qemu/target-s390x/kvm.c
Dominik Dingel 44c68de044 s390x/kvm: cleanup partial register handling
The partial register handling (introduced with commits
420840e58b and
3474b67948 ) aimed to improve intercept
handling performance.

It made the code more complicated though. During development for life
migration/init/reset etc it turned out that this might cause several
hard to debug programming errors. With the introduction of ioeventfd
(and future irqfd patches) the qemu intercept handlers are no longer
hot-path. And therefore the partial register handling can be
removed to simplify the code.

Signed-off-by: Dominik Dingel <dingel@linux.vnet.ibm.com>
CC: Jason J. Herne <jjherne@us.ibm.com>
Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Acked-by: Alexander Graf <agraf@suse.de>
2014-01-31 09:43:44 +01:00

866 lines
23 KiB
C

/*
* QEMU S390x KVM implementation
*
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
* Copyright IBM Corp. 2012
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* Contributions after 2012-10-29 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*
* You should have received a copy of the GNU (Lesser) General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include <asm/ptrace.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "cpu.h"
#include "sysemu/device_tree.h"
#include "qapi/qmp/qjson.h"
#include "monitor/monitor.h"
/* #define DEBUG_KVM */
#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#define IPA0_DIAG 0x8300
#define IPA0_SIGP 0xae00
#define IPA0_B2 0xb200
#define IPA0_B9 0xb900
#define IPA0_EB 0xeb00
#define PRIV_SCLP_CALL 0x20
#define PRIV_CSCH 0x30
#define PRIV_HSCH 0x31
#define PRIV_MSCH 0x32
#define PRIV_SSCH 0x33
#define PRIV_STSCH 0x34
#define PRIV_TSCH 0x35
#define PRIV_TPI 0x36
#define PRIV_SAL 0x37
#define PRIV_RSCH 0x38
#define PRIV_STCRW 0x39
#define PRIV_STCPS 0x3a
#define PRIV_RCHP 0x3b
#define PRIV_SCHM 0x3c
#define PRIV_CHSC 0x5f
#define PRIV_SIGA 0x74
#define PRIV_XSCH 0x76
#define PRIV_SQBS 0x8a
#define PRIV_EQBS 0x9c
#define DIAG_IPL 0x308
#define DIAG_KVM_HYPERCALL 0x500
#define DIAG_KVM_BREAKPOINT 0x501
#define ICPT_INSTRUCTION 0x04
#define ICPT_WAITPSW 0x1c
#define ICPT_SOFT_INTERCEPT 0x24
#define ICPT_CPU_STOP 0x28
#define ICPT_IO 0x40
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static int cap_sync_regs;
static void *legacy_s390_alloc(size_t size);
int kvm_arch_init(KVMState *s)
{
cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
|| !kvm_check_extension(s, KVM_CAP_S390_COW)) {
phys_mem_set_alloc(legacy_s390_alloc);
}
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
int kvm_arch_init_vcpu(CPUState *cpu)
{
/* nothing todo yet */
return 0;
}
void kvm_arch_reset_vcpu(CPUState *cpu)
{
/* The initial reset call is needed here to reset in-kernel
* vcpu data that we can't access directly from QEMU
* (i.e. with older kernels which don't support sync_regs/ONE_REG).
