qemu/hw/vfio/pci.c
Eric Auger 1b808d5be0 vfio: Pass an error object to vfio_get_group
Pass an error object to prepare for migration to VFIO-PCI realize.

For the time being let's just simply report the error in
vfio platform's vfio_base_device_init(). A subsequent patch will
duly propagate the error up to vfio_platform_realize.

Signed-off-by: Eric Auger <eric.auger@redhat.com>
Reviewed-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>
2016-10-17 10:57:59 -06:00

2916 lines
92 KiB
C

/*
* vfio based device assignment support
*
* Copyright Red Hat, Inc. 2012
*
* Authors:
* Alex Williamson <alex.williamson@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Based on qemu-kvm device-assignment:
* Adapted for KVM by Qumranet.
* Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
* Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
* Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
* Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
* Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
*/
#include "qemu/osdep.h"
#include <linux/vfio.h>
#include <sys/ioctl.h>
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/pci/pci_bridge.h"
#include "qemu/error-report.h"
#include "qemu/range.h"
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
#include "pci.h"
#include "trace.h"
#include "qapi/error.h"
#define MSIX_CAP_LENGTH 12
static void vfio_disable_interrupts(VFIOPCIDevice *vdev);
static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled);
/*
* Disabling BAR mmaping can be slow, but toggling it around INTx can
* also be a huge overhead. We try to get the best of both worlds by
* waiting until an interrupt to disable mmaps (subsequent transitions
* to the same state are effectively no overhead). If the interrupt has
* been serviced and the time gap is long enough, we re-enable mmaps for
* performance. This works well for things like graphics cards, which
* may not use their interrupt at all and are penalized to an unusable
* level by read/write BAR traps. Other devices, like NICs, have more
* regular interrupts and see much better latency by staying in non-mmap
* mode. We therefore set the default mmap_timeout such that a ping
* is just enough to keep the mmap disabled. Users can experiment with
* other options with the x-intx-mmap-timeout-ms parameter (a value of
* zero disables the timer).
*/
static void vfio_intx_mmap_enable(void *opaque)
{
VFIOPCIDevice *vdev = opaque;
if (vdev->intx.pending) {
timer_mod(vdev->intx.mmap_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
return;
}
vfio_mmap_set_enabled(vdev, true);
}
static void vfio_intx_interrupt(void *opaque)
{
VFIOPCIDevice *vdev = opaque;
if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) {
return;
}
trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin);
vdev->intx.pending = true;
pci_irq_assert(&vdev->pdev);
vfio_mmap_set_enabled(vdev, false);
if (vdev->intx.mmap_timeout) {
timer_mod(vdev->intx.mmap_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
}
}
static void vfio_intx_eoi(VFIODevice *vbasedev)
{
VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
if (!vdev->intx.pending) {
return;
}
trace_vfio_intx_eoi(vbasedev->name);
vdev->intx.pending = false;
pci_irq_deassert(&vdev->pdev);
vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
}
static void vfio_intx_enable_kvm(VFIOPCIDevice *vdev, Error **errp)
{
#ifdef CONFIG_KVM
struct kvm_irqfd irqfd = {
.fd = event_notifier_get_fd(&vdev->intx.interrupt),
.gsi = vdev->intx.route.irq,
.flags = KVM_IRQFD_FLAG_RESAMPLE,
};
struct vfio_irq_set *irq_set;
int ret, argsz;
int32_t *pfd;
if (vdev->no_kvm_intx || !kvm_irqfds_enabled() ||
vdev->intx.route.mode != PCI_INTX_ENABLED ||
!kvm_resamplefds_enabled()) {
return;
}
/* Get to a known interrupt state */
qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev);
vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
vdev->intx.pending = false;
pci_irq_deassert(&vdev->pdev);
/* Get an eventfd for resample/unmask */
if (event_notifier_init(&vdev->intx.unmask, 0)) {
error_setg(errp, "event_notifier_init failed eoi");
goto fail;
}
/* KVM triggers it, VFIO listens for it */
irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask);
if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
error_setg_errno(errp, errno, "failed to setup resample irqfd");
goto fail_irqfd;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK;
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = irqfd.resamplefd;
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
if (ret) {
error_setg_errno(errp, -ret, "failed to setup INTx unmask fd");
goto fail_vfio;
}
/* Let'em rip */
vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
vdev->intx.kvm_accel = true;
trace_vfio_intx_enable_kvm(vdev->vbasedev.name);
return;
fail_vfio:
irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN;
kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
fail_irqfd:
event_notifier_cleanup(&vdev->intx.unmask);
fail:
qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
#endif
}
static void vfio_intx_disable_kvm(VFIOPCIDevice *vdev)
{
#ifdef CONFIG_KVM
struct kvm_irqfd irqfd = {
.fd = event_notifier_get_fd(&vdev->intx.interrupt),
.gsi = vdev->intx.route.irq,
.flags = KVM_IRQFD_FLAG_DEASSIGN,
};
if (!vdev->intx.kvm_accel) {
return;
}
/*
* Get to a known state, hardware masked, QEMU ready to accept new
* interrupts, QEMU IRQ de-asserted.
*/
vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
vdev->intx.pending = false;
pci_irq_deassert(&vdev->pdev);
/* Tell KVM to stop listening for an INTx irqfd */
if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
error_report("vfio: Error: Failed to disable INTx irqfd: %m");
}
/* We only need to close the eventfd for VFIO to cleanup the kernel side */
event_notifier_cleanup(&vdev->intx.unmask);
/* QEMU starts listening for interrupt events. */
qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
vdev->intx.kvm_accel = false;
/* If we've missed an event, let it re-fire through QEMU */
vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
trace_vfio_intx_disable_kvm(vdev->vbasedev.name);
#endif
}
static void vfio_intx_update(PCIDevice *pdev)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
PCIINTxRoute route;
Error *err = NULL;
if (vdev->interrupt != VFIO_INT_INTx) {
return;
}
route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin);
if (!pci_intx_route_changed(&vdev->intx.route, &route)) {
return; /* Nothing changed */
}
trace_vfio_intx_update(vdev->vbasedev.name,
vdev->intx.route.irq, route.irq);
vfio_intx_disable_kvm(vdev);
vdev->intx.route = route;
if (route.mode != PCI_INTX_ENABLED) {
return;
}
vfio_intx_enable_kvm(vdev, &err);
if (err) {
error_reportf_err(err, WARN_PREFIX, vdev->vbasedev.name);
}
/* Re-enable the interrupt in cased we missed an EOI */
vfio_intx_eoi(&vdev->vbasedev);
}
static int vfio_intx_enable(VFIOPCIDevice *vdev, Error **errp)
{
uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1);
int ret, argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
Error *err = NULL;
if (!pin) {
return 0;
}
vfio_disable_interrupts(vdev);
vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */
pci_config_set_interrupt_pin(vdev->pdev.config, pin);
#ifdef CONFIG_KVM
/*
* Only conditional to avoid generating error messages on platforms
* where we won't actually use the result anyway.
*/
if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) {
vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
vdev->intx.pin);
}
#endif
ret = event_notifier_init(&vdev->intx.interrupt, 0);
if (ret) {
error_setg_errno(errp, -ret, "event_notifier_init failed");
return ret;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = event_notifier_get_fd(&vdev->intx.interrupt);
qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev);
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
if (ret) {
error_setg_errno(errp, -ret, "failed to setup INTx fd");
qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
event_notifier_cleanup(&vdev->intx.interrupt);
return -errno;
}
vfio_intx_enable_kvm(vdev, &err);
if (err) {
error_reportf_err(err, WARN_PREFIX, vdev->vbasedev.name);
}
vdev->interrupt = VFIO_INT_INTx;
trace_vfio_intx_enable(vdev->vbasedev.name);
return 0;
}
static void vfio_intx_disable(VFIOPCIDevice *vdev)
{
int fd;
timer_del(vdev->intx.mmap_timer);
vfio_intx_disable_kvm(vdev);
vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
vdev->intx.pending = false;
pci_irq_deassert(&vdev->pdev);
vfio_mmap_set_enabled(vdev, true);
fd = event_notifier_get_fd(&vdev->intx.interrupt);
qemu_set_fd_handler(fd, NULL, NULL, vdev);
event_notifier_cleanup(&vdev->intx.interrupt);
vdev->interrupt = VFIO_INT_NONE;
trace_vfio_intx_disable(vdev->vbasedev.name);
}
/*
* MSI/X
*/
static void vfio_msi_interrupt(void *opaque)
{
VFIOMSIVector *vector = opaque;
VFIOPCIDevice *vdev = vector->vdev;
MSIMessage (*get_msg)(PCIDevice *dev, unsigned vector);
void (*notify)(PCIDevice *dev, unsigned vector);
MSIMessage msg;
int nr = vector - vdev->msi_vectors;
if (!event_notifier_test_and_clear(&vector->interrupt)) {
return;
}
if (vdev->interrupt == VFIO_INT_MSIX) {
get_msg = msix_get_message;
notify = msix_notify;
/* A masked vector firing needs to use the PBA, enable it */
if (msix_is_masked(&vdev->pdev, nr)) {
set_bit(nr, vdev->msix->pending);
memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, true);
trace_vfio_msix_pba_enable(vdev->vbasedev.name);
}
} else if (vdev->interrupt == VFIO_INT_MSI) {
get_msg = msi_get_message;
notify = msi_notify;
} else {
abort();
}
msg = get_msg(&vdev->pdev, nr);
trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data);
notify(&vdev->pdev, nr);
}
static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix)
{
struct vfio_irq_set *irq_set;
int ret = 0, i, argsz;
int32_t *fds;
argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds));
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = vdev->nr_vectors;
fds = (int32_t *)&irq_set->data;
for (i = 0; i < vdev->nr_vectors; i++) {
int fd = -1;
/*
* MSI vs MSI-X - The guest has direct access to MSI mask and pending
* bits, therefore we always use the KVM signaling path when setup.
