qemu/target-mips/op.c
ths 214c465f86 Switch the standard multiplication instructions to TCG.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4740 c046a42c-6fe2-441c-8c8c-71466251a162
2008-06-12 12:43:29 +00:00

590 lines
13 KiB
C

/*
* MIPS emulation micro-operations for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
* Copyright (c) 2006 Marius Groeger (FPU operations)
* Copyright (c) 2007 Thiemo Seufer (64-bit FPU support)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include "exec.h"
#include "host-utils.h"
#ifndef CALL_FROM_TB0
#define CALL_FROM_TB0(func) func()
#endif
#ifndef CALL_FROM_TB1
#define CALL_FROM_TB1(func, arg0) func(arg0)
#endif
#ifndef CALL_FROM_TB1_CONST16
#define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0)
#endif
#ifndef CALL_FROM_TB2
#define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1)
#endif
#ifndef CALL_FROM_TB2_CONST16
#define CALL_FROM_TB2_CONST16(func, arg0, arg1) \
CALL_FROM_TB2(func, arg0, arg1)
#endif
#ifndef CALL_FROM_TB3
#define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2)
#endif
#ifndef CALL_FROM_TB4
#define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \
func(arg0, arg1, arg2, arg3)
#endif
/* Load and store */
#define MEMSUFFIX _raw
#include "op_mem.c"
#undef MEMSUFFIX
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.c"
#undef MEMSUFFIX
#define MEMSUFFIX _super
#include "op_mem.c"
#undef MEMSUFFIX
#define MEMSUFFIX _kernel
#include "op_mem.c"
#undef MEMSUFFIX
#endif
/* 64 bits arithmetic */
#if TARGET_LONG_BITS > HOST_LONG_BITS
void op_madd (void)
{
CALL_FROM_TB0(do_madd);
FORCE_RET();
}
void op_maddu (void)
{
CALL_FROM_TB0(do_maddu);
FORCE_RET();
}
void op_msub (void)
{
CALL_FROM_TB0(do_msub);
FORCE_RET();
}
void op_msubu (void)
{
CALL_FROM_TB0(do_msubu);
FORCE_RET();
}
/* Multiplication variants of the vr54xx. */
void op_muls (void)
{
CALL_FROM_TB0(do_muls);
FORCE_RET();
}
void op_mulsu (void)
{
CALL_FROM_TB0(do_mulsu);
FORCE_RET();
}
void op_macc (void)
{
CALL_FROM_TB0(do_macc);
FORCE_RET();
}
void op_macchi (void)
{
CALL_FROM_TB0(do_macchi);
FORCE_RET();
}
void op_maccu (void)
{
CALL_FROM_TB0(do_maccu);
FORCE_RET();
}
void op_macchiu (void)
{
CALL_FROM_TB0(do_macchiu);
FORCE_RET();
}
void op_msac (void)
{
CALL_FROM_TB0(do_msac);
FORCE_RET();
}
void op_msachi (void)
{
CALL_FROM_TB0(do_msachi);
FORCE_RET();
}
void op_msacu (void)
{
CALL_FROM_TB0(do_msacu);
FORCE_RET();
}
void op_msachiu (void)
{
CALL_FROM_TB0(do_msachiu);
FORCE_RET();
}
void op_mulhi (void)
{
CALL_FROM_TB0(do_mulhi);
FORCE_RET();
}
void op_mulhiu (void)
{
CALL_FROM_TB0(do_mulhiu);
FORCE_RET();
}
void op_mulshi (void)
{
CALL_FROM_TB0(do_mulshi);
FORCE_RET();
}
void op_mulshiu (void)
{
CALL_FROM_TB0(do_mulshiu);
FORCE_RET();
}
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
static always_inline uint64_t get_HILO (void)
{
return ((uint64_t)env->HI[env->current_tc][0] << 32) |
((uint64_t)(uint32_t)env->LO[env->current_tc][0]);
}
static always_inline void set_HILO (uint64_t HILO)
{
env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF);
env->HI[env->current_tc][0] = (int32_t)(HILO >> 32);
}
static always_inline void set_HIT0_LO (uint64_t HILO)
{
env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF);
T0 = env->HI[env->current_tc][0] = (int32_t)(HILO >> 32);
}
static always_inline void set_HI_LOT0 (uint64_t HILO)
{
T0 = env->LO[env->current_tc][0] = (int32_t)(HILO & 0xFFFFFFFF);
env->HI[env->current_tc][0] = (int32_t)(HILO >> 32);
}
/* Multiplication variants of the vr54xx. */
void op_muls (void)
{
set_HI_LOT0(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
FORCE_RET();
}
void op_mulsu (void)
