e2d5e189aa
Update the various GIC ID and feature registers for GICv4: * PIDR2 [7:4] is the GIC architecture revision * GICD_TYPER.DVIS is 1 to indicate direct vLPI injection support * GICR_TYPER.VLPIS is 1 to indicate redistributor support for vLPIs * GITS_TYPER.VIRTUAL is 1 to indicate vLPI support * GITS_TYPER.VMOVP is 1 to indicate that our VMOVP implementation handles cross-ITS synchronization for the guest * ICH_VTR_EL2.nV4 is 0 to indicate direct vLPI injection support Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20220408141550.1271295-38-peter.maydell@linaro.org
2038 lines
64 KiB
C
2038 lines
64 KiB
C
/*
|
|
* ITS emulation for a GICv3-based system
|
|
*
|
|
* Copyright Linaro.org 2021
|
|
*
|
|
* Authors:
|
|
* Shashi Mallela <shashi.mallela@linaro.org>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or (at your
|
|
* option) any later version. See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "trace.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "hw/intc/arm_gicv3_its_common.h"
|
|
#include "gicv3_internal.h"
|
|
#include "qom/object.h"
|
|
#include "qapi/error.h"
|
|
|
|
typedef struct GICv3ITSClass GICv3ITSClass;
|
|
/* This is reusing the GICv3ITSState typedef from ARM_GICV3_ITS_COMMON */
|
|
DECLARE_OBJ_CHECKERS(GICv3ITSState, GICv3ITSClass,
|
|
ARM_GICV3_ITS, TYPE_ARM_GICV3_ITS)
|
|
|
|
struct GICv3ITSClass {
|
|
GICv3ITSCommonClass parent_class;
|
|
void (*parent_reset)(DeviceState *dev);
|
|
};
|
|
|
|
/*
|
|
* This is an internal enum used to distinguish between LPI triggered
|
|
* via command queue and LPI triggered via gits_translater write.
|
|
*/
|
|
typedef enum ItsCmdType {
|
|
NONE = 0, /* internal indication for GITS_TRANSLATER write */
|
|
CLEAR = 1,
|
|
DISCARD = 2,
|
|
INTERRUPT = 3,
|
|
} ItsCmdType;
|
|
|
|
typedef struct DTEntry {
|
|
bool valid;
|
|
unsigned size;
|
|
uint64_t ittaddr;
|
|
} DTEntry;
|
|
|
|
typedef struct CTEntry {
|
|
bool valid;
|
|
uint32_t rdbase;
|
|
} CTEntry;
|
|
|
|
typedef struct ITEntry {
|
|
bool valid;
|
|
int inttype;
|
|
uint32_t intid;
|
|
uint32_t doorbell;
|
|
uint32_t icid;
|
|
uint32_t vpeid;
|
|
} ITEntry;
|
|
|
|
typedef struct VTEntry {
|
|
bool valid;
|
|
unsigned vptsize;
|
|
uint32_t rdbase;
|
|
uint64_t vptaddr;
|
|
} VTEntry;
|
|
|
|
/*
|
|
* The ITS spec permits a range of CONSTRAINED UNPREDICTABLE options
|
|
* if a command parameter is not correct. These include both "stall
|
|
* processing of the command queue" and "ignore this command, and
|
|
* keep processing the queue". In our implementation we choose that
|
|
* memory transaction errors reading the command packet provoke a
|
|
* stall, but errors in parameters cause us to ignore the command
|
|
* and continue processing.
|
|
* The process_* functions which handle individual ITS commands all
|
|
* return an ItsCmdResult which tells process_cmdq() whether it should
|
|
* stall, keep going because of an error, or keep going because the
|
|
* command was a success.
|
|
*/
|
|
typedef enum ItsCmdResult {
|
|
CMD_STALL = 0,
|
|
CMD_CONTINUE = 1,
|
|
CMD_CONTINUE_OK = 2,
|
|
} ItsCmdResult;
|
|
|
|
/* True if the ITS supports the GICv4 virtual LPI feature */
|
|
static bool its_feature_virtual(GICv3ITSState *s)
|
|
{
|
|
return s->typer & R_GITS_TYPER_VIRTUAL_MASK;
|
|
}
|
|
|
|
static inline bool intid_in_lpi_range(uint32_t id)
|
|
{
|
|
return id >= GICV3_LPI_INTID_START &&
|
|
id < (1 << (GICD_TYPER_IDBITS + 1));
|
|
}
|
|
|
|
static inline bool valid_doorbell(uint32_t id)
|
|
{
|
|
/* Doorbell fields may be an LPI, or 1023 to mean "no doorbell" */
|
|
return id == INTID_SPURIOUS || intid_in_lpi_range(id);
|
|
}
|
|
|
|
static uint64_t baser_base_addr(uint64_t value, uint32_t page_sz)
|
|
{
|
|
uint64_t result = 0;
|
|
|
|
switch (page_sz) {
|
|
case GITS_PAGE_SIZE_4K:
|
|
case GITS_PAGE_SIZE_16K:
|
|
result = FIELD_EX64(value, GITS_BASER, PHYADDR) << 12;
|
|
break;
|
|
|
|
case GITS_PAGE_SIZE_64K:
|
|
result = FIELD_EX64(value, GITS_BASER, PHYADDRL_64K) << 16;
|
|
result |= FIELD_EX64(value, GITS_BASER, PHYADDRH_64K) << 48;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static uint64_t table_entry_addr(GICv3ITSState *s, TableDesc *td,
|
|
uint32_t idx, MemTxResult *res)
|
|
{
|
|
/*
|
|
* Given a TableDesc describing one of the ITS in-guest-memory
|
|
* tables and an index into it, return the guest address
|
|
* corresponding to that table entry.
|
|
* If there was a memory error reading the L1 table of an
|
|
* indirect table, *res is set accordingly, and we return -1.
|
|
* If the L1 table entry is marked not valid, we return -1 with
|
|
* *res set to MEMTX_OK.
|
|
*
|
|
* The specification defines the format of level 1 entries of a
|
|
* 2-level table, but the format of level 2 entries and the format
|
|
* of flat-mapped tables is IMPDEF.
|
|
*/
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
uint32_t l2idx;
|
|
uint64_t l2;
|
|
uint32_t num_l2_entries;
|
|
|
|
*res = MEMTX_OK;
|
|
|
|
if (!td->indirect) {
|
|
/* Single level table */
|
|
return td->base_addr + idx * td->entry_sz;
|
|
}
|
|
|
|
/* Two level table */
|
|
l2idx = idx / (td->page_sz / L1TABLE_ENTRY_SIZE);
|
|
|
|
l2 = address_space_ldq_le(as,
|
|
td->base_addr + (l2idx * L1TABLE_ENTRY_SIZE),
|
|
MEMTXATTRS_UNSPECIFIED, res);
|
|
if (*res != MEMTX_OK) {
|
|
return -1;
|
|
}
|
|
if (!(l2 & L2_TABLE_VALID_MASK)) {
|
|
return -1;
|
|
}
|
|
|
|
num_l2_entries = td->page_sz / td->entry_sz;
|
|
return (l2 & ((1ULL << 51) - 1)) + (idx % num_l2_entries) * td->entry_sz;
|
|
}
|
|
|
|
/*
|
|
* Read the Collection Table entry at index @icid. On success (including
|
|
* successfully determining that there is no valid CTE for this index),
|
|
* we return MEMTX_OK and populate the CTEntry struct @cte accordingly.
|
|
* If there is an error reading memory then we return the error code.
|
|
*/
|
|
static MemTxResult get_cte(GICv3ITSState *s, uint16_t icid, CTEntry *cte)
|
|
{
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
MemTxResult res = MEMTX_OK;
|
|
uint64_t entry_addr = table_entry_addr(s, &s->ct, icid, &res);
|
|
uint64_t cteval;
|
|
|
|
if (entry_addr == -1) {
|
|
/* No L2 table entry, i.e. no valid CTE, or a memory error */
|
|
cte->valid = false;
|
|
goto out;
|
|
}
|
|
|
|
cteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res);
|
|
if (res != MEMTX_OK) {
|
|
goto out;
|
|
}
|
|
cte->valid = FIELD_EX64(cteval, CTE, VALID);
|
|
cte->rdbase = FIELD_EX64(cteval, CTE, RDBASE);
|
|
out:
|
|
if (res != MEMTX_OK) {
|
|
trace_gicv3_its_cte_read_fault(icid);
|
|
} else {
|
|
trace_gicv3_its_cte_read(icid, cte->valid, cte->rdbase);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Update the Interrupt Table entry at index @evinted in the table specified
|
|
* by the dte @dte. Returns true on success, false if there was a memory
|
|
* access error.
|
|
*/
|
|
static bool update_ite(GICv3ITSState *s, uint32_t eventid, const DTEntry *dte,
|
|
const ITEntry *ite)
|
|
{
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
MemTxResult res = MEMTX_OK;
|
|
hwaddr iteaddr = dte->ittaddr + eventid * ITS_ITT_ENTRY_SIZE;
|
|
uint64_t itel = 0;
|
|
uint32_t iteh = 0;
|
|
|
|
trace_gicv3_its_ite_write(dte->ittaddr, eventid, ite->valid,
|
|
ite->inttype, ite->intid, ite->icid,
|
|
ite->vpeid, ite->doorbell);
|
|
|
|
if (ite->valid) {
|
|
itel = FIELD_DP64(itel, ITE_L, VALID, 1);
|
|
itel = FIELD_DP64(itel, ITE_L, INTTYPE, ite->inttype);
|
|
itel = FIELD_DP64(itel, ITE_L, INTID, ite->intid);
|
|
itel = FIELD_DP64(itel, ITE_L, ICID, ite->icid);
|
|
itel = FIELD_DP64(itel, ITE_L, VPEID, ite->vpeid);
|
|
iteh = FIELD_DP32(iteh, ITE_H, DOORBELL, ite->doorbell);
|
|
}
|
|
|
|
address_space_stq_le(as, iteaddr, itel, MEMTXATTRS_UNSPECIFIED, &res);
|
|
if (res != MEMTX_OK) {
|
|
return false;
|
|
}
|
|
address_space_stl_le(as, iteaddr + 8, iteh, MEMTXATTRS_UNSPECIFIED, &res);
|
|
return res == MEMTX_OK;
|
|
}
|
|
|
|
/*
|
|
* Read the Interrupt Table entry at index @eventid from the table specified
|
|
* by the DTE @dte. On success, we return MEMTX_OK and populate the ITEntry
|
|
* struct @ite accordingly. If there is an error reading memory then we return
|
|
* the error code.