* MSI-X mask and pending bits are emulated, so we want to use the
* KVM signaling path only when configured and unmasked.
*/
if (vdev->msi_vectors[i].use) {
if (vdev->msi_vectors[i].virq < 0 ||
(msix && msix_is_masked(&vdev->pdev, i))) {
fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt);
} else {
fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt);
}
}
fds[i] = fd;
}
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
return ret;
}
static void vfio_add_kvm_msi_virq(VFIOPCIDevice *vdev, VFIOMSIVector *vector,
int vector_n, bool msix)
{
int virq;
if ((msix && vdev->no_kvm_msix) || (!msix && vdev->no_kvm_msi)) {
return;
}
if (event_notifier_init(&vector->kvm_interrupt, 0)) {
return;
}
virq = kvm_irqchip_add_msi_route(kvm_state, vector_n, &vdev->pdev);
if (virq < 0) {
event_notifier_cleanup(&vector->kvm_interrupt);
return;
}
if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt,
NULL, virq) < 0) {
kvm_irqchip_release_virq(kvm_state, virq);
event_notifier_cleanup(&vector->kvm_interrupt);
return;
}
vector->virq = virq;
}
static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector)
{
kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt,
vector->virq);
kvm_irqchip_release_virq(kvm_state, vector->virq);
vector->virq = -1;
event_notifier_cleanup(&vector->kvm_interrupt);
}
static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg,
PCIDevice *pdev)
{
kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg, pdev);
kvm_irqchip_commit_routes(kvm_state);
}
static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr,
MSIMessage *msg, IOHandler *handler)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
VFIOMSIVector *vector;
int ret;
trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr);
vector = &vdev->msi_vectors[nr];
if (!vector->use) {
vector->vdev = vdev;
vector->virq = -1;
if (event_notifier_init(&vector->interrupt, 0)) {
error_report("vfio: Error: event_notifier_init failed");
}
vector->use = true;
msix_vector_use(pdev, nr);
}
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
handler, NULL, vector);
/*
* Attempt to enable route through KVM irqchip,
* default to userspace handling if unavailable.
*/
if (vector->virq >= 0) {
if (!msg) {
vfio_remove_kvm_msi_virq(vector);
} else {
vfio_update_kvm_msi_virq(vector, *msg, pdev);
}
} else {
if (msg) {
vfio_add_kvm_msi_virq(vdev, vector, nr, true);
}
}
/*
* We don't want to have the host allocate all possible MSI vectors
* for a device if they're not in use, so we shutdown and incrementally
* increase them as needed.
*/
if (vdev->nr_vectors < nr + 1) {
vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
vdev->nr_vectors = nr + 1;
ret = vfio_enable_vectors(vdev, true);
if (ret) {
error_report("vfio: failed to enable vectors, %d", ret);
}
} else {
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
irq_set->start = nr;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
if (vector->virq >= 0) {
*pfd = event_notifier_get_fd(&vector->kvm_interrupt);
} else {
*pfd = event_notifier_get_fd(&vector->interrupt);
}
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
if (ret) {
error_report("vfio: failed to modify vector, %d", ret);
}
}
/* Disable PBA emulation when nothing more is pending. */
clear_bit(nr, vdev->msix->pending);
if (find_first_bit(vdev->msix->pending,
vdev->nr_vectors) == vdev->nr_vectors) {
memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false);
trace_vfio_msix_pba_disable(vdev->vbasedev.name);
}
return 0;
}
static int vfio_msix_vector_use(PCIDevice *pdev,
unsigned int nr, MSIMessage msg)
{
return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt);
}
static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
VFIOMSIVector *vector = &vdev->msi_vectors[nr];
trace_vfio_msix_vector_release(vdev->vbasedev.name, nr);
/*
* There are still old guests that mask and unmask vectors on every
* interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of
* the KVM setup in place, simply switch VFIO to use the non-bypass
* eventfd. We'll then fire the interrupt through QEMU and the MSI-X
* core will mask the interrupt and set pending bits, allowing it to
* be re-asserted on unmask. Nothing to do if already using QEMU mode.
*/
if (vector->virq >= 0) {
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
irq_set->start = nr;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = event_notifier_get_fd(&vector->interrupt);
ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
}
}
static void vfio_msix_enable(VFIOPCIDevice *vdev)
{
vfio_disable_interrupts(vdev);
vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->msix->entries);
vdev->interrupt = VFIO_INT_MSIX;
/*
* Some communication channels between VF & PF or PF & fw rely on the
* physical state of the device and expect that enabling MSI-X from the
* guest enables the same on the host. When our guest is Linux, the
* guest driver call to pci_enable_msix() sets the enabling bit in the
* MSI-X capability, but leaves the vector table masked. We therefore
* can't rely on a vector_use callback (from request_irq() in the guest)
* to switch the physical device into MSI-X mode because that may come a
* long time after pci_enable_msix(). This code enables vector 0 with
* triggering to userspace, then immediately release the vector, leaving
* the physical device with no vectors enabled, but MSI-X enabled, just
* like the guest view.
*/
vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL);
vfio_msix_vector_release(&vdev->pdev, 0);
if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use,
vfio_msix_vector_release, NULL)) {
error_report("vfio: msix_set_vector_notifiers failed");
}
trace_vfio_msix_enable(vdev->vbasedev.name);
}
static void vfio_msi_enable(VFIOPCIDevice *vdev)
{
int ret, i;
vfio_disable_interrupts(vdev);
vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev);
retry:
vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->nr_vectors);
for (i = 0; i < vdev->nr_vectors; i++) {
VFIOMSIVector *vector = &vdev->msi_vectors[i];
vector->vdev = vdev;
vector->virq = -1;
vector->use = true;
if (event_notifier_init(&vector->interrupt, 0)) {
error_report("vfio: Error: event_notifier_init failed");
}
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
vfio_msi_interrupt, NULL, vector);
/*
* Attempt to enable route through KVM irqchip,
* default to userspace handling if unavailable.
*/
vfio_add_kvm_msi_virq(vdev, vector, i, false);
}
/* Set interrupt type prior to possible interrupts */
vdev->interrupt = VFIO_INT_MSI;
ret = vfio_enable_vectors(vdev, false);
if (ret) {
if (ret < 0) {
error_report("vfio: Error: Failed to setup MSI fds: %m");
} else if (ret != vdev->nr_vectors) {
error_report("vfio: Error: Failed to enable %d "
"MSI vectors, retry with %d", vdev->nr_vectors, ret);
}
for (i = 0; i < vdev->nr_vectors; i++) {
VFIOMSIVector *vector = &vdev->msi_vectors[i];
if (vector->virq >= 0) {
vfio_remove_kvm_msi_virq(vector);
}
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
NULL, NULL, NULL);
event_notifier_cleanup(&vector->interrupt);
}
g_free(vdev->msi_vectors);
if (ret > 0 && ret != vdev->nr_vectors) {
vdev->nr_vectors = ret;
goto retry;
}
vdev->nr_vectors = 0;
/*
* Failing to setup MSI doesn't really fall within any specification.
* Let's try leaving interrupts disabled and hope the guest figures
* out to fall back to INTx for this device.
*/
error_report("vfio: Error: Failed to enable MSI");
vdev->interrupt = VFIO_INT_NONE;
return;
}
trace_vfio_msi_enable(vdev->vbasedev.name, vdev->nr_vectors);
}
static void vfio_msi_disable_common(VFIOPCIDevice *vdev)
{
Error *err = NULL;
int i;
for (i = 0; i < vdev->nr_vectors; i++) {
VFIOMSIVector *vector = &vdev->msi_vectors[i];
if (vdev->msi_vectors[i].use) {
if (vector->virq >= 0) {
vfio_remove_kvm_msi_virq(vector);
}
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
NULL, NULL, NULL);
event_notifier_cleanup(&vector->interrupt);
}
}
g_free(vdev->msi_vectors);
vdev->msi_vectors = NULL;
vdev->nr_vectors = 0;
vdev->interrupt = VFIO_INT_NONE;
vfio_intx_enable(vdev, &err);
if (err) {
error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
}
}
static void vfio_msix_disable(VFIOPCIDevice *vdev)
{
int i;
msix_unset_vector_notifiers(&vdev->pdev);
/*
* MSI-X will only release vectors if MSI-X is still enabled on the
* device, check through the rest and release it ourselves if necessary.