* Before this ioctl cpu_synchronize_state() is called in common kvm
* code (kvm-all) */
if (kvm_vcpu_ioctl(cpu, KVM_S390_INITIAL_RESET, NULL)) {
perror("Can't reset vcpu\n");
}
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_one_reg reg;
struct kvm_sregs sregs;
struct kvm_regs regs;
int ret;
int i;
/* always save the PSW and the GPRS*/
cs->kvm_run->psw_addr = env->psw.addr;
cs->kvm_run->psw_mask = env->psw.mask;
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.gprs[i] = env->regs[i];
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
}
} else {
for (i = 0; i < 16; i++) {
regs.gprs[i] = env->regs[i];
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) {
return ret;
}
}
/* Do we need to save more than that? */
if (level == KVM_PUT_RUNTIME_STATE) {
return 0;
}
reg.id = KVM_REG_S390_CPU_TIMER;
reg.addr = (__u64)&(env->cputm);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
reg.id = KVM_REG_S390_CLOCK_COMP;
reg.addr = (__u64)&(env->ckc);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
reg.id = KVM_REG_S390_TODPR;
reg.addr = (__u64)&(env->todpr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
if (cap_sync_regs &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
cs->kvm_run->s.regs.crs[i] = env->cregs[i];
}
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
} else {
for (i = 0; i < 16; i++) {
sregs.acrs[i] = env->aregs[i];
sregs.crs[i] = env->cregs[i];
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
}
/* Finally the prefix */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) {
cs->kvm_run->s.regs.prefix = env->psa;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
} else {
/* prefix is only supported via sync regs */
}
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_one_reg reg;
struct kvm_sregs sregs;
struct kvm_regs regs;
int i, r;
/* get the PSW */
env->psw.addr = cs->kvm_run->psw_addr;
env->psw.mask = cs->kvm_run->psw_mask;
/* the GPRS */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) {
for (i = 0; i < 16; i++) {
env->regs[i] = cs->kvm_run->s.regs.gprs[i];
}
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->regs[i] = regs.gprs[i];
}
}
/* The ACRS and CRS */
if (cap_sync_regs &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) {
for (i = 0; i < 16; i++) {
env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
env->cregs[i] = cs->kvm_run->s.regs.crs[i];
}
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->aregs[i] = sregs.acrs[i];
env->cregs[i] = sregs.crs[i];
}
}
/* The prefix */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) {
env->psa = cs->kvm_run->s.regs.prefix;
}
/* One Regs */
reg.id = KVM_REG_S390_CPU_TIMER;
reg.addr = (__u64)&(env->cputm);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_CLOCK_COMP;
reg.addr = (__u64)&(env->ckc);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_TODPR;
reg.addr = (__u64)&(env->todpr);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
return 0;
}
/*
* Legacy layout for s390:
* Older S390 KVM requires the topmost vma of the RAM to be
* smaller than an system defined value, which is at least 256GB.
* Larger systems have larger values. We put the guest between
* the end of data segment (system break) and this value. We
* use 32GB as a base to have enough room for the system break
* to grow. We also have to use MAP parameters that avoid
* read-only mapping of guest pages.
*/
static void *legacy_s390_alloc(size_t size)
{
void *mem;
mem = mmap((void *) 0x800000000ULL, size,
PROT_EXEC|PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
return mem == MAP_FAILED ? NULL : mem;
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)diag_501, 4, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
uint8_t t[4];
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(cs, bp->pc, t, 4, 0)) {
return -EINVAL;
} else if (memcmp(t, diag_501, 4)) {
return -EINVAL;
} else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
return -EINVAL;
}
return 0;
}
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
{
}