|
|
*/
|
|
static MemTxResult get_ite(GICv3ITSState *s, uint32_t eventid,
|
|
const DTEntry *dte, ITEntry *ite)
|
|
{
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
MemTxResult res = MEMTX_OK;
|
|
uint64_t itel;
|
|
uint32_t iteh;
|
|
hwaddr iteaddr = dte->ittaddr + eventid * ITS_ITT_ENTRY_SIZE;
|
|
|
|
itel = address_space_ldq_le(as, iteaddr, MEMTXATTRS_UNSPECIFIED, &res);
|
|
if (res != MEMTX_OK) {
|
|
trace_gicv3_its_ite_read_fault(dte->ittaddr, eventid);
|
|
return res;
|
|
}
|
|
|
|
iteh = address_space_ldl_le(as, iteaddr + 8, MEMTXATTRS_UNSPECIFIED, &res);
|
|
if (res != MEMTX_OK) {
|
|
trace_gicv3_its_ite_read_fault(dte->ittaddr, eventid);
|
|
return res;
|
|
}
|
|
|
|
ite->valid = FIELD_EX64(itel, ITE_L, VALID);
|
|
ite->inttype = FIELD_EX64(itel, ITE_L, INTTYPE);
|
|
ite->intid = FIELD_EX64(itel, ITE_L, INTID);
|
|
ite->icid = FIELD_EX64(itel, ITE_L, ICID);
|
|
ite->vpeid = FIELD_EX64(itel, ITE_L, VPEID);
|
|
ite->doorbell = FIELD_EX64(iteh, ITE_H, DOORBELL);
|
|
trace_gicv3_its_ite_read(dte->ittaddr, eventid, ite->valid,
|
|
ite->inttype, ite->intid, ite->icid,
|
|
ite->vpeid, ite->doorbell);
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
/*
|
|
* Read the Device Table entry at index @devid. On success (including
|
|
* successfully determining that there is no valid DTE for this index),
|
|
* we return MEMTX_OK and populate the DTEntry struct accordingly.
|
|
* If there is an error reading memory then we return the error code.
|
|
*/
|
|
static MemTxResult get_dte(GICv3ITSState *s, uint32_t devid, DTEntry *dte)
|
|
{
|
|
MemTxResult res = MEMTX_OK;
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
uint64_t entry_addr = table_entry_addr(s, &s->dt, devid, &res);
|
|
uint64_t dteval;
|
|
|
|
if (entry_addr == -1) {
|
|
/* No L2 table entry, i.e. no valid DTE, or a memory error */
|
|
dte->valid = false;
|
|
goto out;
|
|
}
|
|
dteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res);
|
|
if (res != MEMTX_OK) {
|
|
goto out;
|
|
}
|
|
dte->valid = FIELD_EX64(dteval, DTE, VALID);
|
|
dte->size = FIELD_EX64(dteval, DTE, SIZE);
|
|
/* DTE word field stores bits [51:8] of the ITT address */
|
|
dte->ittaddr = FIELD_EX64(dteval, DTE, ITTADDR) << ITTADDR_SHIFT;
|
|
out:
|
|
if (res != MEMTX_OK) {
|
|
trace_gicv3_its_dte_read_fault(devid);
|
|
} else {
|
|
trace_gicv3_its_dte_read(devid, dte->valid, dte->size, dte->ittaddr);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Read the vPE Table entry at index @vpeid. On success (including
|
|
* successfully determining that there is no valid entry for this index),
|
|
* we return MEMTX_OK and populate the VTEntry struct accordingly.
|
|
* If there is an error reading memory then we return the error code.
|
|
*/
|
|
static MemTxResult get_vte(GICv3ITSState *s, uint32_t vpeid, VTEntry *vte)
|
|
{
|
|
MemTxResult res = MEMTX_OK;
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
uint64_t entry_addr = table_entry_addr(s, &s->vpet, vpeid, &res);
|
|
uint64_t vteval;
|
|
|
|
if (entry_addr == -1) {
|
|
/* No L2 table entry, i.e. no valid VTE, or a memory error */
|
|
vte->valid = false;
|
|
goto out;
|
|
}
|
|
vteval = address_space_ldq_le(as, entry_addr, MEMTXATTRS_UNSPECIFIED, &res);
|
|
if (res != MEMTX_OK) {
|
|
goto out;
|
|
}
|
|
vte->valid = FIELD_EX64(vteval, VTE, VALID);
|
|
vte->vptsize = FIELD_EX64(vteval, VTE, VPTSIZE);
|
|
vte->vptaddr = FIELD_EX64(vteval, VTE, VPTADDR);
|
|
vte->rdbase = FIELD_EX64(vteval, VTE, RDBASE);
|
|
out:
|
|
if (res != MEMTX_OK) {
|
|
trace_gicv3_its_vte_read_fault(vpeid);
|
|
} else {
|
|
trace_gicv3_its_vte_read(vpeid, vte->valid, vte->vptsize,
|
|
vte->vptaddr, vte->rdbase);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Given a (DeviceID, EventID), look up the corresponding ITE, including
|
|
* checking for the various invalid-value cases. If we find a valid ITE,
|
|
* fill in @ite and @dte and return CMD_CONTINUE_OK. Otherwise return
|
|
* CMD_STALL or CMD_CONTINUE as appropriate (and the contents of @ite
|
|
* should not be relied on).
|
|
*
|
|
* The string @who is purely for the LOG_GUEST_ERROR messages,
|
|
* and should indicate the name of the calling function or similar.
|
|
*/
|
|
static ItsCmdResult lookup_ite(GICv3ITSState *s, const char *who,
|
|
uint32_t devid, uint32_t eventid, ITEntry *ite,
|
|
DTEntry *dte)
|
|
{
|
|
uint64_t num_eventids;
|
|
|
|
if (devid >= s->dt.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid command attributes: devid %d>=%d",
|
|
who, devid, s->dt.num_entries);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (get_dte(s, devid, dte) != MEMTX_OK) {
|
|
return CMD_STALL;
|
|
}
|
|
if (!dte->valid) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid command attributes: "
|
|
"invalid dte for %d\n", who, devid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
num_eventids = 1ULL << (dte->size + 1);
|
|
if (eventid >= num_eventids) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid command attributes: eventid %d >= %"
|
|
PRId64 "\n", who, eventid, num_eventids);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (get_ite(s, eventid, dte, ite) != MEMTX_OK) {
|
|
return CMD_STALL;
|
|
}
|
|
|
|
if (!ite->valid) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid command attributes: invalid ITE\n", who);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
/*
|
|
* Given an ICID, look up the corresponding CTE, including checking for various
|
|
* invalid-value cases. If we find a valid CTE, fill in @cte and return
|
|
* CMD_CONTINUE_OK; otherwise return CMD_STALL or CMD_CONTINUE (and the
|
|
* contents of @cte should not be relied on).
|
|
*
|
|
* The string @who is purely for the LOG_GUEST_ERROR messages,
|
|
* and should indicate the name of the calling function or similar.
|
|
*/
|
|
static ItsCmdResult lookup_cte(GICv3ITSState *s, const char *who,
|
|
uint32_t icid, CTEntry *cte)
|
|
{
|
|
if (icid >= s->ct.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid ICID 0x%x\n", who, icid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
if (get_cte(s, icid, cte) != MEMTX_OK) {
|
|
return CMD_STALL;
|
|
}
|
|
if (!cte->valid) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid CTE\n", who);
|
|
return CMD_CONTINUE;
|
|
}
|
|
if (cte->rdbase >= s->gicv3->num_cpu) {
|
|
return CMD_CONTINUE;
|
|
}
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
/*
|
|
* Given a VPEID, look up the corresponding VTE, including checking
|
|
* for various invalid-value cases. if we find a valid VTE, fill in @vte
|
|
* and return CMD_CONTINUE_OK; otherwise return CMD_STALL or CMD_CONTINUE
|
|
* (and the contents of @vte should not be relied on).
|
|
*
|
|
* The string @who is purely for the LOG_GUEST_ERROR messages,
|
|
* and should indicate the name of the calling function or similar.