*/
for (i = 0; i < vdev->nr_vectors; i++) {
if (vdev->msi_vectors[i].use) {
vfio_msix_vector_release(&vdev->pdev, i);
msix_vector_unuse(&vdev->pdev, i);
}
}
if (vdev->nr_vectors) {
vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
}
vfio_msi_disable_common(vdev);
memset(vdev->msix->pending, 0,
BITS_TO_LONGS(vdev->msix->entries) * sizeof(unsigned long));
trace_vfio_msix_disable(vdev->vbasedev.name);
}
static void vfio_msi_disable(VFIOPCIDevice *vdev)
{
vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX);
vfio_msi_disable_common(vdev);
trace_vfio_msi_disable(vdev->vbasedev.name);
}
static void vfio_update_msi(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < vdev->nr_vectors; i++) {
VFIOMSIVector *vector = &vdev->msi_vectors[i];
MSIMessage msg;
if (!vector->use || vector->virq < 0) {
continue;
}
msg = msi_get_message(&vdev->pdev, i);
vfio_update_kvm_msi_virq(vector, msg, &vdev->pdev);
}
}
static void vfio_pci_load_rom(VFIOPCIDevice *vdev)
{
struct vfio_region_info *reg_info;
uint64_t size;
off_t off = 0;
ssize_t bytes;
if (vfio_get_region_info(&vdev->vbasedev,
VFIO_PCI_ROM_REGION_INDEX, &reg_info)) {
error_report("vfio: Error getting ROM info: %m");
return;
}
trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info->size,
(unsigned long)reg_info->offset,
(unsigned long)reg_info->flags);
vdev->rom_size = size = reg_info->size;
vdev->rom_offset = reg_info->offset;
g_free(reg_info);
if (!vdev->rom_size) {
vdev->rom_read_failed = true;
error_report("vfio-pci: Cannot read device rom at "
"%s", vdev->vbasedev.name);
error_printf("Device option ROM contents are probably invalid "
"(check dmesg).\nSkip option ROM probe with rombar=0, "
"or load from file with romfile=\n");
return;
}
vdev->rom = g_malloc(size);
memset(vdev->rom, 0xff, size);
while (size) {
bytes = pread(vdev->vbasedev.fd, vdev->rom + off,
size, vdev->rom_offset + off);
if (bytes == 0) {
break;
} else if (bytes > 0) {
off += bytes;
size -= bytes;
} else {
if (errno == EINTR || errno == EAGAIN) {
continue;
}
error_report("vfio: Error reading device ROM: %m");
break;
}
}
/*
* Test the ROM signature against our device, if the vendor is correct
* but the device ID doesn't match, store the correct device ID and
* recompute the checksum. Intel IGD devices need this and are known
* to have bogus checksums so we can't simply adjust the checksum.
*/
if (pci_get_word(vdev->rom) == 0xaa55 &&
pci_get_word(vdev->rom + 0x18) + 8 < vdev->rom_size &&
!memcmp(vdev->rom + pci_get_word(vdev->rom + 0x18), "PCIR", 4)) {
uint16_t vid, did;
vid = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 4);
did = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6);
if (vid == vdev->vendor_id && did != vdev->device_id) {
int i;
uint8_t csum, *data = vdev->rom;
pci_set_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6,
vdev->device_id);
data[6] = 0;
for (csum = 0, i = 0; i < vdev->rom_size; i++) {
csum += data[i];
}
data[6] = -csum;
}
}
}
static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size)
{
VFIOPCIDevice *vdev = opaque;
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
uint64_t qword;
} val;
uint64_t data = 0;
/* Load the ROM lazily when the guest tries to read it */
if (unlikely(!vdev->rom && !vdev->rom_read_failed)) {
vfio_pci_load_rom(vdev);
}
memcpy(&val, vdev->rom + addr,
(addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0);
switch (size) {
case 1:
data = val.byte;
break;
case 2:
data = le16_to_cpu(val.word);
break;
case 4:
data = le32_to_cpu(val.dword);
break;
default:
hw_error("vfio: unsupported read size, %d bytes\n", size);
break;
}
trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data);
return data;
}
static void vfio_rom_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
}
static const MemoryRegionOps vfio_rom_ops = {
.read = vfio_rom_read,
.write = vfio_rom_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_pci_size_rom(VFIOPCIDevice *vdev)
{
uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK);
off_t offset = vdev->config_offset + PCI_ROM_ADDRESS;
DeviceState *dev = DEVICE(vdev);
char *name;
int fd = vdev->vbasedev.fd;
if (vdev->pdev.romfile || !vdev->pdev.rom_bar) {
/* Since pci handles romfile, just print a message and return */
if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) {
error_printf("Warning : Device at %s is known to cause system instability issues during option rom execution. Proceeding anyway since user specified romfile\n",
vdev->vbasedev.name);
}
return;
}
/*
* Use the same size ROM BAR as the physical device. The contents
* will get filled in later when the guest tries to read it.
*/
if (pread(fd, &orig, 4, offset) != 4 ||
pwrite(fd, &size, 4, offset) != 4 ||
pread(fd, &size, 4, offset) != 4 ||
pwrite(fd, &orig, 4, offset) != 4) {
error_report("%s(%s) failed: %m", __func__, vdev->vbasedev.name);
return;
}
size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1;
if (!size) {
return;
}
if (vfio_blacklist_opt_rom(vdev)) {
if (dev->opts && qemu_opt_get(dev->opts, "rombar")) {
error_printf("Warning : Device at %s is known to cause system instability issues during option rom execution. Proceeding anyway since user specified non zero value for rombar\n",
vdev->vbasedev.name);
} else {
error_printf("Warning : Rom loading for device at %s has been disabled due to system instability issues. Specify rombar=1 or romfile to force\n",
vdev->vbasedev.name);
return;
}
}
trace_vfio_pci_size_rom(vdev->vbasedev.name, size);
name = g_strdup_printf("vfio[%s].rom", vdev->vbasedev.name);
memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev),
&vfio_rom_ops, vdev, name, size);
g_free(name);
pci_register_bar(&vdev->pdev, PCI_ROM_SLOT,
PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom);
vdev->pdev.has_rom = true;
vdev->rom_read_failed = false;
}
void vfio_vga_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOVGARegion *region = opaque;
VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
uint64_t qword;
} buf;
off_t offset = vga->fd_offset + region->offset + addr;
switch (size) {
case 1:
buf.byte = data;
break;
case 2:
buf.word = cpu_to_le16(data);
break;
case 4:
buf.dword = cpu_to_le32(data);
break;
default:
hw_error("vfio: unsupported write size, %d bytes", size);
break;
}
if (pwrite(vga->fd, &buf, size, offset) != size) {
error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m",
__func__, region->offset + addr, data, size);
}
trace_vfio_vga_write(region->offset + addr, data, size);
}
uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size)
{
VFIOVGARegion *region = opaque;
VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
uint64_t qword;
} buf;
uint64_t data = 0;
off_t offset = vga->fd_offset + region->offset + addr;
if (pread(vga->fd, &buf, size, offset) != size) {
error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m",
__func__, region->offset + addr, size);
return (uint64_t)-1;
}
switch (size) {
case 1:
data = buf.byte;
break;
case 2:
data = le16_to_cpu(buf.word);
break;
case 4:
data = le32_to_cpu(buf.dword);
break;
default:
hw_error("vfio: unsupported read size, %d bytes", size);
break;
}
trace_vfio_vga_read(region->offset + addr, size, data);
return data;
}
static const MemoryRegionOps vfio_vga_ops = {
.read = vfio_vga_read,
.write = vfio_vga_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
/*
* PCI config space
*/
uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val;
memcpy(&emu_bits, vdev->emulated_config_bits + addr, len);
emu_bits = le32_to_cpu(emu_bits);
if (emu_bits) {
emu_val = pci_default_read_config(pdev, addr, len);
}
if (~emu_bits & (0xffffffffU >> (32 - len * 8))) {
ssize_t ret;
ret = pread(vdev->vbasedev.fd, &phys_val, len,
vdev->config_offset + addr);
if (ret != len) {
error_report("%s(%s, 0x%x, 0x%x) failed: %m",
__func__, vdev->vbasedev.name, addr, len);
return -errno;
}
phys_val = le32_to_cpu(phys_val);
}
val = (emu_val & emu_bits) | (phys_val & ~emu_bits);
trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val);
return val;
}
void vfio_pci_write_config(PCIDevice *pdev,
uint32_t addr, uint32_t val, int len)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
uint32_t val_le = cpu_to_le32(val);
trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len);
/* Write everything to VFIO, let it filter out what we can't write */
if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr)
!= len) {
error_report("%s(%s, 0x%x, 0x%x, 0x%x) failed: %m",
__func__, vdev->vbasedev.name, addr, val, len);
}
/* MSI/MSI-X Enabling/Disabling */
if (pdev->cap_present & QEMU_PCI_CAP_MSI &&
ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) {
int is_enabled, was_enabled = msi_enabled(pdev);
pci_default_write_config(pdev, addr, val, len);
is_enabled = msi_enabled(pdev);
if (!was_enabled) {
if (is_enabled) {
vfio_msi_enable(vdev);
}
} else {
if (!is_enabled) {
vfio_msi_disable(vdev);
} else {
vfio_update_msi(vdev);
}
}
} else if (pdev->cap_present & QEMU_PCI_CAP_MSIX &&
ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) {
int is_enabled, was_enabled = msix_enabled(pdev);
pci_default_write_config(pdev, addr, val, len);
is_enabled = msix_enabled(pdev);
if (!was_enabled && is_enabled) {
vfio_msix_enable(vdev);
} else if (was_enabled && !is_enabled) {
vfio_msix_disable(vdev);
}
} else {
/* Write everything to QEMU to keep emulated bits correct */
pci_default_write_config(pdev, addr, val, len);
}
}
/*
* Interrupt setup
*/
static void vfio_disable_interrupts(VFIOPCIDevice *vdev)
{
/*
* More complicated than it looks. Disabling MSI/X transitions the
* device to INTx mode (if supported). Therefore we need to first
* disable MSI/X and then cleanup by disabling INTx.