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
{
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
void kvm_s390_interrupt_internal(S390CPU *cpu, int type, uint32_t parm,
uint64_t parm64, int vm)
{
CPUState *cs = CPU(cpu);
struct kvm_s390_interrupt kvmint;
int r;
if (!cs->kvm_state) {
return;
}
kvmint.type = type;
kvmint.parm = parm;
kvmint.parm64 = parm64;
if (vm) {
r = kvm_vm_ioctl(cs->kvm_state, KVM_S390_INTERRUPT, &kvmint);
} else {
r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
}
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_virtio_irq(S390CPU *cpu, int config_change, uint64_t token)
{
kvm_s390_interrupt_internal(cpu, KVM_S390_INT_VIRTIO, config_change,
token, 1);
}
void kvm_s390_interrupt(S390CPU *cpu, int type, uint32_t code)
{
kvm_s390_interrupt_internal(cpu, type, code, 0, 0);
}
static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
{
kvm_s390_interrupt(cpu, KVM_S390_PROGRAM_INT, code);
}
static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
uint16_t ipbh0)
{
CPUS390XState *env = &cpu->env;
uint32_t sccb;
uint64_t code;
int r = 0;
cpu_synchronize_state(CPU(cpu));
if (env->psw.mask & PSW_MASK_PSTATE) {
enter_pgmcheck(cpu, PGM_PRIVILEGED);
return 0;
}
sccb = env->regs[ipbh0 & 0xf];
code = env->regs[(ipbh0 & 0xf0) >> 4];
r = sclp_service_call(sccb, code);
if (r < 0) {
enter_pgmcheck(cpu, -r);
}
setcc(cpu, r);
return 0;
}
static int kvm_handle_css_inst(S390CPU *cpu, struct kvm_run *run,
uint8_t ipa0, uint8_t ipa1, uint8_t ipb)
{
CPUS390XState *env = &cpu->env;
if (ipa0 != 0xb2) {
/* Not handled for now. */
return -1;
}
cpu_synchronize_state(CPU(cpu));
switch (ipa1) {
case PRIV_XSCH:
ioinst_handle_xsch(cpu, env->regs[1]);
break;
case PRIV_CSCH:
ioinst_handle_csch(cpu, env->regs[1]);
break;
case PRIV_HSCH:
ioinst_handle_hsch(cpu, env->regs[1]);
break;
case PRIV_MSCH:
ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_SSCH:
ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_STCRW:
ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
break;
case PRIV_STSCH:
ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_TSCH:
/* We should only get tsch via KVM_EXIT_S390_TSCH. */
fprintf(stderr, "Spurious tsch intercept\n");
break;
case PRIV_CHSC:
ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
break;
case PRIV_TPI:
/* This should have been handled by kvm already. */
fprintf(stderr, "Spurious tpi intercept\n");
break;
case PRIV_SCHM:
ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
run->s390_sieic.ipb);
break;
case PRIV_RSCH:
ioinst_handle_rsch(cpu, env->regs[1]);
break;
case PRIV_RCHP:
ioinst_handle_rchp(cpu, env->regs[1]);
break;
case PRIV_STCPS:
/* We do not provide this instruction, it is suppressed. */
break;
case PRIV_SAL:
ioinst_handle_sal(cpu, env->regs[1]);
break;
case PRIV_SIGA:
/* Not provided, set CC = 3 for subchannel not operational */
setcc(cpu, 3);
break;
default:
return -1;
}
return 0;
}
static int handle_priv(S390CPU *cpu, struct kvm_run *run,
uint8_t ipa0, uint8_t ipa1)
{
int r = 0;
uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
uint8_t ipb = run->s390_sieic.ipb & 0xff;
DPRINTF("KVM: PRIV: %d\n", ipa1);
switch (ipa1) {
case PRIV_SCLP_CALL:
r = kvm_sclp_service_call(cpu, run, ipbh0);
break;
default:
r = kvm_handle_css_inst(cpu, run, ipa0, ipa1, ipb);
if (r == -1) {
DPRINTF("KVM: unhandled PRIV: 0x%x\n", ipa1);
}
break;
}
return r;
}
static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
{
CPUS390XState *env = &cpu->env;
cpu_synchronize_state(CPU(cpu));
env->regs[2] = s390_virtio_hypercall(env);
return 0;
}
static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
{
uint64_t r1, r3;
cpu_synchronize_state(CPU(cpu));
r1 = (run->s390_sieic.ipa & 0x00f0) >> 8;
r3 = run->s390_sieic.ipa & 0x000f;
handle_diag_308(&cpu->env, r1, r3);
}
#define DIAG_KVM_CODE_MASK 0x000000000000ffff
static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
{
int r = 0;
uint16_t func_code;
/*
* For any diagnose call we support, bits 48-63 of the resulting
* address specify the function code; the remainder is ignored.
