback from postcopy_each_ram_send_discard for each RAMBlock
|
|
*
|
|
* @ms: current migration state
|
|
* @block: RAMBlock to discard
|
|
*/
|
|
static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
|
|
{
|
|
unsigned long end = block->used_length >> TARGET_PAGE_BITS;
|
|
unsigned long current;
|
|
unsigned long *bitmap = block->bmap;
|
|
|
|
for (current = 0; current < end; ) {
|
|
unsigned long one = find_next_bit(bitmap, end, current);
|
|
unsigned long zero, discard_length;
|
|
|
|
if (one >= end) {
|
|
break;
|
|
}
|
|
|
|
zero = find_next_zero_bit(bitmap, end, one + 1);
|
|
|
|
if (zero >= end) {
|
|
discard_length = end - one;
|
|
} else {
|
|
discard_length = zero - one;
|
|
}
|
|
postcopy_discard_send_range(ms, one, discard_length);
|
|
current = one + discard_length;
|
|
}
|
|
}
|
|
|
|
static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
|
|
|
|
/**
|
|
* postcopy_each_ram_send_discard: discard all RAMBlocks
|
|
*
|
|
* Utility for the outgoing postcopy code.
|
|
* Calls postcopy_send_discard_bm_ram for each RAMBlock
|
|
* passing it bitmap indexes and name.
|
|
* (qemu_ram_foreach_block ends up passing unscaled lengths
|
|
* which would mean postcopy code would have to deal with target page)
|
|
*
|
|
* @ms: current migration state
|
|
*/
|
|
static void postcopy_each_ram_send_discard(MigrationState *ms)
|
|
{
|
|
struct RAMBlock *block;
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
postcopy_discard_send_init(ms, block->idstr);
|
|
|
|
/*
|
|
* Deal with TPS != HPS and huge pages. It discard any partially sent
|
|
* host-page size chunks, mark any partially dirty host-page size
|
|
* chunks as all dirty. In this case the host-page is the host-page
|
|
* for the particular RAMBlock, i.e. it might be a huge page.
|
|
*/
|
|
postcopy_chunk_hostpages_pass(ms, block);
|
|
|
|
/*
|
|
* Postcopy sends chunks of bitmap over the wire, but it
|
|
* just needs indexes at this point, avoids it having
|
|
* target page specific code.
|
|
*/
|
|
postcopy_send_discard_bm_ram(ms, block);
|
|
postcopy_discard_send_finish(ms);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
|
|
*
|
|
* Helper for postcopy_chunk_hostpages; it's called twice to
|
|
* canonicalize the two bitmaps, that are similar, but one is
|
|
* inverted.
|
|
*
|
|
* Postcopy requires that all target pages in a hostpage are dirty or
|
|
* clean, not a mix. This function canonicalizes the bitmaps.
|
|
*
|
|
* @ms: current migration state
|
|
* @block: block that contains the page we want to canonicalize
|
|
*/
|
|
static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
|
|
{
|
|
RAMState *rs = ram_state;
|
|
unsigned long *bitmap = block->bmap;
|
|
unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
|
|
unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
|
|
unsigned long run_start;
|
|
|
|
if (block->page_size == TARGET_PAGE_SIZE) {
|
|
/* Easy case - TPS==HPS for a non-huge page RAMBlock */
|
|
return;
|
|
}
|
|
|
|
/* Find a dirty page */
|
|
run_start = find_next_bit(bitmap, pages, 0);
|
|
|
|
while (run_start < pages) {
|
|
|
|
/*
|
|
* If the start of this run of pages is in the middle of a host
|
|
* page, then we need to fixup this host page.
|
|
*/
|
|
if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
|
|
/* Find the end of this run */
|
|
run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
|
|
/*
|
|
* If the end isn't at the start of a host page, then the
|
|
* run doesn't finish at the end of a host page
|
|
* and we need to discard.
|
|
*/
|
|
}
|
|
|
|
if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
|
|
unsigned long page;
|
|
unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
|
|
host_ratio);
|
|
run_start = QEMU_ALIGN_UP(run_start, host_ratio);
|
|
|
|
/* Clean up the bitmap */
|
|
for (page = fixup_start_addr;
|
|
page < fixup_start_addr + host_ratio; page++) {
|
|
/*
|
|
* Remark them as dirty, updating the count for any pages
|
|
* that weren't previously dirty.
|
|
*/
|
|
rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
|
|
}
|
|
}
|
|
|
|
/* Find the next dirty page for the next iteration */
|
|
run_start = find_next_bit(bitmap, pages, run_start);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* ram_postcopy_send_discard_bitmap: transmit the discard bitmap
|
|
*
|
|
* Transmit the set of pages to be discarded after precopy to the target
|
|
* these are pages that:
|
|
* a) Have been previously transmitted but are now dirty again
|
|
* b) Pages that have never been transmitted, this ensures that
|
|
* any pages on the destination that have been mapped by background
|
|
* tasks get discarded (transparent huge pages is the specific concern)
|
|
* Hopefully this is pretty sparse
|
|
*
|
|
* @ms: current migration state
|
|
*/
|
|
void ram_postcopy_send_discard_bitmap(MigrationState *ms)
|
|
{
|
|
RAMState *rs = ram_state;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
/* This should be our last sync, the src is now paused */
|
|
migration_bitmap_sync(rs);
|
|
|
|
/* Easiest way to make sure we don't resume in the middle of a host-page */
|
|
rs->last_seen_block = NULL;
|
|
rs->last_sent_block = NULL;
|
|
rs->last_page = 0;
|
|
|
|
postcopy_each_ram_send_discard(ms);
|
|
|
|
trace_ram_postcopy_send_discard_bitmap();
|
|
}
|
|
|
|
/**
|
|
* ram_discard_range: discard dirtied pages at the beginning of postcopy
|
|
*
|
|
* Returns zero on success
|
|
*
|
|
* @rbname: name of the RAMBlock of the request. NULL means the
|
|
* same that last one.
|
|
* @start: RAMBlock starting page
|
|
* @length: RAMBlock size
|
|
*/
|
|
int ram_discard_range(const char *rbname, uint64_t start, size_t length)
|
|
{
|
|
trace_ram_discard_range(rbname, start, length);
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
RAMBlock *rb = qemu_ram_block_by_name(rbname);
|
|
|
|
if (!rb) {
|
|
error_report("ram_discard_range: Failed to find block '%s'", rbname);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* On source VM, we don't need to update the received bitmap since
|
|
* we don't even have one.
|
|
*/
|
|
if (rb->receivedmap) {
|
|
bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
|
|
length >> qemu_target_page_bits());
|
|
}
|
|
|
|
return ram_block_discard_range(rb, start, length);
|
|
}
|
|
|
|
/*
|
|
* For every allocation, we will try not to crash the VM if the
|
|
* allocation failed.