|
|
*/
|
|
static ItsCmdResult lookup_vte(GICv3ITSState *s, const char *who,
|
|
uint32_t vpeid, VTEntry *vte)
|
|
{
|
|
if (vpeid >= s->vpet.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid VPEID 0x%x\n", who, vpeid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (get_vte(s, vpeid, vte) != MEMTX_OK) {
|
|
return CMD_STALL;
|
|
}
|
|
if (!vte->valid) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid VTE for VPEID 0x%x\n", who, vpeid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (vte->rdbase >= s->gicv3->num_cpu) {
|
|
return CMD_CONTINUE;
|
|
}
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
static ItsCmdResult process_its_cmd_phys(GICv3ITSState *s, const ITEntry *ite,
|
|
int irqlevel)
|
|
{
|
|
CTEntry cte;
|
|
ItsCmdResult cmdres;
|
|
|
|
cmdres = lookup_cte(s, __func__, ite->icid, &cte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
gicv3_redist_process_lpi(&s->gicv3->cpu[cte.rdbase], ite->intid, irqlevel);
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
static ItsCmdResult process_its_cmd_virt(GICv3ITSState *s, const ITEntry *ite,
|
|
int irqlevel)
|
|
{
|
|
VTEntry vte;
|
|
ItsCmdResult cmdres;
|
|
|
|
cmdres = lookup_vte(s, __func__, ite->vpeid, &vte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
|
|
if (!intid_in_lpi_range(ite->intid) ||
|
|
ite->intid >= (1ULL << (vte.vptsize + 1))) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: intid 0x%x out of range\n",
|
|
__func__, ite->intid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* For QEMU the actual pending of the vLPI is handled in the
|
|
* redistributor code
|
|
*/
|
|
gicv3_redist_process_vlpi(&s->gicv3->cpu[vte.rdbase], ite->intid,
|
|
vte.vptaddr << 16, ite->doorbell, irqlevel);
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
/*
|
|
* This function handles the processing of following commands based on
|
|
* the ItsCmdType parameter passed:-
|
|
* 1. triggering of lpi interrupt translation via ITS INT command
|
|
* 2. triggering of lpi interrupt translation via gits_translater register
|
|
* 3. handling of ITS CLEAR command
|
|
* 4. handling of ITS DISCARD command
|
|
*/
|
|
static ItsCmdResult do_process_its_cmd(GICv3ITSState *s, uint32_t devid,
|
|
uint32_t eventid, ItsCmdType cmd)
|
|
{
|
|
DTEntry dte;
|
|
ITEntry ite;
|
|
ItsCmdResult cmdres;
|
|
int irqlevel;
|
|
|
|
cmdres = lookup_ite(s, __func__, devid, eventid, &ite, &dte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
|
|
irqlevel = (cmd == CLEAR || cmd == DISCARD) ? 0 : 1;
|
|
|
|
switch (ite.inttype) {
|
|
case ITE_INTTYPE_PHYSICAL:
|
|
cmdres = process_its_cmd_phys(s, &ite, irqlevel);
|
|
break;
|
|
case ITE_INTTYPE_VIRTUAL:
|
|
if (!its_feature_virtual(s)) {
|
|
/* Can't happen unless guest is illegally writing to table memory */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid type %d in ITE (table corrupted?)\n",
|
|
__func__, ite.inttype);
|
|
return CMD_CONTINUE;
|
|
}
|
|
cmdres = process_its_cmd_virt(s, &ite, irqlevel);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (cmdres == CMD_CONTINUE_OK && cmd == DISCARD) {
|
|
ITEntry ite = {};
|
|
/* remove mapping from interrupt translation table */
|
|
ite.valid = false;
|
|
return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL;
|
|
}
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
static ItsCmdResult process_its_cmd(GICv3ITSState *s, const uint64_t *cmdpkt,
|
|
ItsCmdType cmd)
|
|
{
|
|
uint32_t devid, eventid;
|
|
|
|
devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT;
|
|
eventid = cmdpkt[1] & EVENTID_MASK;
|
|
switch (cmd) {
|
|
case INTERRUPT:
|
|
trace_gicv3_its_cmd_int(devid, eventid);
|
|
break;
|
|
case CLEAR:
|
|
trace_gicv3_its_cmd_clear(devid, eventid);
|
|
break;
|
|
case DISCARD:
|
|
trace_gicv3_its_cmd_discard(devid, eventid);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return do_process_its_cmd(s, devid, eventid, cmd);
|
|
}
|
|
|
|
static ItsCmdResult process_mapti(GICv3ITSState *s, const uint64_t *cmdpkt,
|
|
bool ignore_pInt)
|
|
{
|
|
uint32_t devid, eventid;
|
|
uint32_t pIntid = 0;
|
|
uint64_t num_eventids;
|
|
uint16_t icid = 0;
|
|
DTEntry dte;
|
|
ITEntry ite;
|
|
|
|
devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT;
|
|
eventid = cmdpkt[1] & EVENTID_MASK;
|
|
icid = cmdpkt[2] & ICID_MASK;
|
|
|
|
if (ignore_pInt) {
|
|
pIntid = eventid;
|
|
trace_gicv3_its_cmd_mapi(devid, eventid, icid);
|
|
} else {
|
|
pIntid = (cmdpkt[1] & pINTID_MASK) >> pINTID_SHIFT;
|
|
trace_gicv3_its_cmd_mapti(devid, eventid, icid, pIntid);
|
|
}
|
|
|
|
if (devid >= s->dt.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid command attributes: devid %d>=%d",
|
|
__func__, devid, s->dt.num_entries);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (get_dte(s, devid, &dte) != MEMTX_OK) {
|
|
return CMD_STALL;
|
|
}
|
|
num_eventids = 1ULL << (dte.size + 1);
|
|
|
|
if (icid >= s->ct.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid ICID 0x%x >= 0x%x\n",
|
|
__func__, icid, s->ct.num_entries);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (!dte.valid) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: no valid DTE for devid 0x%x\n", __func__, devid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (eventid >= num_eventids) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid event ID 0x%x >= 0x%" PRIx64 "\n",
|
|
__func__, eventid, num_eventids);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (!intid_in_lpi_range(pIntid)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid interrupt ID 0x%x\n", __func__, pIntid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
/* add ite entry to interrupt translation table */
|
|
ite.valid = true;
|
|
ite.inttype = ITE_INTTYPE_PHYSICAL;
|
|
ite.intid = pIntid;
|
|
ite.icid = icid;
|
|
ite.doorbell = INTID_SPURIOUS;
|
|
ite.vpeid = 0;
|
|
return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL;
|
|
}
|
|
|
|
static ItsCmdResult process_vmapti(GICv3ITSState *s, const uint64_t *cmdpkt,
|
|
bool ignore_vintid)
|
|
{
|
|
uint32_t devid, eventid, vintid, doorbell, vpeid;
|
|
uint32_t num_eventids;
|
|
DTEntry dte;
|
|
ITEntry ite;
|
|
|
|
if (!its_feature_virtual(s)) {
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
devid = FIELD_EX64(cmdpkt[0], VMAPTI_0, DEVICEID);
|
|
eventid = FIELD_EX64(cmdpkt[1], VMAPTI_1, EVENTID);
|
|
vpeid = FIELD_EX64(cmdpkt[1], VMAPTI_1, VPEID);
|
|
doorbell = FIELD_EX64(cmdpkt[2], VMAPTI_2, DOORBELL);
|
|
if (ignore_vintid) {
|
|
vintid = eventid;
|
|
trace_gicv3_its_cmd_vmapi(devid, eventid, vpeid, doorbell);
|
|
} else {
|
|
vintid = FIELD_EX64(cmdpkt[2], VMAPTI_2, VINTID);
|
|
trace_gicv3_its_cmd_vmapti(devid, eventid, vpeid, vintid, doorbell);
|
|
}
|
|
|
|
if (devid >= s->dt.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid DeviceID 0x%x (must be less than 0x%x)\n",
|
|
__func__, devid, s->dt.num_entries);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (get_dte(s, devid, &dte) != MEMTX_OK) {
|
|
return CMD_STALL;
|
|
}
|
|
|
|
if (!dte.valid) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: no entry in device table for DeviceID 0x%x\n",
|
|
__func__, devid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
num_eventids = 1ULL << (dte.size + 1);
|
|
|
|
if (eventid >= num_eventids) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: EventID 0x%x too large for DeviceID 0x%x "
|
|
"(must be less than 0x%x)\n",
|
|
__func__, eventid, devid, num_eventids);
|
|
return CMD_CONTINUE;
|
|
}
|
|
if (!intid_in_lpi_range(vintid)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: VIntID 0x%x not a valid LPI\n",
|
|
__func__, vintid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
if (!valid_doorbell(doorbell)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: Doorbell %d not 1023 and not a valid LPI\n",
|
|
__func__, doorbell);
|
|
return CMD_CONTINUE;
|
|
}
|
|
if (vpeid >= s->vpet.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: VPEID 0x%x out of range (must be less than 0x%x)\n",
|
|
__func__, vpeid, s->vpet.num_entries);
|
|
return CMD_CONTINUE;
|
|
}
|
|
/* add ite entry to interrupt translation table */
|
|
ite.valid = true;
|
|
ite.inttype = ITE_INTTYPE_VIRTUAL;
|
|
ite.intid = vintid;
|
|
ite.icid = 0;
|
|
ite.doorbell = doorbell;
|
|
ite.vpeid = vpeid;
|
|
return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL;
|
|
}
|
|
|
|
/*
|
|
* Update the Collection Table entry for @icid to @cte. Returns true
|
|
* on success, false if there was a memory access error.