*/
func_code = decode_basedisp_rs(&cpu->env, ipb) & DIAG_KVM_CODE_MASK;
switch (func_code) {
case DIAG_IPL:
kvm_handle_diag_308(cpu, run);
break;
case DIAG_KVM_HYPERCALL:
r = handle_hypercall(cpu, run);
break;
case DIAG_KVM_BREAKPOINT:
sleep(10);
break;
default:
DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
r = -1;
break;
}
return r;
}
static int kvm_s390_cpu_start(S390CPU *cpu)
{
s390_add_running_cpu(cpu);
qemu_cpu_kick(CPU(cpu));
DPRINTF("DONE: KVM cpu start: %p\n", &cpu->env);
return 0;
}
int kvm_s390_cpu_restart(S390CPU *cpu)
{
kvm_s390_interrupt(cpu, KVM_S390_RESTART, 0);
s390_add_running_cpu(cpu);
qemu_cpu_kick(CPU(cpu));
DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
return 0;
}
static int s390_cpu_initial_reset(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUS390XState *env = &cpu->env;
int i;
s390_del_running_cpu(cpu);
if (kvm_vcpu_ioctl(cs, KVM_S390_INITIAL_RESET, NULL) < 0) {
perror("cannot init reset vcpu");
}
/* Manually zero out all registers */
cpu_synchronize_state(cs);
for (i = 0; i < 16; i++) {
env->regs[i] = 0;
}
DPRINTF("DONE: SIGP initial reset: %p\n", env);
return 0;
}
#define SIGP_ORDER_MASK 0x000000ff
static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
CPUS390XState *env = &cpu->env;
uint8_t order_code;
uint16_t cpu_addr;
S390CPU *target_cpu;
uint64_t *statusreg = &env->regs[ipa1 >> 4];
int cc;
cpu_synchronize_state(CPU(cpu));
/* get order code */
order_code = decode_basedisp_rs(env, run->s390_sieic.ipb) & SIGP_ORDER_MASK;
cpu_addr = env->regs[ipa1 & 0x0f];
target_cpu = s390_cpu_addr2state(cpu_addr);
if (target_cpu == NULL) {
cc = 3; /* not operational */
goto out;
}
switch (order_code) {
case SIGP_START:
cc = kvm_s390_cpu_start(target_cpu);
break;
case SIGP_RESTART:
cc = kvm_s390_cpu_restart(target_cpu);
break;
case SIGP_SET_ARCH:
/* make the caller panic */
return -1;
case SIGP_INITIAL_CPU_RESET:
cc = s390_cpu_initial_reset(target_cpu);
break;
default:
DPRINTF("KVM: unknown SIGP: 0x%x\n", order_code);
*statusreg &= 0xffffffff00000000UL;
*statusreg |= SIGP_STAT_INVALID_ORDER;
cc = 1; /* status stored */
break;
}
out:
setcc(cpu, cc);
return 0;
}
static void handle_instruction(S390CPU *cpu, struct kvm_run *run)
{
unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
int r = -1;
DPRINTF("handle_instruction 0x%x 0x%x\n",
run->s390_sieic.ipa, run->s390_sieic.ipb);
switch (ipa0) {
case IPA0_B2:
case IPA0_B9:
case IPA0_EB:
r = handle_priv(cpu, run, ipa0 >> 8, ipa1);
break;
case IPA0_DIAG:
r = handle_diag(cpu, run, run->s390_sieic.ipb);
break;
case IPA0_SIGP:
r = handle_sigp(cpu, run, ipa1);
break;
}
if (r < 0) {
enter_pgmcheck(cpu, 0x0001);
}
}
static bool is_special_wait_psw(CPUState *cs)
{
/* signal quiesce */
return cs->kvm_run->psw_addr == 0xfffUL;
}
static int handle_intercept(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int icpt_code = run->s390_sieic.icptcode;
int r = 0;
DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
(long)cs->kvm_run->psw_addr);
switch (icpt_code) {
case ICPT_INSTRUCTION:
handle_instruction(cpu, run);
break;
case ICPT_WAITPSW:
/* disabled wait, since enabled wait is handled in kernel */
if (s390_del_running_cpu(cpu) == 0) {
if (is_special_wait_psw(cs)) {