|
|
*/
|
|
static int xbzrle_init(void)
|
|
{
|
|
Error *local_err = NULL;
|
|
|
|
if (!migrate_use_xbzrle()) {
|
|
return 0;
|
|
}
|
|
|
|
XBZRLE_cache_lock();
|
|
|
|
XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
|
|
if (!XBZRLE.zero_target_page) {
|
|
error_report("%s: Error allocating zero page", __func__);
|
|
goto err_out;
|
|
}
|
|
|
|
XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
|
|
TARGET_PAGE_SIZE, &local_err);
|
|
if (!XBZRLE.cache) {
|
|
error_report_err(local_err);
|
|
goto free_zero_page;
|
|
}
|
|
|
|
XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
|
|
if (!XBZRLE.encoded_buf) {
|
|
error_report("%s: Error allocating encoded_buf", __func__);
|
|
goto free_cache;
|
|
}
|
|
|
|
XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
|
|
if (!XBZRLE.current_buf) {
|
|
error_report("%s: Error allocating current_buf", __func__);
|
|
goto free_encoded_buf;
|
|
}
|
|
|
|
/* We are all good */
|
|
XBZRLE_cache_unlock();
|
|
return 0;
|
|
|
|
free_encoded_buf:
|
|
g_free(XBZRLE.encoded_buf);
|
|
XBZRLE.encoded_buf = NULL;
|
|
free_cache:
|
|
cache_fini(XBZRLE.cache);
|
|
XBZRLE.cache = NULL;
|
|
free_zero_page:
|
|
g_free(XBZRLE.zero_target_page);
|
|
XBZRLE.zero_target_page = NULL;
|
|
err_out:
|
|
XBZRLE_cache_unlock();
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int ram_state_init(RAMState **rsp)
|
|
{
|
|
*rsp = g_try_new0(RAMState, 1);
|
|
|
|
if (!*rsp) {
|
|
error_report("%s: Init ramstate fail", __func__);
|
|
return -1;
|
|
}
|
|
|
|
qemu_mutex_init(&(*rsp)->bitmap_mutex);
|
|
qemu_mutex_init(&(*rsp)->src_page_req_mutex);
|
|
QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
|
|
|
|
/*
|
|
* Count the total number of pages used by ram blocks not including any
|
|
* gaps due to alignment or unplugs.
|
|
* This must match with the initial values of dirty bitmap.
|
|
*/
|
|
(*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
|
|
ram_state_reset(*rsp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ram_list_init_bitmaps(void)
|
|
{
|
|
MigrationState *ms = migrate_get_current();
|
|
RAMBlock *block;
|
|
unsigned long pages;
|
|
uint8_t shift;
|
|
|
|
/* Skip setting bitmap if there is no RAM */
|
|
if (ram_bytes_total()) {
|
|
shift = ms->clear_bitmap_shift;
|
|
if (shift > CLEAR_BITMAP_SHIFT_MAX) {
|
|
error_report("clear_bitmap_shift (%u) too big, using "
|
|
"max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
|
|
shift = CLEAR_BITMAP_SHIFT_MAX;
|
|
} else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
|
|
error_report("clear_bitmap_shift (%u) too small, using "
|
|
"min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
|
|
shift = CLEAR_BITMAP_SHIFT_MIN;
|
|
}
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
pages = block->max_length >> TARGET_PAGE_BITS;
|
|
/*
|
|
* The initial dirty bitmap for migration must be set with all
|
|
* ones to make sure we'll migrate every guest RAM page to
|
|
* destination.
|
|
* Here we set RAMBlock.bmap all to 1 because when rebegin a
|
|
* new migration after a failed migration, ram_list.
|
|
* dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
|
|
* guest memory.
|
|
*/
|
|
block->bmap = bitmap_new(pages);
|
|
bitmap_set(block->bmap, 0, pages);
|
|
block->clear_bmap_shift = shift;
|
|
block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void migration_bitmap_clear_discarded_pages(RAMState *rs)
|
|
{
|
|
unsigned long pages;
|
|
RAMBlock *rb;
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
|
|
pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
|
|
rs->migration_dirty_pages -= pages;
|
|
}
|
|
}
|
|
|
|
static void ram_init_bitmaps(RAMState *rs)
|
|
{
|
|
/* For memory_global_dirty_log_start below. */
|
|
qemu_mutex_lock_iothread();
|
|
qemu_mutex_lock_ramlist();
|
|
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
ram_list_init_bitmaps();
|
|
/* We don't use dirty log with background snapshots */
|
|
if (!migrate_background_snapshot()) {
|
|
memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
|
|
migration_bitmap_sync_precopy(rs);
|
|
}
|
|
}
|
|
qemu_mutex_unlock_ramlist();
|
|
qemu_mutex_unlock_iothread();
|
|
|
|
/*
|
|
* After an eventual first bitmap sync, fixup the initial bitmap
|
|
* containing all 1s to exclude any discarded pages from migration.
|
|
*/
|
|
migration_bitmap_clear_discarded_pages(rs);
|
|
}
|
|
|
|
static int ram_init_all(RAMState **rsp)
|
|
{
|
|
if (ram_state_init(rsp)) {
|
|
return -1;
|
|
}
|
|
|
|
if (xbzrle_init()) {
|
|
ram_state_cleanup(rsp);
|
|
return -1;
|
|
}
|
|
|
|
ram_init_bitmaps(*rsp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
|
|
{
|
|
RAMBlock *block;
|
|
uint64_t pages = 0;
|
|
|
|
/*
|
|
* Postcopy is not using xbzrle/compression, so no need for that.
|
|
* Also, since source are already halted, we don't need to care
|
|
* about dirty page logging as well.
|
|
*/
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
pages += bitmap_count_one(block->bmap,
|
|
block->used_length >> TARGET_PAGE_BITS);
|
|
}
|
|
|
|
/* This may not be aligned with current bitmaps. Recalculate. */
|
|
rs->migration_dirty_pages = pages;
|
|
|
|
ram_state_reset(rs);
|
|
|
|
/* Update RAMState cache of output QEMUFile */
|
|
rs->f = out;
|
|
|
|
trace_ram_state_resume_prepare(pages);
|
|
}
|
|
|
|
/*
|
|
* This function clears bits of the free pages reported by the caller from the
|
|
* migration dirty bitmap. @addr is the host address corresponding to the
|
|
* start of the continuous guest free pages, and @len is the total bytes of
|
|
* those pages.
|
|
*/
|
|
void qemu_guest_free_page_hint(void *addr, size_t len)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
size_t used_len, start, npages;
|
|
MigrationState *s = migrate_get_current();
|
|
|
|
/* This function is currently expected to be used during live migration */
|
|
if (!migration_is_setup_or_active(s->state)) {
|
|
return;
|
|
}
|
|
|
|
for (; len > 0; len -= used_len, addr += used_len) {
|
|
block = qemu_ram_block_from_host(addr, false, &offset);
|
|
if (unlikely(!block || offset >= block->used_length)) {
|
|
/*
|
|
* The implementation might not support RAMBlock resize during
|
|
* live migration, but it could happen in theory with future
|
|
* updates. So we add a check here to capture that case.
|
|
*/
|
|
error_report_once("%s unexpected error", __func__);
|
|
return;
|
|
}
|
|
|
|
if (len <= block->used_length - offset) {
|
|
used_len = len;
|
|
} else {
|
|
used_len = block->used_length - offset;
|
|
}
|
|
|
|
start = offset >> TARGET_PAGE_BITS;
|
|
npages = used_len >> TARGET_PAGE_BITS;
|
|
|
|
qemu_mutex_lock(&ram_state->bitmap_mutex);
|
|
/*
|
|
* The skipped free pages are equavalent to be sent from clear_bmap's
|
|
* perspective, so clear the bits from the memory region bitmap which
|
|
* are initially set. Otherwise those skipped pages will be sent in
|
|
* the next round after syncing from the memory region bitmap.
|
|
*/
|
|
migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
|
|
ram_state->migration_dirty_pages -=
|
|
bitmap_count_one_with_offset(block->bmap, start, npages);
|
|
bitmap_clear(block->bmap, start, npages);
|
|
qemu_mutex_unlock(&ram_state->bitmap_mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Each of ram_save_setup, ram_save_iterate and ram_save_complete has
|
|
* long-running RCU critical section. When rcu-reclaims in the code
|
|
* start to become numerous it will be necessary to reduce the
|
|
* granularity of these critical sections.