|
|
*/
|
|
static bool update_cte(GICv3ITSState *s, uint16_t icid, const CTEntry *cte)
|
|
{
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
uint64_t entry_addr;
|
|
uint64_t cteval = 0;
|
|
MemTxResult res = MEMTX_OK;
|
|
|
|
trace_gicv3_its_cte_write(icid, cte->valid, cte->rdbase);
|
|
|
|
if (cte->valid) {
|
|
/* add mapping entry to collection table */
|
|
cteval = FIELD_DP64(cteval, CTE, VALID, 1);
|
|
cteval = FIELD_DP64(cteval, CTE, RDBASE, cte->rdbase);
|
|
}
|
|
|
|
entry_addr = table_entry_addr(s, &s->ct, icid, &res);
|
|
if (res != MEMTX_OK) {
|
|
/* memory access error: stall */
|
|
return false;
|
|
}
|
|
if (entry_addr == -1) {
|
|
/* No L2 table for this index: discard write and continue */
|
|
return true;
|
|
}
|
|
|
|
address_space_stq_le(as, entry_addr, cteval, MEMTXATTRS_UNSPECIFIED, &res);
|
|
return res == MEMTX_OK;
|
|
}
|
|
|
|
static ItsCmdResult process_mapc(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
uint16_t icid;
|
|
CTEntry cte;
|
|
|
|
icid = cmdpkt[2] & ICID_MASK;
|
|
cte.valid = cmdpkt[2] & CMD_FIELD_VALID_MASK;
|
|
if (cte.valid) {
|
|
cte.rdbase = (cmdpkt[2] & R_MAPC_RDBASE_MASK) >> R_MAPC_RDBASE_SHIFT;
|
|
cte.rdbase &= RDBASE_PROCNUM_MASK;
|
|
} else {
|
|
cte.rdbase = 0;
|
|
}
|
|
trace_gicv3_its_cmd_mapc(icid, cte.rdbase, cte.valid);
|
|
|
|
if (icid >= s->ct.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "ITS MAPC: invalid ICID 0x%x\n", icid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
if (cte.valid && cte.rdbase >= s->gicv3->num_cpu) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"ITS MAPC: invalid RDBASE %u\n", cte.rdbase);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
return update_cte(s, icid, &cte) ? CMD_CONTINUE_OK : CMD_STALL;
|
|
}
|
|
|
|
/*
|
|
* Update the Device Table entry for @devid to @dte. Returns true
|
|
* on success, false if there was a memory access error.
|
|
*/
|
|
static bool update_dte(GICv3ITSState *s, uint32_t devid, const DTEntry *dte)
|
|
{
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
uint64_t entry_addr;
|
|
uint64_t dteval = 0;
|
|
MemTxResult res = MEMTX_OK;
|
|
|
|
trace_gicv3_its_dte_write(devid, dte->valid, dte->size, dte->ittaddr);
|
|
|
|
if (dte->valid) {
|
|
/* add mapping entry to device table */
|
|
dteval = FIELD_DP64(dteval, DTE, VALID, 1);
|
|
dteval = FIELD_DP64(dteval, DTE, SIZE, dte->size);
|
|
dteval = FIELD_DP64(dteval, DTE, ITTADDR, dte->ittaddr);
|
|
}
|
|
|
|
entry_addr = table_entry_addr(s, &s->dt, devid, &res);
|
|
if (res != MEMTX_OK) {
|
|
/* memory access error: stall */
|
|
return false;
|
|
}
|
|
if (entry_addr == -1) {
|
|
/* No L2 table for this index: discard write and continue */
|
|
return true;
|
|
}
|
|
address_space_stq_le(as, entry_addr, dteval, MEMTXATTRS_UNSPECIFIED, &res);
|
|
return res == MEMTX_OK;
|
|
}
|
|
|
|
static ItsCmdResult process_mapd(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
uint32_t devid;
|
|
DTEntry dte;
|
|
|
|
devid = (cmdpkt[0] & DEVID_MASK) >> DEVID_SHIFT;
|
|
dte.size = cmdpkt[1] & SIZE_MASK;
|
|
dte.ittaddr = (cmdpkt[2] & ITTADDR_MASK) >> ITTADDR_SHIFT;
|
|
dte.valid = cmdpkt[2] & CMD_FIELD_VALID_MASK;
|
|
|
|
trace_gicv3_its_cmd_mapd(devid, dte.size, dte.ittaddr, dte.valid);
|
|
|
|
if (devid >= s->dt.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"ITS MAPD: invalid device ID field 0x%x >= 0x%x\n",
|
|
devid, s->dt.num_entries);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (dte.size > FIELD_EX64(s->typer, GITS_TYPER, IDBITS)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"ITS MAPD: invalid size %d\n", dte.size);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
return update_dte(s, devid, &dte) ? CMD_CONTINUE_OK : CMD_STALL;
|
|
}
|
|
|
|
static ItsCmdResult process_movall(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
uint64_t rd1, rd2;
|
|
|
|
rd1 = FIELD_EX64(cmdpkt[2], MOVALL_2, RDBASE1);
|
|
rd2 = FIELD_EX64(cmdpkt[3], MOVALL_3, RDBASE2);
|
|
|
|
trace_gicv3_its_cmd_movall(rd1, rd2);
|
|
|
|
if (rd1 >= s->gicv3->num_cpu) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: RDBASE1 %" PRId64
|
|
" out of range (must be less than %d)\n",
|
|
__func__, rd1, s->gicv3->num_cpu);
|
|
return CMD_CONTINUE;
|
|
}
|
|
if (rd2 >= s->gicv3->num_cpu) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: RDBASE2 %" PRId64
|
|
" out of range (must be less than %d)\n",
|
|
__func__, rd2, s->gicv3->num_cpu);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (rd1 == rd2) {
|
|
/* Move to same target must succeed as a no-op */
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
/* Move all pending LPIs from redistributor 1 to redistributor 2 */
|
|
gicv3_redist_movall_lpis(&s->gicv3->cpu[rd1], &s->gicv3->cpu[rd2]);
|
|
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
static ItsCmdResult process_movi(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
uint32_t devid, eventid;
|
|
uint16_t new_icid;
|
|
DTEntry dte;
|
|
CTEntry old_cte, new_cte;
|
|
ITEntry old_ite;
|
|
ItsCmdResult cmdres;
|
|
|
|
devid = FIELD_EX64(cmdpkt[0], MOVI_0, DEVICEID);
|
|
eventid = FIELD_EX64(cmdpkt[1], MOVI_1, EVENTID);
|
|
new_icid = FIELD_EX64(cmdpkt[2], MOVI_2, ICID);
|
|
|
|
trace_gicv3_its_cmd_movi(devid, eventid, new_icid);
|
|
|
|
cmdres = lookup_ite(s, __func__, devid, eventid, &old_ite, &dte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
|
|
if (old_ite.inttype != ITE_INTTYPE_PHYSICAL) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid command attributes: invalid ITE\n",
|
|
__func__);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
cmdres = lookup_cte(s, __func__, old_ite.icid, &old_cte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
cmdres = lookup_cte(s, __func__, new_icid, &new_cte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
|
|
if (old_cte.rdbase != new_cte.rdbase) {
|
|
/* Move the LPI from the old redistributor to the new one */
|
|
gicv3_redist_mov_lpi(&s->gicv3->cpu[old_cte.rdbase],
|
|
&s->gicv3->cpu[new_cte.rdbase],
|
|
old_ite.intid);
|
|
}
|
|
|
|
/* Update the ICID field in the interrupt translation table entry */
|
|
old_ite.icid = new_icid;
|
|
return update_ite(s, eventid, &dte, &old_ite) ? CMD_CONTINUE_OK : CMD_STALL;
|
|
}
|
|
|
|
/*
|
|
* Update the vPE Table entry at index @vpeid with the entry @vte.
|
|
* Returns true on success, false if there was a memory access error.
|
|
*/
|
|
static bool update_vte(GICv3ITSState *s, uint32_t vpeid, const VTEntry *vte)
|
|
{
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
uint64_t entry_addr;
|
|
uint64_t vteval = 0;
|
|
MemTxResult res = MEMTX_OK;
|
|
|
|
trace_gicv3_its_vte_write(vpeid, vte->valid, vte->vptsize, vte->vptaddr,
|
|
vte->rdbase);
|
|
|
|
if (vte->valid) {
|
|
vteval = FIELD_DP64(vteval, VTE, VALID, 1);
|
|
vteval = FIELD_DP64(vteval, VTE, VPTSIZE, vte->vptsize);
|
|
vteval = FIELD_DP64(vteval, VTE, VPTADDR, vte->vptaddr);
|
|
vteval = FIELD_DP64(vteval, VTE, RDBASE, vte->rdbase);
|
|
}
|
|
|
|
entry_addr = table_entry_addr(s, &s->vpet, vpeid, &res);
|
|
if (res != MEMTX_OK) {
|
|
return false;
|
|
}
|
|
if (entry_addr == -1) {
|
|
/* No L2 table for this index: discard write and continue */
|
|
return true;
|
|
}
|
|
address_space_stq_le(as, entry_addr, vteval, MEMTXATTRS_UNSPECIFIED, &res);
|
|
return res == MEMTX_OK;
|
|
}
|
|
|
|
static ItsCmdResult process_vmapp(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
VTEntry vte;
|
|
uint32_t vpeid;
|
|
|
|
if (!its_feature_virtual(s)) {
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
vpeid = FIELD_EX64(cmdpkt[1], VMAPP_1, VPEID);
|
|
vte.rdbase = FIELD_EX64(cmdpkt[2], VMAPP_2, RDBASE);
|
|
vte.valid = FIELD_EX64(cmdpkt[2], VMAPP_2, V);
|
|
vte.vptsize = FIELD_EX64(cmdpkt[3], VMAPP_3, VPTSIZE);
|
|
vte.vptaddr = FIELD_EX64(cmdpkt[3], VMAPP_3, VPTADDR);
|
|
|
|
trace_gicv3_its_cmd_vmapp(vpeid, vte.rdbase, vte.valid,
|
|
vte.vptaddr, vte.vptsize);
|
|
|
|
/*
|
|
* For GICv4.0 the VPT_size field is only 5 bits, whereas we
|
|
* define our field macros to include the full GICv4.1 8 bits.
|
|
* The range check on VPT_size will catch the cases where
|
|
* the guest set the RES0-in-GICv4.0 bits [7:6].
