qemu/hw/ppce500_mpc8544ds.c
Avi Kivity c5705a7728 vmstate, memory: decouple vmstate from memory API
Currently creating a memory region automatically registers it for
live migration.  This differs from other state (which is enumerated
in a VMStateDescription structure) and ties the live migration code
into the memory core.

Decouple the two by introducing a separate API, vmstate_register_ram(),
for registering a RAM block for migration.  Currently the same
implementation is reused, but later it can be moved into a separate list,
and registrations can be moved to VMStateDescription blocks.

Signed-off-by: Avi Kivity <avi@redhat.com>
2012-01-04 13:34:48 +02:00

411 lines
13 KiB
C

/*
* Qemu PowerPC MPC8544DS board emualtion
*
* Copyright (C) 2009 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, <yu.liu@freescale.com>
*
* This file is derived from hw/ppc440_bamboo.c,
* the copyright for that material belongs to the original owners.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "config.h"
#include "qemu-common.h"
#include "net.h"
#include "hw.h"
#include "pc.h"
#include "pci.h"
#include "boards.h"
#include "sysemu.h"
#include "kvm.h"
#include "kvm_ppc.h"
#include "device_tree.h"
#include "openpic.h"
#include "ppc.h"
#include "loader.h"
#include "elf.h"
#include "sysbus.h"
#include "exec-memory.h"
#define BINARY_DEVICE_TREE_FILE "mpc8544ds.dtb"
#define UIMAGE_LOAD_BASE 0
#define DTC_LOAD_PAD 0x500000
#define DTC_PAD_MASK 0xFFFFF
#define INITRD_LOAD_PAD 0x2000000
#define INITRD_PAD_MASK 0xFFFFFF
#define RAM_SIZES_ALIGN (64UL << 20)
#define MPC8544_CCSRBAR_BASE 0xE0000000
#define MPC8544_MPIC_REGS_BASE (MPC8544_CCSRBAR_BASE + 0x40000)
#define MPC8544_SERIAL0_REGS_BASE (MPC8544_CCSRBAR_BASE + 0x4500)
#define MPC8544_SERIAL1_REGS_BASE (MPC8544_CCSRBAR_BASE + 0x4600)
#define MPC8544_PCI_REGS_BASE (MPC8544_CCSRBAR_BASE + 0x8000)
#define MPC8544_PCI_REGS_SIZE 0x1000
#define MPC8544_PCI_IO 0xE1000000
#define MPC8544_PCI_IOLEN 0x10000
#define MPC8544_UTIL_BASE (MPC8544_CCSRBAR_BASE + 0xe0000)
#define MPC8544_SPIN_BASE 0xEF000000
struct boot_info
{
uint32_t dt_base;
uint32_t entry;
};
static int mpc8544_load_device_tree(CPUState *env,
target_phys_addr_t addr,
uint32_t ramsize,
target_phys_addr_t initrd_base,
target_phys_addr_t initrd_size,
const char *kernel_cmdline)
{
int ret = -1;
#ifdef CONFIG_FDT
uint32_t mem_reg_property[] = {0, cpu_to_be32(ramsize)};
char *filename;
int fdt_size;
void *fdt;
uint8_t hypercall[16];
uint32_t clock_freq = 400000000;
uint32_t tb_freq = 400000000;
int i;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, BINARY_DEVICE_TREE_FILE);
if (!filename) {
goto out;
}
fdt = load_device_tree(filename, &fdt_size);
g_free(filename);
if (fdt == NULL) {
goto out;
}
/* Manipulate device tree in memory. */
ret = qemu_devtree_setprop(fdt, "/memory", "reg", mem_reg_property,
sizeof(mem_reg_property));
if (ret < 0)
fprintf(stderr, "couldn't set /memory/reg\n");
if (initrd_size) {
ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
initrd_base);
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
}
ret = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
(initrd_base + initrd_size));
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
}
}
ret = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
kernel_cmdline);
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/bootargs\n");
if (kvm_enabled()) {
/* Read out host's frequencies */
clock_freq = kvmppc_get_clockfreq();
tb_freq = kvmppc_get_tbfreq();
/* indicate KVM hypercall interface */
qemu_devtree_setprop_string(fdt, "/hypervisor", "compatible",
"linux,kvm");
kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