|
|
*/
|
|
|
|
/**
|
|
* ram_save_setup: Setup RAM for migration
|
|
*
|
|
* Returns zero to indicate success and negative for error
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @opaque: RAMState pointer
|
|
*/
|
|
static int ram_save_setup(QEMUFile *f, void *opaque)
|
|
{
|
|
RAMState **rsp = opaque;
|
|
RAMBlock *block;
|
|
int ret;
|
|
|
|
if (compress_threads_save_setup()) {
|
|
return -1;
|
|
}
|
|
|
|
/* migration has already setup the bitmap, reuse it. */
|
|
if (!migration_in_colo_state()) {
|
|
if (ram_init_all(rsp) != 0) {
|
|
compress_threads_save_cleanup();
|
|
return -1;
|
|
}
|
|
}
|
|
(*rsp)->f = f;
|
|
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
|
|
|
|
RAMBLOCK_FOREACH_MIGRATABLE(block) {
|
|
qemu_put_byte(f, strlen(block->idstr));
|
|
qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
|
|
qemu_put_be64(f, block->used_length);
|
|
if (migrate_postcopy_ram() && block->page_size !=
|
|
qemu_host_page_size) {
|
|
qemu_put_be64(f, block->page_size);
|
|
}
|
|
if (migrate_ignore_shared()) {
|
|
qemu_put_be64(f, block->mr->addr);
|
|
}
|
|
}
|
|
}
|
|
|
|
ram_control_before_iterate(f, RAM_CONTROL_SETUP);
|
|
ram_control_after_iterate(f, RAM_CONTROL_SETUP);
|
|
|
|
ret = multifd_send_sync_main(f);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
|
|
qemu_fflush(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ram_save_iterate: iterative stage for migration
|
|
*
|
|
* Returns zero to indicate success and negative for error
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @opaque: RAMState pointer
|
|
*/
|
|
static int ram_save_iterate(QEMUFile *f, void *opaque)
|
|
{
|
|
RAMState **temp = opaque;
|
|
RAMState *rs = *temp;
|
|
int ret = 0;
|
|
int i;
|
|
int64_t t0;
|
|
int done = 0;
|
|
|
|
if (blk_mig_bulk_active()) {
|
|
/* Avoid transferring ram during bulk phase of block migration as
|
|
* the bulk phase will usually take a long time and transferring
|
|
* ram updates during that time is pointless. */
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We'll take this lock a little bit long, but it's okay for two reasons.
|
|
* Firstly, the only possible other thread to take it is who calls
|
|
* qemu_guest_free_page_hint(), which should be rare; secondly, see
|
|
* MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
|
|
* guarantees that we'll at least released it in a regular basis.
|
|
*/
|
|
qemu_mutex_lock(&rs->bitmap_mutex);
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
if (ram_list.version != rs->last_version) {
|
|
ram_state_reset(rs);
|
|
}
|
|
|
|
/* Read version before ram_list.blocks */
|
|
smp_rmb();
|
|
|
|
ram_control_before_iterate(f, RAM_CONTROL_ROUND);
|
|
|
|
t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
i = 0;
|
|
while ((ret = qemu_file_rate_limit(f)) == 0 ||
|
|
postcopy_has_request(rs)) {
|
|
int pages;
|
|
|
|
if (qemu_file_get_error(f)) {
|
|
break;
|
|
}
|
|
|
|
pages = ram_find_and_save_block(rs);
|
|
/* no more pages to sent */
|
|
if (pages == 0) {
|
|
done = 1;
|
|
break;
|
|
}
|
|
|
|
if (pages < 0) {
|
|
qemu_file_set_error(f, pages);
|
|
break;
|
|
}
|
|
|
|
rs->target_page_count += pages;
|
|
|
|
/*
|
|
* During postcopy, it is necessary to make sure one whole host
|
|
* page is sent in one chunk.
|
|
*/
|
|
if (migrate_postcopy_ram()) {
|
|
flush_compressed_data(rs);
|
|
}
|
|
|
|
/*
|
|
* we want to check in the 1st loop, just in case it was the 1st
|
|
* time and we had to sync the dirty bitmap.
|
|
* qemu_clock_get_ns() is a bit expensive, so we only check each
|
|
* some iterations
|
|
*/
|
|
if ((i & 63) == 0) {
|
|
uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
|
|
1000000;
|
|
if (t1 > MAX_WAIT) {
|
|
trace_ram_save_iterate_big_wait(t1, i);
|
|
break;
|
|
}
|
|
}
|
|
i++;
|
|
}
|
|
}
|
|
qemu_mutex_unlock(&rs->bitmap_mutex);
|
|
|
|
/*
|
|
* Must occur before EOS (or any QEMUFile operation)
|
|
* because of RDMA protocol.
|
|
*/
|
|
ram_control_after_iterate(f, RAM_CONTROL_ROUND);
|
|
|
|
out:
|
|
if (ret >= 0
|
|
&& migration_is_setup_or_active(migrate_get_current()->state)) {
|
|
ret = multifd_send_sync_main(rs->f);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
|
|
qemu_fflush(f);
|
|
ram_transferred_add(8);
|
|
|
|
ret = qemu_file_get_error(f);
|
|
}
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
return done;
|
|
}
|
|
|
|
/**
|
|
* ram_save_complete: function called to send the remaining amount of ram
|
|
*
|
|
* Returns zero to indicate success or negative on error
|
|
*
|
|
* Called with iothread lock
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
* @opaque: RAMState pointer
|
|
*/
|
|
static int ram_save_complete(QEMUFile *f, void *opaque)
|
|
{
|
|
RAMState **temp = opaque;
|
|
RAMState *rs = *temp;
|
|
int ret = 0;
|
|
|
|
rs->last_stage = !migration_in_colo_state();
|
|
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
if (!migration_in_postcopy()) {
|
|
migration_bitmap_sync_precopy(rs);
|
|
}
|
|
|
|
ram_control_before_iterate(f, RAM_CONTROL_FINISH);
|
|
|
|
/* try transferring iterative blocks of memory */
|
|
|
|
/* flush all remaining blocks regardless of rate limiting */
|
|
while (true) {
|
|
int pages;
|
|
|
|
pages = ram_find_and_save_block(rs);
|
|
/* no more blocks to sent */
|
|
if (pages == 0) {
|
|
break;
|
|
}
|
|
if (pages < 0) {
|
|
ret = pages;
|
|
break;
|
|
}
|
|
}
|
|
|
|
flush_compressed_data(rs);
|
|
ram_control_after_iterate(f, RAM_CONTROL_FINISH);
|
|
}
|
|
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ret = multifd_send_sync_main(rs->f);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
|
|
qemu_fflush(f);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
|
|
uint64_t *res_precopy_only,
|
|
uint64_t *res_compatible,
|
|
uint64_t *res_postcopy_only)
|
|
{
|
|
RAMState **temp = opaque;
|
|
RAMState *rs = *temp;
|
|
uint64_t remaining_size;
|
|
|
|
remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
|
|
|
|
if (!migration_in_postcopy() &&
|
|
remaining_size < max_size) {
|
|
qemu_mutex_lock_iothread();
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
migration_bitmap_sync_precopy(rs);
|
|
}
|
|
qemu_mutex_unlock_iothread();
|
|
remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
if (migrate_postcopy_ram()) {
|
|
/* We can do postcopy, and all the data is postcopiable */
|
|
*res_compatible += remaining_size;
|
|
} else {
|
|
*res_precopy_only += remaining_size;
|
|
}
|
|
}
|
|
|
|
static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
|
|
{
|
|
unsigned int xh_len;
|
|
int xh_flags;
|
|
uint8_t *loaded_data;
|
|
|
|
/* extract RLE header */
|
|
xh_flags = qemu_get_byte(f);
|
|
xh_len = qemu_get_be16(f);
|
|
|
|
if (xh_flags != ENCODING_FLAG_XBZRLE) {
|
|
error_report("Failed to load XBZRLE page - wrong compression!");
|
|
return -1;
|
|
}
|
|
|
|
if (xh_len > TARGET_PAGE_SIZE) {
|
|
error_report("Failed to load XBZRLE page - len overflow!");
|
|
return -1;
|
|
}
|
|
loaded_data = XBZRLE.decoded_buf;
|
|
/* load data and decode */
|
|
/* it can change loaded_data to point to an internal buffer */
|
|
qemu_get_buffer_in_place(f, &loaded_data, xh_len);
|
|
|
|
/* decode RLE */
|
|
if (xbzrle_decode_buffer(loaded_data, xh_len, host,
|
|
TARGET_PAGE_SIZE) == -1) {
|
|
error_report("Failed to load XBZRLE page - decode error!");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ram_block_from_stream: read a RAMBlock id from the migration stream
|
|
*
|
|
* Must be called from within a rcu critical section.