|
|
*/
|
|
if (vte.vptsize > FIELD_EX64(s->typer, GITS_TYPER, IDBITS)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid VPT_size 0x%x\n", __func__, vte.vptsize);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (vte.valid && vte.rdbase >= s->gicv3->num_cpu) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid rdbase 0x%x\n", __func__, vte.rdbase);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
if (vpeid >= s->vpet.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: VPEID 0x%x out of range (must be less than 0x%x)\n",
|
|
__func__, vpeid, s->vpet.num_entries);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
return update_vte(s, vpeid, &vte) ? CMD_CONTINUE_OK : CMD_STALL;
|
|
}
|
|
|
|
typedef struct VmovpCallbackData {
|
|
uint64_t rdbase;
|
|
uint32_t vpeid;
|
|
/*
|
|
* Overall command result. If more than one callback finds an
|
|
* error, STALL beats CONTINUE.
|
|
*/
|
|
ItsCmdResult result;
|
|
} VmovpCallbackData;
|
|
|
|
static void vmovp_callback(gpointer data, gpointer opaque)
|
|
{
|
|
/*
|
|
* This function is called to update the VPEID field in a VPE
|
|
* table entry for this ITS. This might be because of a VMOVP
|
|
* command executed on any ITS that is connected to the same GIC
|
|
* as this ITS. We need to read the VPE table entry for the VPEID
|
|
* and update its RDBASE field.
|
|
*/
|
|
GICv3ITSState *s = data;
|
|
VmovpCallbackData *cbdata = opaque;
|
|
VTEntry vte;
|
|
ItsCmdResult cmdres;
|
|
|
|
cmdres = lookup_vte(s, __func__, cbdata->vpeid, &vte);
|
|
switch (cmdres) {
|
|
case CMD_STALL:
|
|
cbdata->result = CMD_STALL;
|
|
return;
|
|
case CMD_CONTINUE:
|
|
if (cbdata->result != CMD_STALL) {
|
|
cbdata->result = CMD_CONTINUE;
|
|
}
|
|
return;
|
|
case CMD_CONTINUE_OK:
|
|
break;
|
|
}
|
|
|
|
vte.rdbase = cbdata->rdbase;
|
|
if (!update_vte(s, cbdata->vpeid, &vte)) {
|
|
cbdata->result = CMD_STALL;
|
|
}
|
|
}
|
|
|
|
static ItsCmdResult process_vmovp(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
VmovpCallbackData cbdata;
|
|
|
|
if (!its_feature_virtual(s)) {
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
cbdata.vpeid = FIELD_EX64(cmdpkt[1], VMOVP_1, VPEID);
|
|
cbdata.rdbase = FIELD_EX64(cmdpkt[2], VMOVP_2, RDBASE);
|
|
|
|
trace_gicv3_its_cmd_vmovp(cbdata.vpeid, cbdata.rdbase);
|
|
|
|
if (cbdata.rdbase >= s->gicv3->num_cpu) {
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* Our ITS implementation reports GITS_TYPER.VMOVP == 1, which means
|
|
* that when the VMOVP command is executed on an ITS to change the
|
|
* VPEID field in a VPE table entry the change must be propagated
|
|
* to all the ITSes connected to the same GIC.
|
|
*/
|
|
cbdata.result = CMD_CONTINUE_OK;
|
|
gicv3_foreach_its(s->gicv3, vmovp_callback, &cbdata);
|
|
return cbdata.result;
|
|
}
|
|
|
|
static ItsCmdResult process_vmovi(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
uint32_t devid, eventid, vpeid, doorbell;
|
|
bool doorbell_valid;
|
|
DTEntry dte;
|
|
ITEntry ite;
|
|
VTEntry old_vte, new_vte;
|
|
ItsCmdResult cmdres;
|
|
|
|
if (!its_feature_virtual(s)) {
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
devid = FIELD_EX64(cmdpkt[0], VMOVI_0, DEVICEID);
|
|
eventid = FIELD_EX64(cmdpkt[1], VMOVI_1, EVENTID);
|
|
vpeid = FIELD_EX64(cmdpkt[1], VMOVI_1, VPEID);
|
|
doorbell_valid = FIELD_EX64(cmdpkt[2], VMOVI_2, D);
|
|
doorbell = FIELD_EX64(cmdpkt[2], VMOVI_2, DOORBELL);
|
|
|
|
trace_gicv3_its_cmd_vmovi(devid, eventid, vpeid, doorbell_valid, doorbell);
|
|
|
|
if (doorbell_valid && !valid_doorbell(doorbell)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid doorbell 0x%x\n", __func__, doorbell);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
cmdres = lookup_ite(s, __func__, devid, eventid, &ite, &dte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
|
|
if (ite.inttype != ITE_INTTYPE_VIRTUAL) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: ITE is not for virtual interrupt\n",
|
|
__func__);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
cmdres = lookup_vte(s, __func__, ite.vpeid, &old_vte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
cmdres = lookup_vte(s, __func__, vpeid, &new_vte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
|
|
if (!intid_in_lpi_range(ite.intid) ||
|
|
ite.intid >= (1ULL << (old_vte.vptsize + 1)) ||
|
|
ite.intid >= (1ULL << (new_vte.vptsize + 1))) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: ITE intid 0x%x out of range\n",
|
|
__func__, ite.intid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
ite.vpeid = vpeid;
|
|
if (doorbell_valid) {
|
|
ite.doorbell = doorbell;
|
|
}
|
|
|
|
/*
|
|
* Move the LPI from the old redistributor to the new one. We don't
|
|
* need to do anything if the guest somehow specified the
|
|
* same pending table for source and destination.
|
|
*/
|
|
if (old_vte.vptaddr != new_vte.vptaddr) {
|
|
gicv3_redist_mov_vlpi(&s->gicv3->cpu[old_vte.rdbase],
|
|
old_vte.vptaddr << 16,
|
|
&s->gicv3->cpu[new_vte.rdbase],
|
|
new_vte.vptaddr << 16,
|
|
ite.intid,
|
|
ite.doorbell);
|
|
}
|
|
|
|
/* Update the ITE to the new VPEID and possibly doorbell values */
|
|
return update_ite(s, eventid, &dte, &ite) ? CMD_CONTINUE_OK : CMD_STALL;
|
|
}
|
|
|
|
static ItsCmdResult process_vinvall(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
VTEntry vte;
|
|
uint32_t vpeid;
|
|
ItsCmdResult cmdres;
|
|
|
|
if (!its_feature_virtual(s)) {
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
vpeid = FIELD_EX64(cmdpkt[1], VINVALL_1, VPEID);
|
|
|
|
trace_gicv3_its_cmd_vinvall(vpeid);
|
|
|
|
cmdres = lookup_vte(s, __func__, vpeid, &vte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
|
|
gicv3_redist_vinvall(&s->gicv3->cpu[vte.rdbase], vte.vptaddr << 16);
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
static ItsCmdResult process_inv(GICv3ITSState *s, const uint64_t *cmdpkt)
|
|
{
|
|
uint32_t devid, eventid;
|
|
ITEntry ite;
|
|
DTEntry dte;
|
|
CTEntry cte;
|
|
VTEntry vte;
|
|
ItsCmdResult cmdres;
|
|
|
|
devid = FIELD_EX64(cmdpkt[0], INV_0, DEVICEID);
|
|
eventid = FIELD_EX64(cmdpkt[1], INV_1, EVENTID);
|
|
|
|
trace_gicv3_its_cmd_inv(devid, eventid);
|
|
|
|
cmdres = lookup_ite(s, __func__, devid, eventid, &ite, &dte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
|
|
switch (ite.inttype) {
|
|
case ITE_INTTYPE_PHYSICAL:
|
|
cmdres = lookup_cte(s, __func__, ite.icid, &cte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
gicv3_redist_inv_lpi(&s->gicv3->cpu[cte.rdbase], ite.intid);
|
|
break;
|
|
case ITE_INTTYPE_VIRTUAL:
|
|
if (!its_feature_virtual(s)) {
|
|
/* Can't happen unless guest is illegally writing to table memory */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid type %d in ITE (table corrupted?)\n",
|
|
__func__, ite.inttype);
|
|
return CMD_CONTINUE;
|
|
}
|
|
|
|
cmdres = lookup_vte(s, __func__, ite.vpeid, &vte);
|
|
if (cmdres != CMD_CONTINUE_OK) {
|
|
return cmdres;
|
|
}
|
|
if (!intid_in_lpi_range(ite.intid) ||
|
|
ite.intid >= (1ULL << (vte.vptsize + 1))) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "%s: intid 0x%x out of range\n",
|
|
__func__, ite.intid);
|
|
return CMD_CONTINUE;
|
|
}
|
|
gicv3_redist_inv_vlpi(&s->gicv3->cpu[vte.rdbase], ite.intid,
|
|
vte.vptaddr << 16);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
return CMD_CONTINUE_OK;
|
|
}
|
|
|
|
/*
|
|
* Current implementation blocks until all
|
|
* commands are processed
|
|
*/
|
|
static void process_cmdq(GICv3ITSState *s)
|
|
{
|
|
uint32_t wr_offset = 0;
|
|
uint32_t rd_offset = 0;
|
|
uint32_t cq_offset = 0;
|
|
AddressSpace *as = &s->gicv3->dma_as;
|
|
uint8_t cmd;
|
|
int i;
|
|
|
|
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
|
|
return;
|
|
}
|
|
|
|
wr_offset = FIELD_EX64(s->cwriter, GITS_CWRITER, OFFSET);
|
|
|
|
if (wr_offset >= s->cq.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid write offset "
|
|
"%d\n", __func__, wr_offset);
|
|
return;
|
|
}
|
|
|
|
rd_offset = FIELD_EX64(s->creadr, GITS_CREADR, OFFSET);
|
|
|
|
if (rd_offset >= s->cq.num_entries) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid read offset "
|
|
"%d\n", __func__, rd_offset);
|
|
return;
|
|
}
|
|
|
|
while (wr_offset != rd_offset) {
|
|
ItsCmdResult result = CMD_CONTINUE_OK;
|
|
void *hostmem;
|
|
hwaddr buflen;
|
|
uint64_t cmdpkt[GITS_CMDQ_ENTRY_WORDS];
|
|
|
|
cq_offset = (rd_offset * GITS_CMDQ_ENTRY_SIZE);
|
|
|
|
buflen = GITS_CMDQ_ENTRY_SIZE;
|
|
hostmem = address_space_map(as, s->cq.base_addr + cq_offset,
|
|
&buflen, false, MEMTXATTRS_UNSPECIFIED);
|
|
if (!hostmem || buflen != GITS_CMDQ_ENTRY_SIZE) {
|
|
if (hostmem) {
|
|
address_space_unmap(as, hostmem, buflen, false, 0);
|
|
}
|
|
s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, STALLED, 1);
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: could not read command at 0x%" PRIx64 "\n",
|
|
__func__, s->cq.base_addr + cq_offset);
|
|
break;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(cmdpkt); i++) {
|
|
cmdpkt[i] = ldq_le_p(hostmem + i * sizeof(uint64_t));
|
|
}
|
|
address_space_unmap(as, hostmem, buflen, false, 0);
|
|
|
|
cmd = cmdpkt[0] & CMD_MASK;
|
|
|
|
trace_gicv3_its_process_command(rd_offset, cmd);
|
|
|
|
switch (cmd) {
|
|
case GITS_CMD_INT:
|
|
result = process_its_cmd(s, cmdpkt, INTERRUPT);
|
|
break;
|
|
case GITS_CMD_CLEAR:
|
|
result = process_its_cmd(s, cmdpkt, CLEAR);
|
|
break;
|
|
case GITS_CMD_SYNC:
|
|
/*
|
|
* Current implementation makes a blocking synchronous call
|
|
* for every command issued earlier, hence the internal state
|
|
* is already consistent by the time SYNC command is executed.