qemu_system_shutdown_request();
} else {
QObject *data;
data = qobject_from_jsonf("{ 'action': %s }", "pause");
monitor_protocol_event(QEVENT_GUEST_PANICKED, data);
qobject_decref(data);
vm_stop(RUN_STATE_GUEST_PANICKED);
}
}
r = EXCP_HALTED;
break;
case ICPT_CPU_STOP:
if (s390_del_running_cpu(cpu) == 0) {
qemu_system_shutdown_request();
}
r = EXCP_HALTED;
break;
case ICPT_SOFT_INTERCEPT:
fprintf(stderr, "KVM unimplemented icpt SOFT\n");
exit(1);
break;
case ICPT_IO:
fprintf(stderr, "KVM unimplemented icpt IO\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
exit(1);
break;
}
return r;
}
static int handle_tsch(S390CPU *cpu)
{
CPUS390XState *env = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int ret;
cpu_synchronize_state(cs);
ret = ioinst_handle_tsch(env, env->regs[1], run->s390_tsch.ipb);
if (ret >= 0) {
/* Success; set condition code. */
setcc(cpu, ret);
ret = 0;
} else if (ret < -1) {
/*
* Failure.
* If an I/O interrupt had been dequeued, we have to reinject it.
*/
if (run->s390_tsch.dequeued) {
uint16_t subchannel_id = run->s390_tsch.subchannel_id;
uint16_t subchannel_nr = run->s390_tsch.subchannel_nr;
uint32_t io_int_parm = run->s390_tsch.io_int_parm;
uint32_t io_int_word = run->s390_tsch.io_int_word;
uint32_t type = ((subchannel_id & 0xff00) << 24) |
((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
kvm_s390_interrupt_internal(cpu, type,
((uint32_t)subchannel_id << 16)
| subchannel_nr,
((uint64_t)io_int_parm << 32)
| io_int_word, 1);
}
ret = 0;
}
return ret;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
S390CPU *cpu = S390_CPU(cs);
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_S390_SIEIC:
ret = handle_intercept(cpu);
break;
case KVM_EXIT_S390_RESET:
qemu_system_reset_request();
break;
case KVM_EXIT_S390_TSCH:
ret = handle_tsch(cpu);
break;
default:
fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
break;
}
if (ret == 0) {
ret = EXCP_INTERRUPT;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
{
return true;
}
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
return 1;
}
void kvm_s390_io_interrupt(S390CPU *cpu, uint16_t subchannel_id,
uint16_t subchannel_nr, uint32_t io_int_parm,
uint32_t io_int_word)
{
uint32_t type;
type = ((subchannel_id & 0xff00) << 24) |
((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
kvm_s390_interrupt_internal(cpu, type,
((uint32_t)subchannel_id << 16) | subchannel_nr,
((uint64_t)io_int_parm << 32) | io_int_word, 1);
}
void kvm_s390_crw_mchk(S390CPU *cpu)
{
kvm_s390_interrupt_internal(cpu, KVM_S390_MCHK, 1 << 28,
0x00400f1d40330000, 1);
}
void kvm_s390_enable_css_support(S390CPU *cpu)
{
struct kvm_enable_cap cap = {};
int r;
/* Activate host kernel channel subsystem support. */
cap.cap = KVM_CAP_S390_CSS_SUPPORT;
r = kvm_vcpu_ioctl(CPU(cpu), KVM_ENABLE_CAP, &cap);
assert(r == 0);
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
int vq, bool assign)
{
struct kvm_ioeventfd kick = {
.flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
KVM_IOEVENTFD_FLAG_DATAMATCH,
.fd = event_notifier_get_fd(notifier),
.datamatch = vq,
.addr = sch,
.len = 8,
};
if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
return -ENOSYS;
}
if (!assign) {
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
}