|
|
*
|
|
* Returns a pointer from within the RCU-protected ram_list.
|
|
*
|
|
* @mis: the migration incoming state pointer
|
|
* @f: QEMUFile where to read the data from
|
|
* @flags: Page flags (mostly to see if it's a continuation of previous block)
|
|
*/
|
|
static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
|
|
QEMUFile *f, int flags)
|
|
{
|
|
RAMBlock *block = mis->last_recv_block;
|
|
char id[256];
|
|
uint8_t len;
|
|
|
|
if (flags & RAM_SAVE_FLAG_CONTINUE) {
|
|
if (!block) {
|
|
error_report("Ack, bad migration stream!");
|
|
return NULL;
|
|
}
|
|
return block;
|
|
}
|
|
|
|
len = qemu_get_byte(f);
|
|
qemu_get_buffer(f, (uint8_t *)id, len);
|
|
id[len] = 0;
|
|
|
|
block = qemu_ram_block_by_name(id);
|
|
if (!block) {
|
|
error_report("Can't find block %s", id);
|
|
return NULL;
|
|
}
|
|
|
|
if (ramblock_is_ignored(block)) {
|
|
error_report("block %s should not be migrated !", id);
|
|
return NULL;
|
|
}
|
|
|
|
mis->last_recv_block = block;
|
|
|
|
return block;
|
|
}
|
|
|
|
static inline void *host_from_ram_block_offset(RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
if (!offset_in_ramblock(block, offset)) {
|
|
return NULL;
|
|
}
|
|
|
|
return block->host + offset;
|
|
}
|
|
|
|
static void *host_page_from_ram_block_offset(RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
/* Note: Explicitly no check against offset_in_ramblock(). */
|
|
return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
|
|
block->page_size);
|
|
}
|
|
|
|
static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
|
|
ram_addr_t offset)
|
|
{
|
|
return ((uintptr_t)block->host + offset) & (block->page_size - 1);
|
|
}
|
|
|
|
static inline void *colo_cache_from_block_offset(RAMBlock *block,
|
|
ram_addr_t offset, bool record_bitmap)
|
|
{
|
|
if (!offset_in_ramblock(block, offset)) {
|
|
return NULL;
|
|
}
|
|
if (!block->colo_cache) {
|
|
error_report("%s: colo_cache is NULL in block :%s",
|
|
__func__, block->idstr);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* During colo checkpoint, we need bitmap of these migrated pages.
|
|
* It help us to decide which pages in ram cache should be flushed
|
|
* into VM's RAM later.
|
|
*/
|
|
if (record_bitmap &&
|
|
!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
|
|
ram_state->migration_dirty_pages++;
|
|
}
|
|
return block->colo_cache + offset;
|
|
}
|
|
|
|
/**
|
|
* ram_handle_compressed: handle the zero page case
|
|
*
|
|
* If a page (or a whole RDMA chunk) has been
|
|
* determined to be zero, then zap it.
|
|
*
|
|
* @host: host address for the zero page
|
|
* @ch: what the page is filled from. We only support zero
|
|
* @size: size of the zero page
|
|
*/
|
|
void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
|
|
{
|
|
if (ch != 0 || !buffer_is_zero(host, size)) {
|
|
memset(host, ch, size);
|
|
}
|
|
}
|
|
|
|
/* return the size after decompression, or negative value on error */
|
|
static int
|
|
qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
|
|
const uint8_t *source, size_t source_len)
|
|
{
|
|
int err;
|
|
|
|
err = inflateReset(stream);
|
|
if (err != Z_OK) {
|
|
return -1;
|
|
}
|
|
|
|
stream->avail_in = source_len;
|
|
stream->next_in = (uint8_t *)source;
|
|
stream->avail_out = dest_len;
|
|
stream->next_out = dest;
|
|
|
|
err = inflate(stream, Z_NO_FLUSH);
|
|
if (err != Z_STREAM_END) {
|
|
return -1;
|
|
}
|
|
|
|
return stream->total_out;
|
|
}
|
|
|
|
static void *do_data_decompress(void *opaque)
|
|
{
|
|
DecompressParam *param = opaque;
|
|
unsigned long pagesize;
|
|
uint8_t *des;
|
|
int len, ret;
|
|
|
|
qemu_mutex_lock(¶m->mutex);
|
|
while (!param->quit) {
|
|
if (param->des) {
|
|
des = param->des;
|
|
len = param->len;
|
|
param->des = 0;
|
|
qemu_mutex_unlock(¶m->mutex);
|
|
|
|
pagesize = TARGET_PAGE_SIZE;
|
|
|
|
ret = qemu_uncompress_data(¶m->stream, des, pagesize,
|
|
param->compbuf, len);
|
|
if (ret < 0 && migrate_get_current()->decompress_error_check) {
|
|
error_report("decompress data failed");
|
|
qemu_file_set_error(decomp_file, ret);
|
|
}
|
|
|
|
qemu_mutex_lock(&decomp_done_lock);
|
|
param->done = true;
|
|
qemu_cond_signal(&decomp_done_cond);
|
|
qemu_mutex_unlock(&decomp_done_lock);
|
|
|
|
qemu_mutex_lock(¶m->mutex);
|
|
} else {
|
|
qemu_cond_wait(¶m->cond, ¶m->mutex);
|
|
}
|
|
}
|
|
qemu_mutex_unlock(¶m->mutex);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int wait_for_decompress_done(void)
|
|
{
|
|
int idx, thread_count;
|
|
|
|
if (!migrate_use_compression()) {
|
|
return 0;
|
|
}
|
|
|
|
thread_count = migrate_decompress_threads();
|
|
qemu_mutex_lock(&decomp_done_lock);
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
while (!decomp_param[idx].done) {
|
|
qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
|
|
}
|
|
}
|
|
qemu_mutex_unlock(&decomp_done_lock);
|
|
return qemu_file_get_error(decomp_file);
|
|
}
|
|
|
|
static void compress_threads_load_cleanup(void)
|
|
{
|
|
int i, thread_count;
|
|
|
|
if (!migrate_use_compression()) {
|
|
return;
|
|
}
|
|
thread_count = migrate_decompress_threads();
|
|
for (i = 0; i < thread_count; i++) {
|
|
/*
|
|
* we use it as a indicator which shows if the thread is
|
|
* properly init'd or not
|
|
*/
|
|
if (!decomp_param[i].compbuf) {
|
|
break;
|
|
}
|
|
|
|
qemu_mutex_lock(&decomp_param[i].mutex);
|
|
decomp_param[i].quit = true;
|
|
qemu_cond_signal(&decomp_param[i].cond);
|
|
qemu_mutex_unlock(&decomp_param[i].mutex);
|
|
}
|
|
for (i = 0; i < thread_count; i++) {
|
|
if (!decomp_param[i].compbuf) {
|
|
break;
|
|
}
|
|
|
|
qemu_thread_join(decompress_threads + i);
|
|
qemu_mutex_destroy(&decomp_param[i].mutex);
|
|
qemu_cond_destroy(&decomp_param[i].cond);
|
|
inflateEnd(&decomp_param[i].stream);
|
|
g_free(decomp_param[i].compbuf);
|
|
decomp_param[i].compbuf = NULL;
|
|
}
|
|
g_free(decompress_threads);
|
|
g_free(decomp_param);
|
|
decompress_threads = NULL;
|
|