*/
if (vdev->interrupt == VFIO_INT_MSIX) {
vfio_msix_disable(vdev);
} else if (vdev->interrupt == VFIO_INT_MSI) {
vfio_msi_disable(vdev);
}
if (vdev->interrupt == VFIO_INT_INTx) {
vfio_intx_disable(vdev);
}
}
static int vfio_msi_setup(VFIOPCIDevice *vdev, int pos, Error **errp)
{
uint16_t ctrl;
bool msi_64bit, msi_maskbit;
int ret, entries;
Error *err = NULL;
if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl),
vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
error_setg_errno(errp, errno, "failed reading MSI PCI_CAP_FLAGS");
return -errno;
}
ctrl = le16_to_cpu(ctrl);
msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT);
msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT);
entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1);
trace_vfio_msi_setup(vdev->vbasedev.name, pos);
ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit, &err);
if (ret < 0) {
if (ret == -ENOTSUP) {
return 0;
}
error_prepend(&err, "msi_init failed: ");
error_propagate(errp, err);
return ret;
}
vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0);
return 0;
}
static void vfio_pci_fixup_msix_region(VFIOPCIDevice *vdev)
{
off_t start, end;
VFIORegion *region = &vdev->bars[vdev->msix->table_bar].region;
/*
* We expect to find a single mmap covering the whole BAR, anything else
* means it's either unsupported or already setup.
*/
if (region->nr_mmaps != 1 || region->mmaps[0].offset ||
region->size != region->mmaps[0].size) {
return;
}
/* MSI-X table start and end aligned to host page size */
start = vdev->msix->table_offset & qemu_real_host_page_mask;
end = REAL_HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset +
(vdev->msix->entries * PCI_MSIX_ENTRY_SIZE));
/*
* Does the MSI-X table cover the beginning of the BAR? The whole BAR?
* NB - Host page size is necessarily a power of two and so is the PCI
* BAR (not counting EA yet), therefore if we have host page aligned
* @start and @end, then any remainder of the BAR before or after those
* must be at least host page sized and therefore mmap'able.
*/
if (!start) {
if (end >= region->size) {
region->nr_mmaps = 0;
g_free(region->mmaps);
region->mmaps = NULL;
trace_vfio_msix_fixup(vdev->vbasedev.name,
vdev->msix->table_bar, 0, 0);
} else {
region->mmaps[0].offset = end;
region->mmaps[0].size = region->size - end;
trace_vfio_msix_fixup(vdev->vbasedev.name,
vdev->msix->table_bar, region->mmaps[0].offset,
region->mmaps[0].offset + region->mmaps[0].size);
}
/* Maybe it's aligned at the end of the BAR */
} else if (end >= region->size) {
region->mmaps[0].size = start;
trace_vfio_msix_fixup(vdev->vbasedev.name,
vdev->msix->table_bar, region->mmaps[0].offset,
region->mmaps[0].offset + region->mmaps[0].size);
/* Otherwise it must split the BAR */
} else {
region->nr_mmaps = 2;
region->mmaps = g_renew(VFIOMmap, region->mmaps, 2);
memcpy(&region->mmaps[1], &region->mmaps[0], sizeof(VFIOMmap));
region->mmaps[0].size = start;
trace_vfio_msix_fixup(vdev->vbasedev.name,
vdev->msix->table_bar, region->mmaps[0].offset,
region->mmaps[0].offset + region->mmaps[0].size);
region->mmaps[1].offset = end;
region->mmaps[1].size = region->size - end;
trace_vfio_msix_fixup(vdev->vbasedev.name,
vdev->msix->table_bar, region->mmaps[1].offset,
region->mmaps[1].offset + region->mmaps[1].size);
}
}
/*
* We don't have any control over how pci_add_capability() inserts
* capabilities into the chain. In order to setup MSI-X we need a
* MemoryRegion for the BAR. In order to setup the BAR and not
* attempt to mmap the MSI-X table area, which VFIO won't allow, we
* need to first look for where the MSI-X table lives. So we
* unfortunately split MSI-X setup across two functions.
*/
static int vfio_msix_early_setup(VFIOPCIDevice *vdev, Error **errp)
{
uint8_t pos;
uint16_t ctrl;
uint32_t table, pba;
int fd = vdev->vbasedev.fd;
VFIOMSIXInfo *msix;
pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX);
if (!pos) {
return 0;
}
if (pread(fd, &ctrl, sizeof(ctrl),
vdev->config_offset + pos + PCI_MSIX_FLAGS) != sizeof(ctrl)) {
error_setg_errno(errp, errno, "failed to read PCI MSIX FLAGS");
return -errno;
}
if (pread(fd, &table, sizeof(table),
vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) {
error_setg_errno(errp, errno, "failed to read PCI MSIX TABLE");
return -errno;
}
if (pread(fd, &pba, sizeof(pba),
vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) {
error_setg_errno(errp, errno, "failed to read PCI MSIX PBA");
return -errno;
}
ctrl = le16_to_cpu(ctrl);
table = le32_to_cpu(table);
pba = le32_to_cpu(pba);
msix = g_malloc0(sizeof(*msix));
msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK;
msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK;
msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK;
msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK;
msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
/*
* Test the size of the pba_offset variable and catch if it extends outside
* of the specified BAR. If it is the case, we need to apply a hardware
* specific quirk if the device is known or we have a broken configuration.
*/
if (msix->pba_offset >= vdev->bars[msix->pba_bar].region.size) {
/*
* Chelsio T5 Virtual Function devices are encoded as 0x58xx for T5
* adapters. The T5 hardware returns an incorrect value of 0x8000 for
* the VF PBA offset while the BAR itself is only 8k. The correct value
* is 0x1000, so we hard code that here.
*/
if (vdev->vendor_id == PCI_VENDOR_ID_CHELSIO &&
(vdev->device_id & 0xff00) == 0x5800) {
msix->pba_offset = 0x1000;
} else {
error_setg(errp, "hardware reports invalid configuration, "
"MSIX PBA outside of specified BAR");
g_free(msix);
return -EINVAL;
}
}
trace_vfio_msix_early_setup(vdev->vbasedev.name, pos, msix->table_bar,
msix->table_offset, msix->entries);
vdev->msix = msix;
vfio_pci_fixup_msix_region(vdev);
return 0;
}
static int vfio_msix_setup(VFIOPCIDevice *vdev, int pos, Error **errp)
{
int ret;
vdev->msix->pending = g_malloc0(BITS_TO_LONGS(vdev->msix->entries) *
sizeof(unsigned long));
ret = msix_init(&vdev->pdev, vdev->msix->entries,
vdev->bars[vdev->msix->table_bar].region.mem,
vdev->msix->table_bar, vdev->msix->table_offset,
vdev->bars[vdev->msix->pba_bar].region.mem,
vdev->msix->pba_bar, vdev->msix->pba_offset, pos);
if (ret < 0) {
if (ret == -ENOTSUP) {
return 0;
}
error_setg(errp, "msix_init failed");
return ret;
}
/*
* The PCI spec suggests that devices provide additional alignment for
* MSI-X structures and avoid overlapping non-MSI-X related registers.
* For an assigned device, this hopefully means that emulation of MSI-X
* structures does not affect the performance of the device. If devices
* fail to provide that alignment, a significant performance penalty may
* result, for instance Mellanox MT27500 VFs:
* http://www.spinics.net/lists/kvm/msg125881.html
*
* The PBA is simply not that important for such a serious regression and
* most drivers do not appear to look at it. The solution for this is to
* disable the PBA MemoryRegion unless it's being used. We disable it
* here and only enable it if a masked vector fires through QEMU. As the
* vector-use notifier is called, which occurs on unmask, we test whether
* PBA emulation is needed and again disable if not.