|
|
* Hence no further processing is required for SYNC command.
|
|
*/
|
|
trace_gicv3_its_cmd_sync();
|
|
break;
|
|
case GITS_CMD_VSYNC:
|
|
/*
|
|
* VSYNC also is a nop, because our implementation is always
|
|
* in sync.
|
|
*/
|
|
if (!its_feature_virtual(s)) {
|
|
result = CMD_CONTINUE;
|
|
break;
|
|
}
|
|
trace_gicv3_its_cmd_vsync();
|
|
break;
|
|
case GITS_CMD_MAPD:
|
|
result = process_mapd(s, cmdpkt);
|
|
break;
|
|
case GITS_CMD_MAPC:
|
|
result = process_mapc(s, cmdpkt);
|
|
break;
|
|
case GITS_CMD_MAPTI:
|
|
result = process_mapti(s, cmdpkt, false);
|
|
break;
|
|
case GITS_CMD_MAPI:
|
|
result = process_mapti(s, cmdpkt, true);
|
|
break;
|
|
case GITS_CMD_DISCARD:
|
|
result = process_its_cmd(s, cmdpkt, DISCARD);
|
|
break;
|
|
case GITS_CMD_INV:
|
|
result = process_inv(s, cmdpkt);
|
|
break;
|
|
case GITS_CMD_INVALL:
|
|
/*
|
|
* Current implementation doesn't cache any ITS tables,
|
|
* but the calculated lpi priority information. We only
|
|
* need to trigger lpi priority re-calculation to be in
|
|
* sync with LPI config table or pending table changes.
|
|
* INVALL operates on a collection specified by ICID so
|
|
* it only affects physical LPIs.
|
|
*/
|
|
trace_gicv3_its_cmd_invall();
|
|
for (i = 0; i < s->gicv3->num_cpu; i++) {
|
|
gicv3_redist_update_lpi(&s->gicv3->cpu[i]);
|
|
}
|
|
break;
|
|
case GITS_CMD_MOVI:
|
|
result = process_movi(s, cmdpkt);
|
|
break;
|
|
case GITS_CMD_MOVALL:
|
|
result = process_movall(s, cmdpkt);
|
|
break;
|
|
case GITS_CMD_VMAPTI:
|
|
result = process_vmapti(s, cmdpkt, false);
|
|
break;
|
|
case GITS_CMD_VMAPI:
|
|
result = process_vmapti(s, cmdpkt, true);
|
|
break;
|
|
case GITS_CMD_VMAPP:
|
|
result = process_vmapp(s, cmdpkt);
|
|
break;
|
|
case GITS_CMD_VMOVP:
|
|
result = process_vmovp(s, cmdpkt);
|
|
break;
|
|
case GITS_CMD_VMOVI:
|
|
result = process_vmovi(s, cmdpkt);
|
|
break;
|
|
case GITS_CMD_VINVALL:
|
|
result = process_vinvall(s, cmdpkt);
|
|
break;
|
|
default:
|
|
trace_gicv3_its_cmd_unknown(cmd);
|
|
break;
|
|
}
|
|
if (result != CMD_STALL) {
|
|
/* CMD_CONTINUE or CMD_CONTINUE_OK */
|
|
rd_offset++;
|
|
rd_offset %= s->cq.num_entries;
|
|
s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, OFFSET, rd_offset);
|
|
} else {
|
|
/* CMD_STALL */
|
|
s->creadr = FIELD_DP64(s->creadr, GITS_CREADR, STALLED, 1);
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: 0x%x cmd processing failed, stalling\n",
|
|
__func__, cmd);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function extracts the ITS Device and Collection table specific
|
|
* parameters (like base_addr, size etc) from GITS_BASER register.
|
|
* It is called during ITS enable and also during post_load migration
|
|
*/
|
|
static void extract_table_params(GICv3ITSState *s)
|
|
{
|
|
uint16_t num_pages = 0;
|
|
uint8_t page_sz_type;
|
|
uint8_t type;
|
|
uint32_t page_sz = 0;
|
|
uint64_t value;
|
|
|
|
for (int i = 0; i < 8; i++) {
|
|
TableDesc *td;
|
|
int idbits;
|
|
|
|
value = s->baser[i];
|
|
|
|
if (!value) {
|
|
continue;
|
|
}
|
|
|
|
page_sz_type = FIELD_EX64(value, GITS_BASER, PAGESIZE);
|
|
|
|
switch (page_sz_type) {
|
|
case 0:
|
|
page_sz = GITS_PAGE_SIZE_4K;
|
|
break;
|
|
|
|
case 1:
|
|
page_sz = GITS_PAGE_SIZE_16K;
|
|
break;
|
|
|
|
case 2:
|
|
case 3:
|
|
page_sz = GITS_PAGE_SIZE_64K;
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
num_pages = FIELD_EX64(value, GITS_BASER, SIZE) + 1;
|
|
|
|
type = FIELD_EX64(value, GITS_BASER, TYPE);
|
|
|
|
switch (type) {
|
|
case GITS_BASER_TYPE_DEVICE:
|
|
td = &s->dt;
|
|
idbits = FIELD_EX64(s->typer, GITS_TYPER, DEVBITS) + 1;
|
|
break;
|
|
case GITS_BASER_TYPE_COLLECTION:
|
|
td = &s->ct;
|
|
if (FIELD_EX64(s->typer, GITS_TYPER, CIL)) {
|
|
idbits = FIELD_EX64(s->typer, GITS_TYPER, CIDBITS) + 1;
|
|
} else {
|
|
/* 16-bit CollectionId supported when CIL == 0 */
|
|
idbits = 16;
|
|
}
|
|
break;
|
|
case GITS_BASER_TYPE_VPE:
|
|
td = &s->vpet;
|
|
/*
|
|
* For QEMU vPEIDs are always 16 bits. (GICv4.1 allows an
|
|
* implementation to implement fewer bits and report this
|
|
* via GICD_TYPER2.)
|
|
*/
|
|
idbits = 16;
|
|
break;
|
|
default:
|
|
/*
|
|
* GITS_BASER<n>.TYPE is read-only, so GITS_BASER_RO_MASK
|
|
* ensures we will only see type values corresponding to
|
|
* the values set up in gicv3_its_reset().
|
|
*/
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
memset(td, 0, sizeof(*td));
|
|
/*
|
|
* If GITS_BASER<n>.Valid is 0 for any <n> then we will not process
|
|
* interrupts. (GITS_TYPER.HCC is 0 for this implementation, so we
|
|
* do not have a special case where the GITS_BASER<n>.Valid bit is 0
|
|
* for the register corresponding to the Collection table but we
|
|
* still have to process interrupts using non-memory-backed
|
|
* Collection table entries.)
|
|
* The specification makes it UNPREDICTABLE to enable the ITS without
|
|
* marking each BASER<n> as valid. We choose to handle these as if
|
|
* the table was zero-sized, so commands using the table will fail
|
|
* and interrupts requested via GITS_TRANSLATER writes will be ignored.
|
|
* This happens automatically by leaving the num_entries field at
|
|
* zero, which will be caught by the bounds checks we have before
|
|
* every table lookup anyway.