decomp_param = NULL;
|
|
decomp_file = NULL;
|
|
}
|
|
|
|
static int compress_threads_load_setup(QEMUFile *f)
|
|
{
|
|
int i, thread_count;
|
|
|
|
if (!migrate_use_compression()) {
|
|
return 0;
|
|
}
|
|
|
|
thread_count = migrate_decompress_threads();
|
|
decompress_threads = g_new0(QemuThread, thread_count);
|
|
decomp_param = g_new0(DecompressParam, thread_count);
|
|
qemu_mutex_init(&decomp_done_lock);
|
|
qemu_cond_init(&decomp_done_cond);
|
|
decomp_file = f;
|
|
for (i = 0; i < thread_count; i++) {
|
|
if (inflateInit(&decomp_param[i].stream) != Z_OK) {
|
|
goto exit;
|
|
}
|
|
|
|
decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
|
|
qemu_mutex_init(&decomp_param[i].mutex);
|
|
qemu_cond_init(&decomp_param[i].cond);
|
|
decomp_param[i].done = true;
|
|
decomp_param[i].quit = false;
|
|
qemu_thread_create(decompress_threads + i, "decompress",
|
|
do_data_decompress, decomp_param + i,
|
|
QEMU_THREAD_JOINABLE);
|
|
}
|
|
return 0;
|
|
exit:
|
|
compress_threads_load_cleanup();
|
|
return -1;
|
|
}
|
|
|
|
static void decompress_data_with_multi_threads(QEMUFile *f,
|
|
void *host, int len)
|
|
{
|
|
int idx, thread_count;
|
|
|
|
thread_count = migrate_decompress_threads();
|
|
QEMU_LOCK_GUARD(&decomp_done_lock);
|
|
while (true) {
|
|
for (idx = 0; idx < thread_count; idx++) {
|
|
if (decomp_param[idx].done) {
|
|
decomp_param[idx].done = false;
|
|
qemu_mutex_lock(&decomp_param[idx].mutex);
|
|
qemu_get_buffer(f, decomp_param[idx].compbuf, len);
|
|
decomp_param[idx].des = host;
|
|
decomp_param[idx].len = len;
|
|
qemu_cond_signal(&decomp_param[idx].cond);
|
|
qemu_mutex_unlock(&decomp_param[idx].mutex);
|
|
break;
|
|
}
|
|
}
|
|
if (idx < thread_count) {
|
|
break;
|
|
} else {
|
|
qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void colo_init_ram_state(void)
|
|
{
|
|
ram_state_init(&ram_state);
|
|
}
|
|
|
|
/*
|
|
* colo cache: this is for secondary VM, we cache the whole
|
|
* memory of the secondary VM, it is need to hold the global lock
|
|
* to call this helper.
|
|
*/
|
|
int colo_init_ram_cache(void)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
block->colo_cache = qemu_anon_ram_alloc(block->used_length,
|
|
NULL, false, false);
|
|
if (!block->colo_cache) {
|
|
error_report("%s: Can't alloc memory for COLO cache of block %s,"
|
|
"size 0x" RAM_ADDR_FMT, __func__, block->idstr,
|
|
block->used_length);
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
if (block->colo_cache) {
|
|
qemu_anon_ram_free(block->colo_cache, block->used_length);
|
|
block->colo_cache = NULL;
|
|
}
|
|
}
|
|
return -errno;
|
|
}
|
|
if (!machine_dump_guest_core(current_machine)) {
|
|
qemu_madvise(block->colo_cache, block->used_length,
|
|
QEMU_MADV_DONTDUMP);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Record the dirty pages that sent by PVM, we use this dirty bitmap together
|
|
* with to decide which page in cache should be flushed into SVM's RAM. Here
|
|
* we use the same name 'ram_bitmap' as for migration.
|
|
*/
|
|
if (ram_bytes_total()) {
|
|
RAMBlock *block;
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
|
|
block->bmap = bitmap_new(pages);
|
|
}
|
|
}
|
|
|
|
colo_init_ram_state();
|
|
return 0;
|
|
}
|
|
|
|
/* TODO: duplicated with ram_init_bitmaps */
|
|
void colo_incoming_start_dirty_log(void)
|
|
{
|
|
RAMBlock *block = NULL;
|
|
/* For memory_global_dirty_log_start below. */
|
|
qemu_mutex_lock_iothread();
|
|
qemu_mutex_lock_ramlist();
|
|
|
|
memory_global_dirty_log_sync();
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
ramblock_sync_dirty_bitmap(ram_state, block);
|
|
/* Discard this dirty bitmap record */
|
|
bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
|
|
}
|
|
memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
|
|
}
|
|
ram_state->migration_dirty_pages = 0;
|
|
qemu_mutex_unlock_ramlist();
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
|
|
/* It is need to hold the global lock to call this helper */
|
|
void colo_release_ram_cache(void)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
g_free(block->bmap);
|
|
block->bmap = NULL;
|
|
}
|
|
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
if (block->colo_cache) {
|
|
qemu_anon_ram_free(block->colo_cache, block->used_length);
|
|
block->colo_cache = NULL;
|
|
}
|
|
}
|
|
}
|
|
ram_state_cleanup(&ram_state);
|
|
}
|
|
|
|
/**
|
|
* ram_load_setup: Setup RAM for migration incoming side
|
|
*
|
|
* Returns zero to indicate success and negative for error
|
|
*
|
|
* @f: QEMUFile where to receive the data
|
|
* @opaque: RAMState pointer
|
|
*/
|
|
static int ram_load_setup(QEMUFile *f, void *opaque)
|
|
{
|
|
if (compress_threads_load_setup(f)) {
|
|
return -1;
|
|
}
|
|
|
|
xbzrle_load_setup();
|
|
ramblock_recv_map_init();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ram_load_cleanup(void *opaque)
|
|
{
|
|
RAMBlock *rb;
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
|
|
qemu_ram_block_writeback(rb);
|
|
}
|
|
|
|
xbzrle_load_cleanup();
|
|
compress_threads_load_cleanup();
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
|
|
g_free(rb->receivedmap);
|
|
rb->receivedmap = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ram_postcopy_incoming_init: allocate postcopy data structures
|
|
*
|
|
* Returns 0 for success and negative if there was one error
|
|
*
|
|
* @mis: current migration incoming state
|
|
*
|
|
* Allocate data structures etc needed by incoming migration with
|
|
* postcopy-ram. postcopy-ram's similarly names
|
|
* postcopy_ram_incoming_init does the work.
|
|
*/
|
|
int ram_postcopy_incoming_init(MigrationIncomingState *mis)
|
|
{
|
|
return postcopy_ram_incoming_init(mis);
|
|
}
|
|
|
|
/**
|
|
* ram_load_postcopy: load a page in postcopy case
|
|
*
|
|
* Returns 0 for success or -errno in case of error
|
|
*
|
|
* Called in postcopy mode by ram_load().
|
|
* rcu_read_lock is taken prior to this being called.