*/
memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false);
return 0;
}
static void vfio_teardown_msi(VFIOPCIDevice *vdev)
{
msi_uninit(&vdev->pdev);
if (vdev->msix) {
msix_uninit(&vdev->pdev,
vdev->bars[vdev->msix->table_bar].region.mem,
vdev->bars[vdev->msix->pba_bar].region.mem);
g_free(vdev->msix->pending);
}
}
/*
* Resource setup
*/
static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled)
{
int i;
for (i = 0; i < PCI_ROM_SLOT; i++) {
vfio_region_mmaps_set_enabled(&vdev->bars[i].region, enabled);
}
}
static void vfio_bar_setup(VFIOPCIDevice *vdev, int nr)
{
VFIOBAR *bar = &vdev->bars[nr];
uint32_t pci_bar;
uint8_t type;
int ret;
/* Skip both unimplemented BARs and the upper half of 64bit BARS. */
if (!bar->region.size) {
return;
}
/* Determine what type of BAR this is for registration */
ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar),
vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr));
if (ret != sizeof(pci_bar)) {
error_report("vfio: Failed to read BAR %d (%m)", nr);
return;
}
pci_bar = le32_to_cpu(pci_bar);
bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO);
bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64);
type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK :
~PCI_BASE_ADDRESS_MEM_MASK);
if (vfio_region_mmap(&bar->region)) {
error_report("Failed to mmap %s BAR %d. Performance may be slow",
vdev->vbasedev.name, nr);
}
pci_register_bar(&vdev->pdev, nr, type, bar->region.mem);
}
static void vfio_bars_setup(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < PCI_ROM_SLOT; i++) {
vfio_bar_setup(vdev, i);
}
}
static void vfio_bars_exit(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < PCI_ROM_SLOT; i++) {
vfio_bar_quirk_exit(vdev, i);
vfio_region_exit(&vdev->bars[i].region);
}
if (vdev->vga) {
pci_unregister_vga(&vdev->pdev);
vfio_vga_quirk_exit(vdev);
}
}
static void vfio_bars_finalize(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < PCI_ROM_SLOT; i++) {
vfio_bar_quirk_finalize(vdev, i);
vfio_region_finalize(&vdev->bars[i].region);
}
if (vdev->vga) {
vfio_vga_quirk_finalize(vdev);
for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) {
object_unparent(OBJECT(&vdev->vga->region[i].mem));
}
g_free(vdev->vga);
}
}
/*
* General setup
*/
static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos)
{
uint8_t tmp;
uint16_t next = PCI_CONFIG_SPACE_SIZE;
for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp;
tmp = pdev->config[tmp + PCI_CAP_LIST_NEXT]) {
if (tmp > pos && tmp < next) {
next = tmp;
}
}
return next - pos;
}
static uint16_t vfio_ext_cap_max_size(const uint8_t *config, uint16_t pos)
{
uint16_t tmp, next = PCIE_CONFIG_SPACE_SIZE;
for (tmp = PCI_CONFIG_SPACE_SIZE; tmp;
tmp = PCI_EXT_CAP_NEXT(pci_get_long(config + tmp))) {
if (tmp > pos && tmp < next) {
next = tmp;
}
}
return next - pos;
}
static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask)
{
pci_set_word(buf, (pci_get_word(buf) & ~mask) | val);
}
static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos,
uint16_t val, uint16_t mask)
{
vfio_set_word_bits(vdev->pdev.config + pos, val, mask);
vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask);
vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask);
}
static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask)
{
pci_set_long(buf, (pci_get_long(buf) & ~mask) | val);
}
static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos,
uint32_t val, uint32_t mask)
{
vfio_set_long_bits(vdev->pdev.config + pos, val, mask);
vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask);
vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask);
}
static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size,
Error **errp)
{
uint16_t flags;
uint8_t type;
flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS);
type = (flags & PCI_EXP_FLAGS_TYPE) >> 4;
if (type != PCI_EXP_TYPE_ENDPOINT &&
type != PCI_EXP_TYPE_LEG_END &&
type != PCI_EXP_TYPE_RC_END) {
error_setg(errp, "assignment of PCIe type 0x%x "
"devices is not currently supported", type);
return -EINVAL;
}
if (!pci_bus_is_express(vdev->pdev.bus)) {
PCIBus *bus = vdev->pdev.bus;
PCIDevice *bridge;
/*
* Traditionally PCI device assignment exposes the PCIe capability
* as-is on non-express buses. The reason being that some drivers
* simply assume that it's there, for example tg3. However when
* we're running on a native PCIe machine type, like Q35, we need
* to hide the PCIe capability. The reason for this is twofold;
* first Windows guests get a Code 10 error when the PCIe capability
* is exposed in this configuration. Therefore express devices won't
* work at all unless they're attached to express buses in the VM.
* Second, a native PCIe machine introduces the possibility of fine
* granularity IOMMUs supporting both translation and isolation.
* Guest code to discover the IOMMU visibility of a device, such as
* IOMMU grouping code on Linux, is very aware of device types and
* valid transitions between bus types. An express device on a non-
* express bus is not a valid combination on bare metal systems.
*
* Drivers that require a PCIe capability to make the device
* functional are simply going to need to have their devices placed
* on a PCIe bus in the VM.
*/
while (!pci_bus_is_root(bus)) {
bridge = pci_bridge_get_device(bus);
bus = bridge->bus;
}
if (pci_bus_is_express(bus)) {
return 0;
}
} else if (pci_bus_is_root(vdev->pdev.bus)) {
/*
* On a Root Complex bus Endpoints become Root Complex Integrated
* Endpoints, which changes the type and clears the LNK & LNK2 fields.
*/
if (type == PCI_EXP_TYPE_ENDPOINT) {
vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
PCI_EXP_TYPE_RC_END << 4,
PCI_EXP_FLAGS_TYPE);
/* Link Capabilities, Status, and Control goes away */
if (size > PCI_EXP_LNKCTL) {
vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0);
#ifndef PCI_EXP_LNKCAP2
#define PCI_EXP_LNKCAP2 44
#endif
#ifndef PCI_EXP_LNKSTA2
#define PCI_EXP_LNKSTA2 50
#endif
/* Link 2 Capabilities, Status, and Control goes away */
if (size > PCI_EXP_LNKCAP2) {
vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0);
}
}
} else if (type == PCI_EXP_TYPE_LEG_END) {
/*
* Legacy endpoints don't belong on the root complex. Windows
* seems to be happier with devices if we skip the capability.
*/
return 0;
}
} else {
/*
* Convert Root Complex Integrated Endpoints to regular endpoints.
* These devices don't support LNK/LNK2 capabilities, so make them up.
*/
if (type == PCI_EXP_TYPE_RC_END) {
vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
PCI_EXP_TYPE_ENDPOINT << 4,
PCI_EXP_FLAGS_TYPE);
vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP,
PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
}
/* Mark the Link Status bits as emulated to allow virtual negotiation */
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA,
pci_get_word(vdev->pdev.config + pos +
PCI_EXP_LNKSTA),
PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS);
}
pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size);
if (pos >= 0) {
vdev->pdev.exp.exp_cap = pos;
}
return pos;
}
static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos)
{
uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP);
if (cap & PCI_EXP_DEVCAP_FLR) {
trace_vfio_check_pcie_flr(vdev->vbasedev.name);
vdev->has_flr = true;
}
}
static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos)
{
uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL);
if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) {
trace_vfio_check_pm_reset(vdev->vbasedev.name);
vdev->has_pm_reset = true;
}
}
static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos)
{
uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP);
if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) {
trace_vfio_check_af_flr(vdev->vbasedev.name);
vdev->has_flr = true;
}
}
static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos, Error **errp)
{
PCIDevice *pdev = &vdev->pdev;
uint8_t cap_id, next, size;
int ret;
cap_id = pdev->config[pos];
next = pdev->config[pos + PCI_CAP_LIST_NEXT];
/*
* If it becomes important to configure capabilities to their actual
* size, use this as the default when it's something we don't recognize.
* Since QEMU doesn't actually handle many of the config accesses,
* exact size doesn't seem worthwhile.
*/
size = vfio_std_cap_max_size(pdev, pos);
/*
* pci_add_capability always inserts the new capability at the head
* of the chain. Therefore to end up with a chain that matches the
* physical device, we insert from the end by making this recursive.
* This is also why we pre-calculate size above as cached config space
* will be changed as we unwind the stack.