qemu_devtree_setprop(fdt, "/hypervisor", "hcall-instructions",
hypercall, sizeof(hypercall));
}
/* We need to generate the cpu nodes in reverse order, so Linux can pick
the first node as boot node and be happy */
for (i = smp_cpus - 1; i >= 0; i--) {
char cpu_name[128];
uint64_t cpu_release_addr = cpu_to_be64(MPC8544_SPIN_BASE + (i * 0x20));
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (env->cpu_index == i) {
break;
}
}
if (!env) {
continue;
}
snprintf(cpu_name, sizeof(cpu_name), "/cpus/PowerPC,8544@%x", env->cpu_index);
qemu_devtree_add_subnode(fdt, cpu_name);
qemu_devtree_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
qemu_devtree_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
qemu_devtree_setprop_string(fdt, cpu_name, "device_type", "cpu");
qemu_devtree_setprop_cell(fdt, cpu_name, "reg", env->cpu_index);
qemu_devtree_setprop_cell(fdt, cpu_name, "d-cache-line-size",
env->dcache_line_size);
qemu_devtree_setprop_cell(fdt, cpu_name, "i-cache-line-size",
env->icache_line_size);
qemu_devtree_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
qemu_devtree_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
qemu_devtree_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
if (env->cpu_index) {
qemu_devtree_setprop_string(fdt, cpu_name, "status", "disabled");
qemu_devtree_setprop_string(fdt, cpu_name, "enable-method", "spin-table");
qemu_devtree_setprop(fdt, cpu_name, "cpu-release-addr",
&cpu_release_addr, sizeof(cpu_release_addr));
} else {
qemu_devtree_setprop_string(fdt, cpu_name, "status", "okay");
}
}
ret = rom_add_blob_fixed(BINARY_DEVICE_TREE_FILE, fdt, fdt_size, addr);
g_free(fdt);
out:
#endif
return ret;
}
/* Create -kernel TLB entries for BookE, linearly spanning 256MB. */
static inline target_phys_addr_t booke206_page_size_to_tlb(uint64_t size)
{
return ffs(size >> 10) - 1;
}
static void mmubooke_create_initial_mapping(CPUState *env,
target_ulong va,
target_phys_addr_t pa)
{
ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 0);
target_phys_addr_t size;
size = (booke206_page_size_to_tlb(256 * 1024 * 1024) << MAS1_TSIZE_SHIFT);
tlb->mas1 = MAS1_VALID | size;
tlb->mas2 = va & TARGET_PAGE_MASK;
tlb->mas7_3 = pa & TARGET_PAGE_MASK;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
env->tlb_dirty = true;
}
static void mpc8544ds_cpu_reset_sec(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
/* Secondary CPU starts in halted state for now. Needs to change when
implementing non-kernel boot. */
env->halted = 1;
env->exception_index = EXCP_HLT;
}
static void mpc8544ds_cpu_reset(void *opaque)
{
CPUState *env = opaque;
struct boot_info *bi = env->load_info;
cpu_reset(env);
/* Set initial guest state. */
env->halted = 0;
env->gpr[1] = (16<<20) - 8;
env->gpr[3] = bi->dt_base;
env->nip = bi->entry;
mmubooke_create_initial_mapping(env, 0, 0);
}
static void mpc8544ds_init(ram_addr_t ram_size,
const char *boot_device,
const char *kernel_filename,
const char *kernel_cmdline,
const char *initrd_filename,
const char *cpu_model)
{
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ram = g_new(MemoryRegion, 1);
PCIBus *pci_bus;
CPUState *env = NULL;
uint64_t elf_entry;
uint64_t elf_lowaddr;
target_phys_addr_t entry=0;
target_phys_addr_t loadaddr=UIMAGE_LOAD_BASE;
target_long kernel_size=0;
target_ulong dt_base = 0;
target_ulong initrd_base = 0;
target_long initrd_size=0;
int i=0;
unsigned int pci_irq_nrs[4] = {1, 2, 3, 4};
qemu_irq **irqs, *mpic;
DeviceState *dev;
CPUState *firstenv = NULL;
/* Setup CPUs */
if (cpu_model == NULL) {
cpu_model = "e500v2_v30";
}
irqs = g_malloc0(smp_cpus * sizeof(qemu_irq *));
irqs[0] = g_malloc0(smp_cpus * sizeof(qemu_irq) * OPENPIC_OUTPUT_NB);
for (i = 0; i < smp_cpus; i++) {
qemu_irq *input;