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
*/
|
|
int ram_load_postcopy(QEMUFile *f)
|
|
{
|
|
int flags = 0, ret = 0;
|
|
bool place_needed = false;
|
|
bool matches_target_page_size = false;
|
|
MigrationIncomingState *mis = migration_incoming_get_current();
|
|
/* Currently we only use channel 0. TODO: use all the channels */
|
|
PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[0];
|
|
|
|
while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
|
|
ram_addr_t addr;
|
|
void *page_buffer = NULL;
|
|
void *place_source = NULL;
|
|
RAMBlock *block = NULL;
|
|
uint8_t ch;
|
|
int len;
|
|
|
|
addr = qemu_get_be64(f);
|
|
|
|
/*
|
|
* If qemu file error, we should stop here, and then "addr"
|
|
* may be invalid
|
|
*/
|
|
ret = qemu_file_get_error(f);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
|
|
flags = addr & ~TARGET_PAGE_MASK;
|
|
addr &= TARGET_PAGE_MASK;
|
|
|
|
trace_ram_load_postcopy_loop((uint64_t)addr, flags);
|
|
if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
|
|
RAM_SAVE_FLAG_COMPRESS_PAGE)) {
|
|
block = ram_block_from_stream(mis, f, flags);
|
|
if (!block) {
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Relying on used_length is racy and can result in false positives.
|
|
* We might place pages beyond used_length in case RAM was shrunk
|
|
* while in postcopy, which is fine - trying to place via
|
|
* UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
|
|
*/
|
|
if (!block->host || addr >= block->postcopy_length) {
|
|
error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
tmp_page->target_pages++;
|
|
matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
|
|
/*
|
|
* Postcopy requires that we place whole host pages atomically;
|
|
* these may be huge pages for RAMBlocks that are backed by
|
|
* hugetlbfs.
|
|
* To make it atomic, the data is read into a temporary page
|
|
* that's moved into place later.
|
|
* The migration protocol uses, possibly smaller, target-pages
|
|
* however the source ensures it always sends all the components
|
|
* of a host page in one chunk.
|
|
*/
|
|
page_buffer = tmp_page->tmp_huge_page +
|
|
host_page_offset_from_ram_block_offset(block, addr);
|
|
/* If all TP are zero then we can optimise the place */
|
|
if (tmp_page->target_pages == 1) {
|
|
tmp_page->host_addr =
|
|
host_page_from_ram_block_offset(block, addr);
|
|
} else if (tmp_page->host_addr !=
|
|
host_page_from_ram_block_offset(block, addr)) {
|
|
/* not the 1st TP within the HP */
|
|
error_report("Non-same host page detected. "
|
|
"Target host page %p, received host page %p "
|
|
"(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
|
|
tmp_page->host_addr,
|
|
host_page_from_ram_block_offset(block, addr),
|
|
block->idstr, addr, tmp_page->target_pages);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If it's the last part of a host page then we place the host
|
|
* page
|
|
*/
|
|
if (tmp_page->target_pages ==
|
|
(block->page_size / TARGET_PAGE_SIZE)) {
|
|
place_needed = true;
|
|
}
|
|
place_source = tmp_page->tmp_huge_page;
|
|
}
|
|
|
|
switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
|
|
case RAM_SAVE_FLAG_ZERO:
|
|
ch = qemu_get_byte(f);
|
|
/*
|
|
* Can skip to set page_buffer when
|
|
* this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
|
|
*/
|
|
if (ch || !matches_target_page_size) {
|
|
memset(page_buffer, ch, TARGET_PAGE_SIZE);
|
|
}
|
|
if (ch) {
|
|
tmp_page->all_zero = false;
|
|
}
|
|
break;
|
|
|
|
case RAM_SAVE_FLAG_PAGE:
|
|
tmp_page->all_zero = false;
|
|
if (!matches_target_page_size) {
|
|
/* For huge pages, we always use temporary buffer */
|
|
qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
|
|
} else {
|
|
/*
|
|
* For small pages that matches target page size, we
|
|
* avoid the qemu_file copy. Instead we directly use
|
|
* the buffer of QEMUFile to place the page. Note: we
|
|
* cannot do any QEMUFile operation before using that
|
|
* buffer to make sure the buffer is valid when
|
|
* placing the page.
|
|
*/
|
|
qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
|
|
TARGET_PAGE_SIZE);
|
|
}
|
|
break;
|
|
case RAM_SAVE_FLAG_COMPRESS_PAGE:
|
|
tmp_page->all_zero = false;
|
|
len = qemu_get_be32(f);
|
|
if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
|
|
error_report("Invalid compressed data length: %d", len);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
decompress_data_with_multi_threads(f, page_buffer, len);
|
|
break;
|
|
|
|
case RAM_SAVE_FLAG_EOS:
|
|
/* normal exit */
|
|
multifd_recv_sync_main();
|
|
break;
|
|
default:
|
|
error_report("Unknown combination of migration flags: 0x%x"
|
|
" (postcopy mode)", flags);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
/* Got the whole host page, wait for decompress before placing. */
|
|
if (place_needed) {
|
|
ret |= wait_for_decompress_done();
|
|
}
|
|
|
|
/* Detect for any possible file errors */
|
|
if (!ret && qemu_file_get_error(f)) {
|
|
ret = qemu_file_get_error(f);
|
|
}
|
|
|
|
if (!ret && place_needed) {
|
|
if (tmp_page->all_zero) {
|
|
ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
|
|
} else {
|
|
ret = postcopy_place_page(mis, tmp_page->host_addr,
|
|
place_source, block);
|
|
}
|
|
place_needed = false;
|
|
postcopy_temp_page_reset(tmp_page);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool postcopy_is_advised(void)
|
|
{
|
|
PostcopyState ps = postcopy_state_get();
|
|
return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
|
|
}
|
|
|
|
static bool postcopy_is_running(void)
|
|
{
|
|
PostcopyState ps = postcopy_state_get();
|
|
return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
|
|
}
|
|
|
|
/*
|
|
* Flush content of RAM cache into SVM's memory.
|
|
* Only flush the pages that be dirtied by PVM or SVM or both.
|
|
*/
|
|
void colo_flush_ram_cache(void)
|
|
{
|
|
RAMBlock *block = NULL;
|
|
void *dst_host;
|
|
void *src_host;
|
|
unsigned long offset = 0;
|
|
|
|
memory_global_dirty_log_sync();
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
ramblock_sync_dirty_bitmap(ram_state, block);
|
|
}
|
|
}
|
|
|
|
trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
block = QLIST_FIRST_RCU(&ram_list.blocks);
|
|
|
|
while (block) {
|
|
unsigned long num = 0;
|
|
|
|
offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
|
|
if (!offset_in_ramblock(block,
|
|
((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
|
|
offset = 0;
|
|
num = 0;
|
|
block = QLIST_NEXT_RCU(block, next);
|
|
} else {
|
|
unsigned long i = 0;
|
|
|
|
for (i = 0; i < num; i++) {
|
|
migration_bitmap_clear_dirty(ram_state, block, offset + i);
|
|
}
|
|
dst_host = block->host
|
|
+ (((ram_addr_t)offset) << TARGET_PAGE_BITS);
|
|
src_host = block->colo_cache
|
|
+ (((ram_addr_t)offset) << TARGET_PAGE_BITS);
|
|
memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
|
|
offset += num;
|
|
}
|
|
}
|
|
}
|
|
trace_colo_flush_ram_cache_end();
|
|
}
|
|
|
|
/**
|
|
* ram_load_precopy: load pages in precopy case
|
|
*
|
|
* Returns 0 for success or -errno in case of error
|
|
*
|
|
* Called in precopy mode by ram_load().