*/
if (next) {
ret = vfio_add_std_cap(vdev, next, errp);
if (ret) {
goto out;
}
} else {
/* Begin the rebuild, use QEMU emulated list bits */
pdev->config[PCI_CAPABILITY_LIST] = 0;
vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff;
vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
}
/* Use emulated next pointer to allow dropping caps */
pci_set_byte(vdev->emulated_config_bits + pos + PCI_CAP_LIST_NEXT, 0xff);
switch (cap_id) {
case PCI_CAP_ID_MSI:
ret = vfio_msi_setup(vdev, pos, errp);
break;
case PCI_CAP_ID_EXP:
vfio_check_pcie_flr(vdev, pos);
ret = vfio_setup_pcie_cap(vdev, pos, size, errp);
break;
case PCI_CAP_ID_MSIX:
ret = vfio_msix_setup(vdev, pos, errp);
break;
case PCI_CAP_ID_PM:
vfio_check_pm_reset(vdev, pos);
vdev->pm_cap = pos;
ret = pci_add_capability2(pdev, cap_id, pos, size, errp);
break;
case PCI_CAP_ID_AF:
vfio_check_af_flr(vdev, pos);
ret = pci_add_capability2(pdev, cap_id, pos, size, errp);
break;
default:
ret = pci_add_capability2(pdev, cap_id, pos, size, errp);
break;
}
out:
if (ret < 0) {
error_prepend(errp,
"failed to add PCI capability 0x%x[0x%x]@0x%x: ",
cap_id, size, pos);
return ret;
}
return 0;
}
static void vfio_add_ext_cap(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
uint32_t header;
uint16_t cap_id, next, size;
uint8_t cap_ver;
uint8_t *config;
/* Only add extended caps if we have them and the guest can see them */
if (!pci_is_express(pdev) || !pci_bus_is_express(pdev->bus) ||
!pci_get_long(pdev->config + PCI_CONFIG_SPACE_SIZE)) {
return;
}
/*
* pcie_add_capability always inserts the new capability at the tail
* of the chain. Therefore to end up with a chain that matches the
* physical device, we cache the config space to avoid overwriting
* the original config space when we parse the extended capabilities.
*/
config = g_memdup(pdev->config, vdev->config_size);
/*
* Extended capabilities are chained with each pointing to the next, so we
* can drop anything other than the head of the chain simply by modifying
* the previous next pointer. For the head of the chain, we can modify the
* capability ID to something that cannot match a valid capability. ID
* 0 is reserved for this since absence of capabilities is indicated by
* 0 for the ID, version, AND next pointer. However, pcie_add_capability()
* uses ID 0 as reserved for list management and will incorrectly match and
* assert if we attempt to pre-load the head of the chain with with this
* ID. Use ID 0xFFFF temporarily since it is also seems to be reserved in
* part for identifying absence of capabilities in a root complex register
* block. If the ID still exists after adding capabilities, switch back to
* zero. We'll mark this entire first dword as emulated for this purpose.
*/
pci_set_long(pdev->config + PCI_CONFIG_SPACE_SIZE,
PCI_EXT_CAP(0xFFFF, 0, 0));
pci_set_long(pdev->wmask + PCI_CONFIG_SPACE_SIZE, 0);
pci_set_long(vdev->emulated_config_bits + PCI_CONFIG_SPACE_SIZE, ~0);
for (next = PCI_CONFIG_SPACE_SIZE; next;
next = PCI_EXT_CAP_NEXT(pci_get_long(config + next))) {
header = pci_get_long(config + next);
cap_id = PCI_EXT_CAP_ID(header);
cap_ver = PCI_EXT_CAP_VER(header);
/*
* If it becomes important to configure extended capabilities to their
* actual size, use this as the default when it's something we don't
* recognize. Since QEMU doesn't actually handle many of the config
* accesses, exact size doesn't seem worthwhile.
*/
size = vfio_ext_cap_max_size(config, next);
/* Use emulated next pointer to allow dropping extended caps */
pci_long_test_and_set_mask(vdev->emulated_config_bits + next,
PCI_EXT_CAP_NEXT_MASK);
switch (cap_id) {
case PCI_EXT_CAP_ID_SRIOV: /* Read-only VF BARs confuse OVMF */
case PCI_EXT_CAP_ID_ARI: /* XXX Needs next function virtualization */
trace_vfio_add_ext_cap_dropped(vdev->vbasedev.name, cap_id, next);
break;
default:
pcie_add_capability(pdev, cap_id, cap_ver, next, size);
}
}
/* Cleanup chain head ID if necessary */
if (pci_get_word(pdev->config + PCI_CONFIG_SPACE_SIZE) == 0xFFFF) {
pci_set_word(pdev->config + PCI_CONFIG_SPACE_SIZE, 0);
}
g_free(config);
return;
}
static int vfio_add_capabilities(VFIOPCIDevice *vdev, Error **errp)
{
PCIDevice *pdev = &vdev->pdev;
int ret;
if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) ||
!pdev->config[PCI_CAPABILITY_LIST]) {
return 0; /* Nothing to add */
}
ret = vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST], errp);
if (ret) {
return ret;
}
vfio_add_ext_cap(vdev);
return 0;
}
static void vfio_pci_pre_reset(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
uint16_t cmd;
vfio_disable_interrupts(vdev);
/* Make sure the device is in D0 */
if (vdev->pm_cap) {
uint16_t pmcsr;
uint8_t state;
pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
state = pmcsr & PCI_PM_CTRL_STATE_MASK;
if (state) {
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2);
/* vfio handles the necessary delay here */
pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
state = pmcsr & PCI_PM_CTRL_STATE_MASK;
if (state) {
error_report("vfio: Unable to power on device, stuck in D%d",
state);
}
}
}
/*
* Stop any ongoing DMA by disconecting I/O, MMIO, and bus master.
* Also put INTx Disable in known state.
*/
cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2);
cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
PCI_COMMAND_INTX_DISABLE);
vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2);
}
static void vfio_pci_post_reset(VFIOPCIDevice *vdev)
{
Error *err = NULL;
vfio_intx_enable(vdev, &err);
if (err) {
error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
}
}
static bool vfio_pci_host_match(PCIHostDeviceAddress *addr, const char *name)
{
char tmp[13];
sprintf(tmp, "%04x:%02x:%02x.%1x", addr->domain,
addr->bus, addr->slot, addr->function);
return (strcmp(tmp, name) == 0);
}
static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single)
{
VFIOGroup *group;
struct vfio_pci_hot_reset_info *info;
struct vfio_pci_dependent_device *devices;
struct vfio_pci_hot_reset *reset;
int32_t *fds;
int ret, i, count;
bool multi = false;
trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi");
vfio_pci_pre_reset(vdev);
vdev->vbasedev.needs_reset = false;
info = g_malloc0(sizeof(*info));
info->argsz = sizeof(*info);
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
if (ret && errno != ENOSPC) {
ret = -errno;
if (!vdev->has_pm_reset) {
error_report("vfio: Cannot reset device %s, "
"no available reset mechanism.", vdev->vbasedev.name);
}
goto out_single;
}
count = info->count;
info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices)));
info->argsz = sizeof(*info) + (count * sizeof(*devices));
devices = &info->devices[0];
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
if (ret) {
ret = -errno;
error_report("vfio: hot reset info failed: %m");
goto out_single;
}
trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name);
/* Verify that we have all the groups required */
for (i = 0; i < info->count; i++) {
PCIHostDeviceAddress host;
VFIOPCIDevice *tmp;
VFIODevice *vbasedev_iter;
host.domain = devices[i].segment;
host.bus = devices[i].bus;
host.slot = PCI_SLOT(devices[i].devfn);
host.function = PCI_FUNC(devices[i].devfn);
trace_vfio_pci_hot_reset_dep_devices(host.domain,
host.bus, host.slot, host.function, devices[i].group_id);
if (vfio_pci_host_match(&host, vdev->vbasedev.name)) {
continue;
}
QLIST_FOREACH(group, &vfio_group_list, next) {
if (group->groupid == devices[i].group_id) {
break;
}
}
if (!group) {
if (!vdev->has_pm_reset) {
error_report("vfio: Cannot reset device %s, "
"depends on group %d which is not owned.",
vdev->vbasedev.name, devices[i].group_id);
}
ret = -EPERM;
goto out;
}
/* Prep dependent devices for reset and clear our marker. */
QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
continue;
}
tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
if (vfio_pci_host_match(&host, tmp->vbasedev.name)) {
if (single) {
ret = -EINVAL;
goto out_single;
}
vfio_pci_pre_reset(tmp);
tmp->vbasedev.needs_reset = false;
multi = true;
break;
}
}
}
if (!single && !multi) {
ret = -EINVAL;
goto out_single;
}
/* Determine how many group fds need to be passed */
count = 0;
QLIST_FOREACH(group, &vfio_group_list, next) {
for (i = 0; i < info->count; i++) {
if (group->groupid == devices[i].group_id) {
count++;
break;
}
}
}
reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds)));
reset->argsz = sizeof(*reset) + (count * sizeof(*fds));
fds = &reset->group_fds[0];
/* Fill in group fds */
QLIST_FOREACH(group, &vfio_group_list, next) {
for (i = 0; i < info->count; i++) {
if (group->groupid == devices[i].group_id) {
fds[reset->count++] = group->fd;
break;
}
}
}
/* Bus reset! */
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset);
g_free(reset);
trace_vfio_pci_hot_reset_result(vdev->vbasedev.name,
ret ? "%m" : "Success");
out:
/* Re-enable INTx on affected devices */
for (i = 0; i < info->count; i++) {
PCIHostDeviceAddress host;
VFIOPCIDevice *tmp;
VFIODevice *vbasedev_iter;
host.domain = devices[i].segment;
host.bus = devices[i].bus;
host.slot = PCI_SLOT(devices[i].devfn);
host.function = PCI_FUNC(devices[i].devfn);
if (vfio_pci_host_match(&host, vdev->vbasedev.name)) {
continue;
}
QLIST_FOREACH(group, &vfio_group_list, next) {
if (group->groupid == devices[i].group_id) {
break;
}
}
if (!group) {
break;
}
QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
continue;
}
tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
if (vfio_pci_host_match(&host, tmp->vbasedev.name)) {
vfio_pci_post_reset(tmp);
break;
}
}
}
out_single:
vfio_pci_post_reset(vdev);
g_free(info);
return ret;
}
/*
* We want to differentiate hot reset of mulitple in-use devices vs hot reset
* of a single in-use device. VFIO_DEVICE_RESET will already handle the case
* of doing hot resets when there is only a single device per bus. The in-use
* here refers to how many VFIODevices are affected. A hot reset that affects
* multiple devices, but only a single in-use device, means that we can call
* it from our bus ->reset() callback since the extent is effectively a single
* device. This allows us to make use of it in the hotplug path. When there
* are multiple in-use devices, we can only trigger the hot reset during a
* system reset and thus from our reset handler. We separate _one vs _multi
* here so that we don't overlap and do a double reset on the system reset
* path where both our reset handler and ->reset() callback are used. Calling
* _one() will only do a hot reset for the one in-use devices case, calling
* _multi() will do nothing if a _one() would have been sufficient.