|
|
*/
|
|
if (!FIELD_EX64(value, GITS_BASER, VALID)) {
|
|
continue;
|
|
}
|
|
td->page_sz = page_sz;
|
|
td->indirect = FIELD_EX64(value, GITS_BASER, INDIRECT);
|
|
td->entry_sz = FIELD_EX64(value, GITS_BASER, ENTRYSIZE) + 1;
|
|
td->base_addr = baser_base_addr(value, page_sz);
|
|
if (!td->indirect) {
|
|
td->num_entries = (num_pages * page_sz) / td->entry_sz;
|
|
} else {
|
|
td->num_entries = (((num_pages * page_sz) /
|
|
L1TABLE_ENTRY_SIZE) *
|
|
(page_sz / td->entry_sz));
|
|
}
|
|
td->num_entries = MIN(td->num_entries, 1ULL << idbits);
|
|
}
|
|
}
|
|
|
|
static void extract_cmdq_params(GICv3ITSState *s)
|
|
{
|
|
uint16_t num_pages = 0;
|
|
uint64_t value = s->cbaser;
|
|
|
|
num_pages = FIELD_EX64(value, GITS_CBASER, SIZE) + 1;
|
|
|
|
memset(&s->cq, 0 , sizeof(s->cq));
|
|
|
|
if (FIELD_EX64(value, GITS_CBASER, VALID)) {
|
|
s->cq.num_entries = (num_pages * GITS_PAGE_SIZE_4K) /
|
|
GITS_CMDQ_ENTRY_SIZE;
|
|
s->cq.base_addr = FIELD_EX64(value, GITS_CBASER, PHYADDR);
|
|
s->cq.base_addr <<= R_GITS_CBASER_PHYADDR_SHIFT;
|
|
}
|
|
}
|
|
|
|
static MemTxResult gicv3_its_translation_read(void *opaque, hwaddr offset,
|
|
uint64_t *data, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
/*
|
|
* GITS_TRANSLATER is write-only, and all other addresses
|
|
* in the interrupt translation space frame are RES0.
|
|
*/
|
|
*data = 0;
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult gicv3_its_translation_write(void *opaque, hwaddr offset,
|
|
uint64_t data, unsigned size,
|
|
MemTxAttrs attrs)
|
|
{
|
|
GICv3ITSState *s = (GICv3ITSState *)opaque;
|
|
bool result = true;
|
|
|
|
trace_gicv3_its_translation_write(offset, data, size, attrs.requester_id);
|
|
|
|
switch (offset) {
|
|
case GITS_TRANSLATER:
|
|
if (s->ctlr & R_GITS_CTLR_ENABLED_MASK) {
|
|
result = do_process_its_cmd(s, attrs.requester_id, data, NONE);
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (result) {
|
|
return MEMTX_OK;
|
|
} else {
|
|
return MEMTX_ERROR;
|
|
}
|
|
}
|
|
|
|
static bool its_writel(GICv3ITSState *s, hwaddr offset,
|
|
uint64_t value, MemTxAttrs attrs)
|
|
{
|
|
bool result = true;
|
|
int index;
|
|
|
|
switch (offset) {
|
|
case GITS_CTLR:
|
|
if (value & R_GITS_CTLR_ENABLED_MASK) {
|
|
s->ctlr |= R_GITS_CTLR_ENABLED_MASK;
|
|
extract_table_params(s);
|
|
extract_cmdq_params(s);
|
|
process_cmdq(s);
|
|
} else {
|
|
s->ctlr &= ~R_GITS_CTLR_ENABLED_MASK;
|
|
}
|
|
break;
|
|
case GITS_CBASER:
|
|
/*
|
|
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
|
|
* already enabled
|
|
*/
|
|
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
|
|
s->cbaser = deposit64(s->cbaser, 0, 32, value);
|
|
s->creadr = 0;
|
|
}
|
|
break;
|
|
case GITS_CBASER + 4:
|
|
/*
|
|
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
|
|
* already enabled
|
|
*/
|
|
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
|
|
s->cbaser = deposit64(s->cbaser, 32, 32, value);
|
|
s->creadr = 0;
|
|
}
|
|
break;
|
|
case GITS_CWRITER:
|
|
s->cwriter = deposit64(s->cwriter, 0, 32,
|
|
(value & ~R_GITS_CWRITER_RETRY_MASK));
|
|
if (s->cwriter != s->creadr) {
|
|
process_cmdq(s);
|
|
}
|
|
break;
|
|
case GITS_CWRITER + 4:
|
|
s->cwriter = deposit64(s->cwriter, 32, 32, value);
|
|
break;
|
|
case GITS_CREADR:
|
|
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
|
|
s->creadr = deposit64(s->creadr, 0, 32,
|
|
(value & ~R_GITS_CREADR_STALLED_MASK));
|
|
} else {
|
|
/* RO register, ignore the write */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid guest write to RO register at offset "
|
|
TARGET_FMT_plx "\n", __func__, offset);
|
|
}
|
|
break;
|
|
case GITS_CREADR + 4:
|
|
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
|
|
s->creadr = deposit64(s->creadr, 32, 32, value);
|
|
} else {
|
|
/* RO register, ignore the write */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid guest write to RO register at offset "
|
|
TARGET_FMT_plx "\n", __func__, offset);
|
|
}
|
|
break;
|
|
case GITS_BASER ... GITS_BASER + 0x3f:
|
|
/*
|
|
* IMPDEF choice:- GITS_BASERn register becomes RO if ITS is
|
|
* already enabled
|
|
*/
|
|
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
|
|
index = (offset - GITS_BASER) / 8;
|
|
|
|
if (s->baser[index] == 0) {
|
|
/* Unimplemented GITS_BASERn: RAZ/WI */
|
|
break;
|
|
}
|
|
if (offset & 7) {
|
|
value <<= 32;
|
|
value &= ~GITS_BASER_RO_MASK;
|
|
s->baser[index] &= GITS_BASER_RO_MASK | MAKE_64BIT_MASK(0, 32);
|
|
s->baser[index] |= value;
|
|
} else {
|
|
value &= ~GITS_BASER_RO_MASK;
|
|
s->baser[index] &= GITS_BASER_RO_MASK | MAKE_64BIT_MASK(32, 32);
|
|
s->baser[index] |= value;
|
|
}
|
|
}
|
|
break;
|
|
case GITS_IIDR:
|
|
case GITS_IDREGS ... GITS_IDREGS + 0x2f:
|
|
/* RO registers, ignore the write */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid guest write to RO register at offset "
|
|
TARGET_FMT_plx "\n", __func__, offset);
|
|
break;
|
|
default:
|
|
result = false;
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static bool its_readl(GICv3ITSState *s, hwaddr offset,
|
|
uint64_t *data, MemTxAttrs attrs)
|
|
{
|
|
bool result = true;
|
|
int index;
|
|
|
|
switch (offset) {
|
|
case GITS_CTLR:
|
|
*data = s->ctlr;
|
|
break;
|
|
case GITS_IIDR:
|
|
*data = gicv3_iidr();
|
|
break;
|
|
case GITS_IDREGS ... GITS_IDREGS + 0x2f:
|
|
/* ID registers */
|
|
*data = gicv3_idreg(s->gicv3, offset - GITS_IDREGS, GICV3_PIDR0_ITS);
|
|
break;
|
|
case GITS_TYPER:
|
|
*data = extract64(s->typer, 0, 32);
|
|
break;
|
|
case GITS_TYPER + 4:
|
|
*data = extract64(s->typer, 32, 32);
|
|
break;
|
|
case GITS_CBASER:
|
|
*data = extract64(s->cbaser, 0, 32);
|
|
break;
|
|
case GITS_CBASER + 4:
|
|
*data = extract64(s->cbaser, 32, 32);
|
|
break;
|
|
case GITS_CREADR:
|
|
*data = extract64(s->creadr, 0, 32);
|
|
break;
|
|
case GITS_CREADR + 4:
|
|
*data = extract64(s->creadr, 32, 32);
|
|
break;
|
|
case GITS_CWRITER:
|
|
*data = extract64(s->cwriter, 0, 32);
|
|
break;
|
|
case GITS_CWRITER + 4:
|
|
*data = extract64(s->cwriter, 32, 32);
|
|
break;
|
|
case GITS_BASER ... GITS_BASER + 0x3f:
|
|
index = (offset - GITS_BASER) / 8;
|
|
if (offset & 7) {
|
|
*data = extract64(s->baser[index], 32, 32);
|
|
} else {
|
|
*data = extract64(s->baser[index], 0, 32);
|
|
}
|
|
break;
|
|
default:
|
|
result = false;
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static bool its_writell(GICv3ITSState *s, hwaddr offset,
|
|
uint64_t value, MemTxAttrs attrs)
|
|
{
|
|
bool result = true;
|
|
int index;
|
|
|
|
switch (offset) {
|
|
case GITS_BASER ... GITS_BASER + 0x3f:
|
|
/*
|
|
* IMPDEF choice:- GITS_BASERn register becomes RO if ITS is
|
|
* already enabled
|
|
*/
|
|
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
|
|
index = (offset - GITS_BASER) / 8;
|
|
if (s->baser[index] == 0) {
|
|
/* Unimplemented GITS_BASERn: RAZ/WI */
|
|
break;
|
|
}
|
|
s->baser[index] &= GITS_BASER_RO_MASK;
|
|
s->baser[index] |= (value & ~GITS_BASER_RO_MASK);
|
|
}
|
|
break;
|
|
case GITS_CBASER:
|
|
/*
|
|
* IMPDEF choice:- GITS_CBASER register becomes RO if ITS is
|
|
* already enabled
|
|
*/
|
|
if (!(s->ctlr & R_GITS_CTLR_ENABLED_MASK)) {
|
|
s->cbaser = value;
|
|
s->creadr = 0;
|
|
}
|
|
break;
|
|
case GITS_CWRITER:
|
|
s->cwriter = value & ~R_GITS_CWRITER_RETRY_MASK;
|
|
if (s->cwriter != s->creadr) {
|
|
process_cmdq(s);
|
|
}
|
|
break;
|
|
case GITS_CREADR:
|
|
if (s->gicv3->gicd_ctlr & GICD_CTLR_DS) {
|
|
s->creadr = value & ~R_GITS_CREADR_STALLED_MASK;
|
|
} else {
|
|
/* RO register, ignore the write */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid guest write to RO register at offset "
|
|
TARGET_FMT_plx "\n", __func__, offset);
|
|
}
|
|
break;
|
|
case GITS_TYPER:
|
|
/* RO registers, ignore the write */
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid guest write to RO register at offset "
|
|
TARGET_FMT_plx "\n", __func__, offset);
|
|
break;
|
|
default:
|
|
result = false;
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static bool its_readll(GICv3ITSState *s, hwaddr offset,
|
|
uint64_t *data, MemTxAttrs attrs)
|
|
{
|
|
bool result = true;
|
|
int index;
|
|
|
|
switch (offset) {
|
|
case GITS_TYPER:
|
|
*data = s->typer;
|
|
break;
|
|
case GITS_BASER ... GITS_BASER + 0x3f:
|
|
index = (offset - GITS_BASER) / 8;
|
|
*data = s->baser[index];
|
|
break;
|
|
case GITS_CBASER:
|
|
*data = s->cbaser;
|
|
break;
|
|
case GITS_CREADR:
|
|
*data = s->creadr;
|
|
break;
|
|
case GITS_CWRITER:
|
|
*data = s->cwriter;
|
|
break;
|
|
default:
|
|
result = false;
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static MemTxResult gicv3_its_read(void *opaque, hwaddr offset, uint64_t *data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
GICv3ITSState *s = (GICv3ITSState *)opaque;
|
|
bool result;
|
|
|
|
switch (size) {
|
|
case 4:
|
|
result = its_readl(s, offset, data, attrs);
|
|
break;
|
|
case 8:
|
|
result = its_readll(s, offset, data, attrs);
|
|
break;
|
|
default:
|
|
result = false;
|
|
break;
|
|
}
|
|
|
|
if (!result) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid guest read at offset " TARGET_FMT_plx
|
|
" size %u\n", __func__, offset, size);
|
|
trace_gicv3_its_badread(offset, size);
|
|
/*
|
|
* The spec requires that reserved registers are RAZ/WI;
|
|
* so use false returns from leaf functions as a way to
|
|
* trigger the guest-error logging but don't return it to
|
|
* the caller, or we'll cause a spurious guest data abort.