|
|
* rcu_read_lock is taken prior to this being called.
|
|
*
|
|
* @f: QEMUFile where to send the data
|
|
*/
|
|
static int ram_load_precopy(QEMUFile *f)
|
|
{
|
|
MigrationIncomingState *mis = migration_incoming_get_current();
|
|
int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
|
|
/* ADVISE is earlier, it shows the source has the postcopy capability on */
|
|
bool postcopy_advised = postcopy_is_advised();
|
|
if (!migrate_use_compression()) {
|
|
invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
|
|
}
|
|
|
|
while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
|
|
ram_addr_t addr, total_ram_bytes;
|
|
void *host = NULL, *host_bak = NULL;
|
|
uint8_t ch;
|
|
|
|
/*
|
|
* Yield periodically to let main loop run, but an iteration of
|
|
* the main loop is expensive, so do it each some iterations
|
|
*/
|
|
if ((i & 32767) == 0 && qemu_in_coroutine()) {
|
|
aio_co_schedule(qemu_get_current_aio_context(),
|
|
qemu_coroutine_self());
|
|
qemu_coroutine_yield();
|
|
}
|
|
i++;
|
|
|
|
addr = qemu_get_be64(f);
|
|
flags = addr & ~TARGET_PAGE_MASK;
|
|
addr &= TARGET_PAGE_MASK;
|
|
|
|
if (flags & invalid_flags) {
|
|
if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
|
|
error_report("Received an unexpected compressed page");
|
|
}
|
|
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
|
|
RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
|
|
RAMBlock *block = ram_block_from_stream(mis, f, flags);
|
|
|
|
host = host_from_ram_block_offset(block, addr);
|
|
/*
|
|
* After going into COLO stage, we should not load the page
|
|
* into SVM's memory directly, we put them into colo_cache firstly.
|
|
* NOTE: We need to keep a copy of SVM's ram in colo_cache.
|
|
* Previously, we copied all these memory in preparing stage of COLO
|
|
* while we need to stop VM, which is a time-consuming process.
|
|
* Here we optimize it by a trick, back-up every page while in
|
|
* migration process while COLO is enabled, though it affects the
|
|
* speed of the migration, but it obviously reduce the downtime of
|
|
* back-up all SVM'S memory in COLO preparing stage.
|
|
*/
|
|
if (migration_incoming_colo_enabled()) {
|
|
if (migration_incoming_in_colo_state()) {
|
|
/* In COLO stage, put all pages into cache temporarily */
|
|
host = colo_cache_from_block_offset(block, addr, true);
|
|
} else {
|
|
/*
|
|
* In migration stage but before COLO stage,
|
|
* Put all pages into both cache and SVM's memory.
|
|
*/
|
|
host_bak = colo_cache_from_block_offset(block, addr, false);
|
|
}
|
|
}
|
|
if (!host) {
|
|
error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
if (!migration_incoming_in_colo_state()) {
|
|
ramblock_recv_bitmap_set(block, host);
|
|
}
|
|
|
|
trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
|
|
}
|
|
|
|
switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
|
|
case RAM_SAVE_FLAG_MEM_SIZE:
|
|
/* Synchronize RAM block list */
|
|
total_ram_bytes = addr;
|
|
while (!ret && total_ram_bytes) {
|
|
RAMBlock *block;
|
|
char id[256];
|
|
ram_addr_t length;
|
|
|
|
len = qemu_get_byte(f);
|
|
qemu_get_buffer(f, (uint8_t *)id, len);
|
|
id[len] = 0;
|
|
length = qemu_get_be64(f);
|
|
|
|
block = qemu_ram_block_by_name(id);
|
|
if (block && !qemu_ram_is_migratable(block)) {
|
|
error_report("block %s should not be migrated !", id);
|
|
ret = -EINVAL;
|
|
} else if (block) {
|
|
if (length != block->used_length) {
|
|
Error *local_err = NULL;
|
|
|
|
ret = qemu_ram_resize(block, length,
|
|
&local_err);
|
|
if (local_err) {
|
|
error_report_err(local_err);
|
|
}
|
|
}
|
|
/* For postcopy we need to check hugepage sizes match */
|
|
if (postcopy_advised && migrate_postcopy_ram() &&
|
|
block->page_size != qemu_host_page_size) {
|
|
uint64_t remote_page_size = qemu_get_be64(f);
|
|
if (remote_page_size != block->page_size) {
|
|
error_report("Mismatched RAM page size %s "
|
|
"(local) %zd != %" PRId64,
|
|
id, block->page_size,
|
|
remote_page_size);
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
if (migrate_ignore_shared()) {
|
|
hwaddr addr = qemu_get_be64(f);
|
|
if (ramblock_is_ignored(block) &&
|
|
block->mr->addr != addr) {
|
|
error_report("Mismatched GPAs for block %s "
|
|
"%" PRId64 "!= %" PRId64,
|
|
id, (uint64_t)addr,
|
|
(uint64_t)block->mr->addr);
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
|
|
block->idstr);
|
|
} else {
|
|
error_report("Unknown ramblock \"%s\", cannot "
|
|
"accept migration", id);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
total_ram_bytes -= length;
|
|
}
|
|
break;
|
|
|
|
case RAM_SAVE_FLAG_ZERO:
|
|
ch = qemu_get_byte(f);
|
|
ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
|
|
break;
|
|
|
|
case RAM_SAVE_FLAG_PAGE:
|
|
qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
|
|
break;
|
|
|
|
case RAM_SAVE_FLAG_COMPRESS_PAGE:
|
|
len = qemu_get_be32(f);
|
|
if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
|
|
error_report("Invalid compressed data length: %d", len);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
decompress_data_with_multi_threads(f, host, len);
|
|
break;
|
|
|
|
case RAM_SAVE_FLAG_XBZRLE:
|
|
if (load_xbzrle(f, addr, host) < 0) {
|
|
error_report("Failed to decompress XBZRLE page at "
|
|
RAM_ADDR_FMT, addr);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
break;
|
|
case RAM_SAVE_FLAG_EOS:
|
|
/* normal exit */
|
|
multifd_recv_sync_main();
|
|
break;
|
|
default:
|
|
if (flags & RAM_SAVE_FLAG_HOOK) {
|
|
ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
|
|
} else {
|
|
error_report("Unknown combination of migration flags: 0x%x",
|
|
flags);
|
|
ret = -EINVAL;
|
|
}
|
|
}
|
|
if (!ret) {
|
|
ret = qemu_file_get_error(f);
|
|
}
|
|
if (!ret && host_bak) {
|
|
memcpy(host_bak, host, TARGET_PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
ret |= wait_for_decompress_done();
|
|
return ret;
|
|
}
|
|
|
|
static int ram_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
int ret = 0;
|
|
static uint64_t seq_iter;
|
|
/*
|
|
* If system is running in postcopy mode, page inserts to host memory must
|
|
* be atomic
|
|
*/
|
|
bool postcopy_running = postcopy_is_running();
|
|
|
|
seq_iter++;
|
|
|
|
if (version_id != 4) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* This RCU critical section can be very long running.
|
|
* When RCU reclaims in the code start to become numerous,
|
|
* it will be necessary to reduce the granularity of this
|
|
* critical section.