*/
static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev)
{
return vfio_pci_hot_reset(vdev, true);
}
static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev)
{
VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
return vfio_pci_hot_reset(vdev, false);
}
static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev)
{
VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) {
vbasedev->needs_reset = true;
}
}
static VFIODeviceOps vfio_pci_ops = {
.vfio_compute_needs_reset = vfio_pci_compute_needs_reset,
.vfio_hot_reset_multi = vfio_pci_hot_reset_multi,
.vfio_eoi = vfio_intx_eoi,
};
int vfio_populate_vga(VFIOPCIDevice *vdev, Error **errp)
{
VFIODevice *vbasedev = &vdev->vbasedev;
struct vfio_region_info *reg_info;
int ret;
ret = vfio_get_region_info(vbasedev, VFIO_PCI_VGA_REGION_INDEX, &reg_info);
if (ret) {
error_setg_errno(errp, -ret,
"failed getting region info for VGA region index %d",
VFIO_PCI_VGA_REGION_INDEX);
return ret;
}
if (!(reg_info->flags & VFIO_REGION_INFO_FLAG_READ) ||
!(reg_info->flags & VFIO_REGION_INFO_FLAG_WRITE) ||
reg_info->size < 0xbffff + 1) {
error_setg(errp, "unexpected VGA info, flags 0x%lx, size 0x%lx",
(unsigned long)reg_info->flags,
(unsigned long)reg_info->size);
g_free(reg_info);
return -EINVAL;
}
vdev->vga = g_new0(VFIOVGA, 1);
vdev->vga->fd_offset = reg_info->offset;
vdev->vga->fd = vdev->vbasedev.fd;
g_free(reg_info);
vdev->vga->region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE;
vdev->vga->region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM;
QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_MEM].quirks);
memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_MEM].mem,
OBJECT(vdev), &vfio_vga_ops,
&vdev->vga->region[QEMU_PCI_VGA_MEM],
"vfio-vga-mmio@0xa0000",
QEMU_PCI_VGA_MEM_SIZE);
vdev->vga->region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE;
vdev->vga->region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO;
QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].quirks);
memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem,
OBJECT(vdev), &vfio_vga_ops,
&vdev->vga->region[QEMU_PCI_VGA_IO_LO],
"vfio-vga-io@0x3b0",
QEMU_PCI_VGA_IO_LO_SIZE);
vdev->vga->region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE;
vdev->vga->region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI;
QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks);
memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem,
OBJECT(vdev), &vfio_vga_ops,
&vdev->vga->region[QEMU_PCI_VGA_IO_HI],
"vfio-vga-io@0x3c0",
QEMU_PCI_VGA_IO_HI_SIZE);
pci_register_vga(&vdev->pdev, &vdev->vga->region[QEMU_PCI_VGA_MEM].mem,
&vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem,
&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem);
return 0;
}
static int vfio_populate_device(VFIOPCIDevice *vdev, Error **errp)
{
VFIODevice *vbasedev = &vdev->vbasedev;
struct vfio_region_info *reg_info;
struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) };
int i, ret = -1;
/* Sanity check device */
if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) {
error_setg(errp, "this isn't a PCI device");
goto error;
}
if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) {
error_setg(errp, "unexpected number of io regions %u",
vbasedev->num_regions);
goto error;
}
if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) {
error_setg(errp, "unexpected number of irqs %u", vbasedev->num_irqs);
goto error;
}
for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) {
char *name = g_strdup_printf("%s BAR %d", vbasedev->name, i);
ret = vfio_region_setup(OBJECT(vdev), vbasedev,
&vdev->bars[i].region, i, name);
g_free(name);
if (ret) {
error_setg_errno(errp, -ret, "failed to get region %d info", i);
goto error;
}
QLIST_INIT(&vdev->bars[i].quirks);
}
ret = vfio_get_region_info(vbasedev,
VFIO_PCI_CONFIG_REGION_INDEX, &reg_info);
if (ret) {
error_setg_errno(errp, -ret, "failed to get config info");
goto error;
}
trace_vfio_populate_device_config(vdev->vbasedev.name,
(unsigned long)reg_info->size,
(unsigned long)reg_info->offset,
(unsigned long)reg_info->flags);
vdev->config_size = reg_info->size;
if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) {
vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS;
}
vdev->config_offset = reg_info->offset;
g_free(reg_info);
if (vdev->features & VFIO_FEATURE_ENABLE_VGA) {
ret = vfio_populate_vga(vdev, errp);
if (ret) {
error_append_hint(errp, "device does not support "
"requested feature x-vga\n");
goto error;
}
}
irq_info.index = VFIO_PCI_ERR_IRQ_INDEX;
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info);
if (ret) {
/* This can fail for an old kernel or legacy PCI dev */
trace_vfio_populate_device_get_irq_info_failure();
ret = 0;
} else if (irq_info.count == 1) {
vdev->pci_aer = true;
} else {
error_report(WARN_PREFIX
"Could not enable error recovery for the device",
vbasedev->name);
}
error:
return ret;
}
static void vfio_put_device(VFIOPCIDevice *vdev)
{
g_free(vdev->vbasedev.name);
g_free(vdev->msix);
vfio_put_base_device(&vdev->vbasedev);
}
static void vfio_err_notifier_handler(void *opaque)
{
VFIOPCIDevice *vdev = opaque;
if (!event_notifier_test_and_clear(&vdev->err_notifier)) {
return;
}
/*
* TBD. Retrieve the error details and decide what action
* needs to be taken. One of the actions could be to pass
* the error to the guest and have the guest driver recover
* from the error. This requires that PCIe capabilities be
* exposed to the guest. For now, we just terminate the
* guest to contain the error.
*/
error_report("%s(%s) Unrecoverable error detected. Please collect any data possible and then kill the guest", __func__, vdev->vbasedev.name);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
/*
* Registers error notifier for devices supporting error recovery.
* If we encounter a failure in this function, we report an error
* and continue after disabling error recovery support for the
* device.