env = cpu_ppc_init(cpu_model);
if (!env) {
fprintf(stderr, "Unable to initialize CPU!\n");
exit(1);
}
if (!firstenv) {
firstenv = env;
}
irqs[i] = irqs[0] + (i * OPENPIC_OUTPUT_NB);
input = (qemu_irq *)env->irq_inputs;
irqs[i][OPENPIC_OUTPUT_INT] = input[PPCE500_INPUT_INT];
irqs[i][OPENPIC_OUTPUT_CINT] = input[PPCE500_INPUT_CINT];
env->spr[SPR_BOOKE_PIR] = env->cpu_index = i;
ppc_booke_timers_init(env, 400000000, PPC_TIMER_E500);
/* Register reset handler */
if (!i) {
/* Primary CPU */
struct boot_info *boot_info;
boot_info = g_malloc0(sizeof(struct boot_info));
qemu_register_reset(mpc8544ds_cpu_reset, env);
env->load_info = boot_info;
} else {
/* Secondary CPUs */
qemu_register_reset(mpc8544ds_cpu_reset_sec, env);
}
}
env = firstenv;
/* Fixup Memory size on a alignment boundary */
ram_size &= ~(RAM_SIZES_ALIGN - 1);
/* Register Memory */
memory_region_init_ram(ram, "mpc8544ds.ram", ram_size);
vmstate_register_ram_global(ram);
memory_region_add_subregion(address_space_mem, 0, ram);
/* MPIC */
mpic = mpic_init(address_space_mem, MPC8544_MPIC_REGS_BASE,
smp_cpus, irqs, NULL);
if (!mpic) {
cpu_abort(env, "MPIC failed to initialize\n");
}
/* Serial */
if (serial_hds[0]) {
serial_mm_init(address_space_mem, MPC8544_SERIAL0_REGS_BASE,
0, mpic[12+26], 399193,
serial_hds[0], DEVICE_BIG_ENDIAN);
}
if (serial_hds[1]) {
serial_mm_init(address_space_mem, MPC8544_SERIAL1_REGS_BASE,
0, mpic[12+26], 399193,
serial_hds[0], DEVICE_BIG_ENDIAN);
}
/* General Utility device */
sysbus_create_simple("mpc8544-guts", MPC8544_UTIL_BASE, NULL);
/* PCI */
dev = sysbus_create_varargs("e500-pcihost", MPC8544_PCI_REGS_BASE,
mpic[pci_irq_nrs[0]], mpic[pci_irq_nrs[1]],
mpic[pci_irq_nrs[2]], mpic[pci_irq_nrs[3]],
NULL);
pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
if (!pci_bus)
printf("couldn't create PCI controller!\n");
isa_mmio_init(MPC8544_PCI_IO, MPC8544_PCI_IOLEN);
if (pci_bus) {
/* Register network interfaces. */
for (i = 0; i < nb_nics; i++) {
pci_nic_init_nofail(&nd_table[i], "virtio", NULL);
}
}
/* Register spinning region */
sysbus_create_simple("e500-spin", MPC8544_SPIN_BASE, NULL);
/* Load kernel. */
if (kernel_filename) {
kernel_size = load_uimage(kernel_filename, &entry, &loadaddr, NULL);
if (kernel_size < 0) {
kernel_size = load_elf(kernel_filename, NULL, NULL, &elf_entry,
&elf_lowaddr, NULL, 1, ELF_MACHINE, 0);
entry = elf_entry;
loadaddr = elf_lowaddr;
}
/* XXX try again as binary */
if (kernel_size < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
kernel_filename);
exit(1);
}
}
/* Load initrd. */
if (initrd_filename) {
initrd_base = (kernel_size + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
initrd_size = load_image_targphys(initrd_filename, initrd_base,
ram_size - initrd_base);
if (initrd_size < 0) {
fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
initrd_filename);
exit(1);
}
}
/* If we're loading a kernel directly, we must load the device tree too. */
if (kernel_filename) {
struct boot_info *boot_info;
#ifndef CONFIG_FDT
cpu_abort(env, "Compiled without FDT support - can't load kernel\n");
#endif
dt_base = (kernel_size + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
if (mpc8544_load_device_tree(env, dt_base, ram_size,
initrd_base, initrd_size, kernel_cmdline) < 0) {
fprintf(stderr, "couldn't load device tree\n");
exit(1);
}
boot_info = env->load_info;
boot_info->entry = entry;
boot_info->dt_base = dt_base;
}
if (kvm_enabled()) {
kvmppc_init();
}
}
static QEMUMachine mpc8544ds_machine = {
.name = "mpc8544ds",
.desc = "mpc8544ds",
.init = mpc8544ds_init,
.max_cpus = 15,
};
static void mpc8544ds_machine_init(void)
{
qemu_register_machine(&mpc8544ds_machine);
}
machine_init(mpc8544ds_machine_init);