{
set_HI_LOT0(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
FORCE_RET();
}
void op_macc (void)
{
set_HI_LOT0(get_HILO() + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
FORCE_RET();
}
void op_macchi (void)
{
set_HIT0_LO(get_HILO() + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
FORCE_RET();
}
void op_maccu (void)
{
set_HI_LOT0(get_HILO() + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
FORCE_RET();
}
void op_macchiu (void)
{
set_HIT0_LO(get_HILO() + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
FORCE_RET();
}
void op_msac (void)
{
set_HI_LOT0(get_HILO() - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
FORCE_RET();
}
void op_msachi (void)
{
set_HIT0_LO(get_HILO() - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
FORCE_RET();
}
void op_msacu (void)
{
set_HI_LOT0(get_HILO() - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
FORCE_RET();
}
void op_msachiu (void)
{
set_HIT0_LO(get_HILO() - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
FORCE_RET();
}
void op_mulhi (void)
{
set_HIT0_LO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
FORCE_RET();
}
void op_mulhiu (void)
{
set_HIT0_LO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
FORCE_RET();
}
void op_mulshi (void)
{
set_HIT0_LO(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
FORCE_RET();
}
void op_mulshiu (void)
{
set_HIT0_LO(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
FORCE_RET();
}
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
/* CP1 functions */
#if 0
# define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env)
#else
# define DEBUG_FPU_STATE() do { } while(0)
#endif
/* Float support.
Single precition routines have a "s" suffix, double precision a
"d" suffix, 32bit integer "w", 64bit integer "l", paired singe "ps",
paired single lowwer "pl", paired single upper "pu". */
#define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void)
FLOAT_OP(pll, ps)
{
DT2 = ((uint64_t)WT0 << 32) | WT1;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(plu, ps)
{
DT2 = ((uint64_t)WT0 << 32) | WTH1;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(pul, ps)
{
DT2 = ((uint64_t)WTH0 << 32) | WT1;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(puu, ps)
{
DT2 = ((uint64_t)WTH0 << 32) | WTH1;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movf, d)
{
if (!(env->fpu->fcr31 & PARAM1))
DT2 = DT0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movf, s)
{
if (!(env->fpu->fcr31 & PARAM1))
WT2 = WT0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movf, ps)
{
unsigned int mask = GET_FP_COND (env->fpu) >> PARAM1;
if (!(mask & 1))
WT2 = WT0;
if (!(mask & 2))
WTH2 = WTH0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movt, d)
{
if (env->fpu->fcr31 & PARAM1)
DT2 = DT0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movt, s)
{
if (env->fpu->fcr31 & PARAM1)
WT2 = WT0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movt, ps)
{
unsigned int mask = GET_FP_COND (env->fpu) >> PARAM1;
if (mask & 1)
WT2 = WT0;
if (mask & 2)
WTH2 = WTH0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movz, d)
{
if (!T0)
DT2 = DT0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movz, s)
{
if (!T0)
WT2 = WT0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movz, ps)
{
if (!T0) {
WT2 = WT0;
WTH2 = WTH0;
}
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movn, d)
{
if (T0)
DT2 = DT0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movn, s)
{
if (T0)
WT2 = WT0;
DEBUG_FPU_STATE();
FORCE_RET();
}
FLOAT_OP(movn, ps)
{
if (T0) {
WT2 = WT0;
WTH2 = WTH0;
}
DEBUG_FPU_STATE();
FORCE_RET();
}
/* ternary operations */