|
|
*/
|
|
*data = 0;
|
|
} else {
|
|
trace_gicv3_its_read(offset, *data, size);
|
|
}
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static MemTxResult gicv3_its_write(void *opaque, hwaddr offset, uint64_t data,
|
|
unsigned size, MemTxAttrs attrs)
|
|
{
|
|
GICv3ITSState *s = (GICv3ITSState *)opaque;
|
|
bool result;
|
|
|
|
switch (size) {
|
|
case 4:
|
|
result = its_writel(s, offset, data, attrs);
|
|
break;
|
|
case 8:
|
|
result = its_writell(s, offset, data, attrs);
|
|
break;
|
|
default:
|
|
result = false;
|
|
break;
|
|
}
|
|
|
|
if (!result) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"%s: invalid guest write at offset " TARGET_FMT_plx
|
|
" size %u\n", __func__, offset, size);
|
|
trace_gicv3_its_badwrite(offset, data, size);
|
|
/*
|
|
* The spec requires that reserved registers are RAZ/WI;
|
|
* so use false returns from leaf functions as a way to
|
|
* trigger the guest-error logging but don't return it to
|
|
* the caller, or we'll cause a spurious guest data abort.
|
|
*/
|
|
} else {
|
|
trace_gicv3_its_write(offset, data, size);
|
|
}
|
|
return MEMTX_OK;
|
|
}
|
|
|
|
static const MemoryRegionOps gicv3_its_control_ops = {
|
|
.read_with_attrs = gicv3_its_read,
|
|
.write_with_attrs = gicv3_its_write,
|
|
.valid.min_access_size = 4,
|
|
.valid.max_access_size = 8,
|
|
.impl.min_access_size = 4,
|
|
.impl.max_access_size = 8,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static const MemoryRegionOps gicv3_its_translation_ops = {
|
|
.read_with_attrs = gicv3_its_translation_read,
|
|
.write_with_attrs = gicv3_its_translation_write,
|
|
.valid.min_access_size = 2,
|
|
.valid.max_access_size = 4,
|
|
.impl.min_access_size = 2,
|
|
.impl.max_access_size = 4,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static void gicv3_arm_its_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
GICv3ITSState *s = ARM_GICV3_ITS_COMMON(dev);
|
|
int i;
|
|
|
|
for (i = 0; i < s->gicv3->num_cpu; i++) {
|
|
if (!(s->gicv3->cpu[i].gicr_typer & GICR_TYPER_PLPIS)) {
|
|
error_setg(errp, "Physical LPI not supported by CPU %d", i);
|
|
return;
|
|
}
|
|
}
|
|
|
|
gicv3_add_its(s->gicv3, dev);
|
|
|
|
gicv3_its_init_mmio(s, &gicv3_its_control_ops, &gicv3_its_translation_ops);
|
|
|
|
/* set the ITS default features supported */
|
|
s->typer = FIELD_DP64(s->typer, GITS_TYPER, PHYSICAL, 1);
|
|
s->typer = FIELD_DP64(s->typer, GITS_TYPER, ITT_ENTRY_SIZE,
|
|
ITS_ITT_ENTRY_SIZE - 1);
|
|
s->typer = FIELD_DP64(s->typer, GITS_TYPER, IDBITS, ITS_IDBITS);
|
|
s->typer = FIELD_DP64(s->typer, GITS_TYPER, DEVBITS, ITS_DEVBITS);
|
|
s->typer = FIELD_DP64(s->typer, GITS_TYPER, CIL, 1);
|
|
s->typer = FIELD_DP64(s->typer, GITS_TYPER, CIDBITS, ITS_CIDBITS);
|
|
if (s->gicv3->revision >= 4) {
|
|
/* Our VMOVP handles cross-ITS synchronization itself */
|
|
s->typer = FIELD_DP64(s->typer, GITS_TYPER, VMOVP, 1);
|
|
s->typer = FIELD_DP64(s->typer, GITS_TYPER, VIRTUAL, 1);
|
|
}
|
|
}
|
|
|
|
static void gicv3_its_reset(DeviceState *dev)
|
|
{
|
|
GICv3ITSState *s = ARM_GICV3_ITS_COMMON(dev);
|
|
GICv3ITSClass *c = ARM_GICV3_ITS_GET_CLASS(s);
|
|
|
|
c->parent_reset(dev);
|
|
|
|
/* Quiescent bit reset to 1 */
|
|
s->ctlr = FIELD_DP32(s->ctlr, GITS_CTLR, QUIESCENT, 1);
|
|
|
|
/*
|
|
* setting GITS_BASER0.Type = 0b001 (Device)
|
|
* GITS_BASER1.Type = 0b100 (Collection Table)
|
|
* GITS_BASER2.Type = 0b010 (vPE) for GICv4 and later
|
|
* GITS_BASER<n>.Type,where n = 3 to 7 are 0b00 (Unimplemented)
|
|
* GITS_BASER<0,1>.Page_Size = 64KB
|
|
* and default translation table entry size to 16 bytes
|
|
*/
|
|
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, TYPE,
|
|
GITS_BASER_TYPE_DEVICE);
|
|
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, PAGESIZE,
|
|
GITS_BASER_PAGESIZE_64K);
|
|
s->baser[0] = FIELD_DP64(s->baser[0], GITS_BASER, ENTRYSIZE,
|
|
GITS_DTE_SIZE - 1);
|
|
|
|
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, TYPE,
|
|
GITS_BASER_TYPE_COLLECTION);
|
|
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, PAGESIZE,
|
|
GITS_BASER_PAGESIZE_64K);
|
|
s->baser[1] = FIELD_DP64(s->baser[1], GITS_BASER, ENTRYSIZE,
|
|
GITS_CTE_SIZE - 1);
|
|
|
|
if (its_feature_virtual(s)) {
|
|
s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, TYPE,
|
|
GITS_BASER_TYPE_VPE);
|
|
s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, PAGESIZE,
|
|
GITS_BASER_PAGESIZE_64K);
|
|
s->baser[2] = FIELD_DP64(s->baser[2], GITS_BASER, ENTRYSIZE,
|
|
GITS_VPE_SIZE - 1);
|
|
}
|
|
}
|
|
|
|
static void gicv3_its_post_load(GICv3ITSState *s)
|
|
{
|
|
if (s->ctlr & R_GITS_CTLR_ENABLED_MASK) {
|
|
extract_table_params(s);
|
|
extract_cmdq_params(s);
|
|
}
|
|
}
|
|
|
|
static Property gicv3_its_props[] = {
|
|
DEFINE_PROP_LINK("parent-gicv3", GICv3ITSState, gicv3, "arm-gicv3",
|
|
GICv3State *),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static void gicv3_its_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
GICv3ITSClass *ic = ARM_GICV3_ITS_CLASS(klass);
|
|
GICv3ITSCommonClass *icc = ARM_GICV3_ITS_COMMON_CLASS(klass);
|
|
|
|
dc->realize = gicv3_arm_its_realize;
|
|
device_class_set_props(dc, gicv3_its_props);
|
|
device_class_set_parent_reset(dc, gicv3_its_reset, &ic->parent_reset);
|
|
icc->post_load = gicv3_its_post_load;
|
|
}
|
|
|
|
static const TypeInfo gicv3_its_info = {
|
|
.name = TYPE_ARM_GICV3_ITS,
|
|
.parent = TYPE_ARM_GICV3_ITS_COMMON,
|
|
.instance_size = sizeof(GICv3ITSState),
|
|
.class_init = gicv3_its_class_init,
|
|
.class_size = sizeof(GICv3ITSClass),
|
|
};
|
|
|
|
static void gicv3_its_register_types(void)
|
|
{
|
|
type_register_static(&gicv3_its_info);
|
|
}
|
|
|
|
type_init(gicv3_its_register_types)
|