|
|
*/
|
|
WITH_RCU_READ_LOCK_GUARD() {
|
|
if (postcopy_running) {
|
|
ret = ram_load_postcopy(f);
|
|
} else {
|
|
ret = ram_load_precopy(f);
|
|
}
|
|
}
|
|
trace_ram_load_complete(ret, seq_iter);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool ram_has_postcopy(void *opaque)
|
|
{
|
|
RAMBlock *rb;
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
|
|
if (ramblock_is_pmem(rb)) {
|
|
info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
|
|
"is not supported now!", rb->idstr, rb->host);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return migrate_postcopy_ram();
|
|
}
|
|
|
|
/* Sync all the dirty bitmap with destination VM. */
|
|
static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
|
|
{
|
|
RAMBlock *block;
|
|
QEMUFile *file = s->to_dst_file;
|
|
int ramblock_count = 0;
|
|
|
|
trace_ram_dirty_bitmap_sync_start();
|
|
|
|
RAMBLOCK_FOREACH_NOT_IGNORED(block) {
|
|
qemu_savevm_send_recv_bitmap(file, block->idstr);
|
|
trace_ram_dirty_bitmap_request(block->idstr);
|
|
ramblock_count++;
|
|
}
|
|
|
|
trace_ram_dirty_bitmap_sync_wait();
|
|
|
|
/* Wait until all the ramblocks' dirty bitmap synced */
|
|
while (ramblock_count--) {
|
|
qemu_sem_wait(&s->rp_state.rp_sem);
|
|
}
|
|
|
|
trace_ram_dirty_bitmap_sync_complete();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ram_dirty_bitmap_reload_notify(MigrationState *s)
|
|
{
|
|
qemu_sem_post(&s->rp_state.rp_sem);
|
|
}
|
|
|
|
/*
|
|
* Read the received bitmap, revert it as the initial dirty bitmap.
|
|
* This is only used when the postcopy migration is paused but wants
|
|
* to resume from a middle point.
|
|
*/
|
|
int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
|
|
{
|
|
int ret = -EINVAL;
|
|
/* from_dst_file is always valid because we're within rp_thread */
|
|
QEMUFile *file = s->rp_state.from_dst_file;
|
|
unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
|
|
uint64_t local_size = DIV_ROUND_UP(nbits, 8);
|
|
uint64_t size, end_mark;
|
|
|
|
trace_ram_dirty_bitmap_reload_begin(block->idstr);
|
|
|
|
if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
|
|
error_report("%s: incorrect state %s", __func__,
|
|
MigrationStatus_str(s->state));
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Note: see comments in ramblock_recv_bitmap_send() on why we
|
|
* need the endianness conversion, and the paddings.
|
|
*/
|
|
local_size = ROUND_UP(local_size, 8);
|
|
|
|
/* Add paddings */
|
|
le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
|
|
|
|
size = qemu_get_be64(file);
|
|
|
|
/* The size of the bitmap should match with our ramblock */
|
|
if (size != local_size) {
|
|
error_report("%s: ramblock '%s' bitmap size mismatch "
|
|
"(0x%"PRIx64" != 0x%"PRIx64")", __func__,
|
|
block->idstr, size, local_size);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
|
|
end_mark = qemu_get_be64(file);
|
|
|
|
ret = qemu_file_get_error(file);
|
|
if (ret || size != local_size) {
|
|
error_report("%s: read bitmap failed for ramblock '%s': %d"
|
|
" (size 0x%"PRIx64", got: 0x%"PRIx64")",
|
|
__func__, block->idstr, ret, local_size, size);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
|
|
error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
|
|
__func__, block->idstr, end_mark);
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Endianness conversion. We are during postcopy (though paused).
|
|
* The dirty bitmap won't change. We can directly modify it.
|
|
*/
|
|
bitmap_from_le(block->bmap, le_bitmap, nbits);
|
|
|
|
/*
|
|
* What we received is "received bitmap". Revert it as the initial
|
|
* dirty bitmap for this ramblock.
|
|
*/
|
|
bitmap_complement(block->bmap, block->bmap, nbits);
|
|
|
|
/* Clear dirty bits of discarded ranges that we don't want to migrate. */
|
|
ramblock_dirty_bitmap_clear_discarded_pages(block);
|
|
|
|
/* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
|
|
trace_ram_dirty_bitmap_reload_complete(block->idstr);
|
|
|
|
/*
|
|
* We succeeded to sync bitmap for current ramblock. If this is
|
|
* the last one to sync, we need to notify the main send thread.
|
|
*/
|
|
ram_dirty_bitmap_reload_notify(s);
|
|
|
|
ret = 0;
|
|
out:
|
|
g_free(le_bitmap);
|
|
return ret;
|
|
}
|
|
|
|
static int ram_resume_prepare(MigrationState *s, void *opaque)
|
|
{
|
|
RAMState *rs = *(RAMState **)opaque;
|
|
int ret;
|
|
|
|
ret = ram_dirty_bitmap_sync_all(s, rs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
ram_state_resume_prepare(rs, s->to_dst_file);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SaveVMHandlers savevm_ram_handlers = {
|
|
.save_setup = ram_save_setup,
|
|
.save_live_iterate = ram_save_iterate,
|
|
.save_live_complete_postcopy = ram_save_complete,
|
|
.save_live_complete_precopy = ram_save_complete,
|
|
.has_postcopy = ram_has_postcopy,
|
|
.save_live_pending = ram_save_pending,
|
|
.load_state = ram_load,
|
|
.save_cleanup = ram_save_cleanup,
|
|
.load_setup = ram_load_setup,
|
|
.load_cleanup = ram_load_cleanup,
|
|
.resume_prepare = ram_resume_prepare,
|
|
};
|
|
|
|
static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
|
|
size_t old_size, size_t new_size)
|
|
{
|
|
PostcopyState ps = postcopy_state_get();
|
|
ram_addr_t offset;
|
|
RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
|
|
Error *err = NULL;
|
|
|
|
if (ramblock_is_ignored(rb)) {
|
|
return;
|
|
}
|
|
|
|
if (!migration_is_idle()) {
|
|
/*
|
|
* Precopy code on the source cannot deal with the size of RAM blocks
|
|
* changing at random points in time - especially after sending the
|
|
* RAM block sizes in the migration stream, they must no longer change.
|
|
* Abort and indicate a proper reason.
|
|
*/
|
|
error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
|
|
migration_cancel(err);
|
|
error_free(err);
|
|
}
|
|
|
|
switch (ps) {
|
|
case POSTCOPY_INCOMING_ADVISE:
|
|
/*
|
|
* Update what ram_postcopy_incoming_init()->init_range() does at the
|
|
* time postcopy was advised. Syncing RAM blocks with the source will
|
|
* result in RAM resizes.
|
|
*/
|
|
if (old_size < new_size) {
|
|
if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
|
|
error_report("RAM block '%s' discard of resized RAM failed",
|
|
rb->idstr);
|
|
}
|
|
}
|
|
rb->postcopy_length = new_size;
|
|
break;
|
|
case POSTCOPY_INCOMING_NONE:
|
|
case POSTCOPY_INCOMING_RUNNING:
|
|
case POSTCOPY_INCOMING_END:
|
|
/*
|
|
* Once our guest is running, postcopy does no longer care about
|
|
* resizes. When growing, the new memory was not available on the
|
|
* source, no handler needed.
|
|
*/
|
|
break;
|
|
default:
|
|
error_report("RAM block '%s' resized during postcopy state: %d",
|
|
rb->idstr, ps);
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
static RAMBlockNotifier ram_mig_ram_notifier = {
|
|
.ram_block_resized = ram_mig_ram_block_resized,
|
|
};
|
|
|
|
void ram_mig_init(void)
|
|
{
|
|
qemu_mutex_init(&XBZRLE.lock);
|
|
register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
|
|
ram_block_notifier_add(&ram_mig_ram_notifier);
|
|
}
|