#define FLOAT_TERNOP(name1, name2) \
FLOAT_OP(name1 ## name2, d) \
{ \
FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fpu->fp_status); \
FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fpu->fp_status); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
} \
FLOAT_OP(name1 ## name2, s) \
{ \
FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \
FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
} \
FLOAT_OP(name1 ## name2, ps) \
{ \
FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \
FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fpu->fp_status); \
FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \
FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fpu->fp_status); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
}
FLOAT_TERNOP(mul, add)
FLOAT_TERNOP(mul, sub)
#undef FLOAT_TERNOP
/* negated ternary operations */
#define FLOAT_NTERNOP(name1, name2) \
FLOAT_OP(n ## name1 ## name2, d) \
{ \
FDT0 = float64_ ## name1 (FDT0, FDT1, &env->fpu->fp_status); \
FDT2 = float64_ ## name2 (FDT0, FDT2, &env->fpu->fp_status); \
FDT2 = float64_chs(FDT2); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
} \
FLOAT_OP(n ## name1 ## name2, s) \
{ \
FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \
FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \
FST2 = float32_chs(FST2); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
} \
FLOAT_OP(n ## name1 ## name2, ps) \
{ \
FST0 = float32_ ## name1 (FST0, FST1, &env->fpu->fp_status); \
FSTH0 = float32_ ## name1 (FSTH0, FSTH1, &env->fpu->fp_status); \
FST2 = float32_ ## name2 (FST0, FST2, &env->fpu->fp_status); \
FSTH2 = float32_ ## name2 (FSTH0, FSTH2, &env->fpu->fp_status); \
FST2 = float32_chs(FST2); \
FSTH2 = float32_chs(FSTH2); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
}
FLOAT_NTERNOP(mul, add)
FLOAT_NTERNOP(mul, sub)
#undef FLOAT_NTERNOP
/* unary operations, modifying fp status */
#define FLOAT_UNOP(name) \
FLOAT_OP(name, d) \
{ \
FDT2 = float64_ ## name(FDT0, &env->fpu->fp_status); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
} \
FLOAT_OP(name, s) \
{ \
FST2 = float32_ ## name(FST0, &env->fpu->fp_status); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
}
FLOAT_UNOP(sqrt)
#undef FLOAT_UNOP
/* unary operations, not modifying fp status */
#define FLOAT_UNOP(name) \
FLOAT_OP(name, d) \
{ \
FDT2 = float64_ ## name(FDT0); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
} \
FLOAT_OP(name, s) \
{ \
FST2 = float32_ ## name(FST0); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
} \
FLOAT_OP(name, ps) \
{ \
FST2 = float32_ ## name(FST0); \
FSTH2 = float32_ ## name(FSTH0); \
DEBUG_FPU_STATE(); \
FORCE_RET(); \
}
FLOAT_UNOP(abs)
FLOAT_UNOP(chs)
#undef FLOAT_UNOP
FLOAT_OP(alnv, ps)
{
switch (T0 & 0x7) {
case 0:
FST2 = FST0;
FSTH2 = FSTH0;
break;
case 4:
#ifdef TARGET_WORDS_BIGENDIAN
FSTH2 = FST0;
FST2 = FSTH1;
#else
FSTH2 = FST1;
FST2 = FSTH0;
#endif
break;
default: /* unpredictable */
break;
}
DEBUG_FPU_STATE();
FORCE_RET();
}
void op_bc1f (void)
{
T0 = !!(~GET_FP_COND(env->fpu) & (0x1 << PARAM1));
DEBUG_FPU_STATE();
FORCE_RET();
}
void op_bc1any2f (void)
{
T0 = !!(~GET_FP_COND(env->fpu) & (0x3 << PARAM1));
DEBUG_FPU_STATE();
FORCE_RET();
}
void op_bc1any4f (void)
{
T0 = !!(~GET_FP_COND(env->fpu) & (0xf << PARAM1));
DEBUG_FPU_STATE();
FORCE_RET();
}
void op_bc1t (void)
{
T0 = !!(GET_FP_COND(env->fpu) & (0x1 << PARAM1));
DEBUG_FPU_STATE();
FORCE_RET();
}
void op_bc1any2t (void)
{
T0 = !!(GET_FP_COND(env->fpu) & (0x3 << PARAM1));
DEBUG_FPU_STATE();
FORCE_RET();
}
void op_bc1any4t (void)
{
T0 = !!(GET_FP_COND(env->fpu) & (0xf << PARAM1));
DEBUG_FPU_STATE();
FORCE_RET();
}