*/
static void vfio_register_err_notifier(VFIOPCIDevice *vdev)
{
int ret;
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
if (!vdev->pci_aer) {
return;
}
if (event_notifier_init(&vdev->err_notifier, 0)) {
error_report("vfio: Unable to init event notifier for error detection");
vdev->pci_aer = false;
return;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = event_notifier_get_fd(&vdev->err_notifier);
qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev);
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
error_report("vfio: Failed to set up error notification");
qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
event_notifier_cleanup(&vdev->err_notifier);
vdev->pci_aer = false;
}
g_free(irq_set);
}
static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev)
{
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
int ret;
if (!vdev->pci_aer) {
return;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = -1;
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
error_report("vfio: Failed to de-assign error fd: %m");
}
g_free(irq_set);
qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier),
NULL, NULL, vdev);
event_notifier_cleanup(&vdev->err_notifier);
}
static void vfio_req_notifier_handler(void *opaque)
{
VFIOPCIDevice *vdev = opaque;
if (!event_notifier_test_and_clear(&vdev->req_notifier)) {
return;
}
qdev_unplug(&vdev->pdev.qdev, NULL);
}
static void vfio_register_req_notifier(VFIOPCIDevice *vdev)
{
struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info),
.index = VFIO_PCI_REQ_IRQ_INDEX };
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) {
return;
}
if (ioctl(vdev->vbasedev.fd,
VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) {
return;
}
if (event_notifier_init(&vdev->req_notifier, 0)) {
error_report("vfio: Unable to init event notifier for device request");
return;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = event_notifier_get_fd(&vdev->req_notifier);
qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev);
if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
error_report("vfio: Failed to set up device request notification");
qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
event_notifier_cleanup(&vdev->req_notifier);
} else {
vdev->req_enabled = true;
}
g_free(irq_set);
}
static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev)
{
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
if (!vdev->req_enabled) {
return;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_REQ_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = -1;
if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) {
error_report("vfio: Failed to de-assign device request fd: %m");
}
g_free(irq_set);
qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier),
NULL, NULL, vdev);
event_notifier_cleanup(&vdev->req_notifier);
vdev->req_enabled = false;
}
static int vfio_initfn(PCIDevice *pdev)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
VFIODevice *vbasedev_iter;
VFIOGroup *group;
char *tmp, group_path[PATH_MAX], *group_name;
Error *err = NULL;
ssize_t len;
struct stat st;
int groupid;
int i, ret;
if (!vdev->vbasedev.sysfsdev) {
vdev->vbasedev.sysfsdev =
g_strdup_printf("/sys/bus/pci/devices/%04x:%02x:%02x.%01x",
vdev->host.domain, vdev->host.bus,
vdev->host.slot, vdev->host.function);
}
if (stat(vdev->vbasedev.sysfsdev, &st) < 0) {
error_setg_errno(&err, errno, "no such host device");
ret = -errno;
goto error;
}
vdev->vbasedev.name = g_strdup(basename(vdev->vbasedev.sysfsdev));
vdev->vbasedev.ops = &vfio_pci_ops;
vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI;
tmp = g_strdup_printf("%s/iommu_group", vdev->vbasedev.sysfsdev);
len = readlink(tmp, group_path, sizeof(group_path));
g_free(tmp);
if (len <= 0 || len >= sizeof(group_path)) {
ret = len < 0 ? -errno : -ENAMETOOLONG;
error_setg_errno(&err, -ret, "no iommu_group found");
goto error;
}
group_path[len] = 0;
group_name = basename(group_path);
if (sscanf(group_name, "%d", &groupid) != 1) {
error_setg_errno(&err, errno, "failed to read %s", group_path);
ret = -errno;
goto error;
}
trace_vfio_initfn(vdev->vbasedev.name, groupid);
group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev), &err);
if (!group) {
ret = -ENOENT;
goto error;
}
QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) {
error_setg(&err, "device is already attached");
vfio_put_group(group);
ret = -EBUSY;
goto error;
}
}
ret = vfio_get_device(group, vdev->vbasedev.name, &vdev->vbasedev);
if (ret) {
error_setg_errno(&err, -ret, "failed to get device");
vfio_put_group(group);
goto error;
}
ret = vfio_populate_device(vdev, &err);
if (ret) {
goto error;
}
/* Get a copy of config space */
ret = pread(vdev->vbasedev.fd, vdev->pdev.config,
MIN(pci_config_size(&vdev->pdev), vdev->config_size),
vdev->config_offset);
if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
ret = ret < 0 ? -errno : -EFAULT;
error_setg_errno(&err, -ret, "failed to read device config space");
goto error;
}
/* vfio emulates a lot for us, but some bits need extra love */
vdev->emulated_config_bits = g_malloc0(vdev->config_size);
/* QEMU can choose to expose the ROM or not */
memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4);
/*
* The PCI spec reserves vendor ID 0xffff as an invalid value. The
* device ID is managed by the vendor and need only be a 16-bit value.
* Allow any 16-bit value for subsystem so they can be hidden or changed.
*/
if (vdev->vendor_id != PCI_ANY_ID) {
if (vdev->vendor_id >= 0xffff) {
error_setg(&err, "invalid PCI vendor ID provided");
ret = -EINVAL;
goto error;
}
vfio_add_emulated_word(vdev, PCI_VENDOR_ID, vdev->vendor_id, ~0);
trace_vfio_pci_emulated_vendor_id(vdev->vbasedev.name, vdev->vendor_id);
} else {
vdev->vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
}
if (vdev->device_id != PCI_ANY_ID) {
if (vdev->device_id > 0xffff) {
error_setg(&err, "invalid PCI device ID provided");
ret = -EINVAL;
goto error;
}
vfio_add_emulated_word(vdev, PCI_DEVICE_ID, vdev->device_id, ~0);
trace_vfio_pci_emulated_device_id(vdev->vbasedev.name, vdev->device_id);
} else {
vdev->device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
}
if (vdev->sub_vendor_id != PCI_ANY_ID) {
if (vdev->sub_vendor_id > 0xffff) {
error_setg(&err, "invalid PCI subsystem vendor ID provided");
ret = -EINVAL;
goto error;
}
vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_VENDOR_ID,
vdev->sub_vendor_id, ~0);
trace_vfio_pci_emulated_sub_vendor_id(vdev->vbasedev.name,
vdev->sub_vendor_id);
}
if (vdev->sub_device_id != PCI_ANY_ID) {
if (vdev->sub_device_id > 0xffff) {
error_setg(&err, "invalid PCI subsystem device ID provided");
ret = -EINVAL;
goto error;
}
vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_ID, vdev->sub_device_id, ~0);
trace_vfio_pci_emulated_sub_device_id(vdev->vbasedev.name,
vdev->sub_device_id);
}
/* QEMU can change multi-function devices to single function, or reverse */
vdev->emulated_config_bits[PCI_HEADER_TYPE] =
PCI_HEADER_TYPE_MULTI_FUNCTION;
/* Restore or clear multifunction, this is always controlled by QEMU */
if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
} else {
vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
}
/*
* Clear host resource mapping info. If we choose not to register a
* BAR, such as might be the case with the option ROM, we can get
* confusing, unwritable, residual addresses from the host here.
*/
memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
vfio_pci_size_rom(vdev);
ret = vfio_msix_early_setup(vdev, &err);
if (ret) {
goto error;
}
vfio_bars_setup(vdev);
ret = vfio_add_capabilities(vdev, &err);
if (ret) {
goto out_teardown;
}
if (vdev->vga) {
vfio_vga_quirk_setup(vdev);
}
for (i = 0; i < PCI_ROM_SLOT; i++) {
vfio_bar_quirk_setup(vdev, i);
}
if (!vdev->igd_opregion &&
vdev->features & VFIO_FEATURE_ENABLE_IGD_OPREGION) {
struct vfio_region_info *opregion;
if (vdev->pdev.qdev.hotplugged) {
error_setg(&err,
"cannot support IGD OpRegion feature on hotplugged "
"device");
ret = -EINVAL;
goto out_teardown;
}
ret = vfio_get_dev_region_info(&vdev->vbasedev,
VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL,
VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion);
if (ret) {
error_setg_errno(&err, -ret,
"does not support requested IGD OpRegion feature");
goto out_teardown;
}
ret = vfio_pci_igd_opregion_init(vdev, opregion, &err);
g_free(opregion);
if (ret) {
goto out_teardown;
}
}
/* QEMU emulates all of MSI & MSIX */
if (pdev->cap_present & QEMU_PCI_CAP_MSIX) {
memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff,
MSIX_CAP_LENGTH);
}
if (pdev->cap_present & QEMU_PCI_CAP_MSI) {
memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff,
vdev->msi_cap_size);
}
if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
vfio_intx_mmap_enable, vdev);
pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_intx_update);
ret = vfio_intx_enable(vdev, &err);
if (ret) {
goto out_teardown;
}
}
vfio_register_err_notifier(vdev);
vfio_register_req_notifier(vdev);
vfio_setup_resetfn_quirk(vdev);
return 0;
out_teardown:
pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
vfio_teardown_msi(vdev);
vfio_bars_exit(vdev);
error:
if (err) {
error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name);
}
return ret;
}
static void vfio_instance_finalize(Object *obj)
{
PCIDevice *pci_dev = PCI_DEVICE(obj);
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev);
VFIOGroup *group = vdev->vbasedev.group;
vfio_bars_finalize(vdev);
g_free(vdev->emulated_config_bits);
g_free(vdev->rom);
/*
* XXX Leaking igd_opregion is not an oversight, we can't remove the
* fw_cfg entry therefore leaking this allocation seems like the safest
* option.
*
* g_free(vdev->igd_opregion);
*/
vfio_put_device(vdev);
vfio_put_group(group);
}
static void vfio_exitfn(PCIDevice *pdev)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
vfio_unregister_req_notifier(vdev);
vfio_unregister_err_notifier(vdev);
pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
vfio_disable_interrupts(vdev);
if (vdev->intx.mmap_timer) {
timer_free(vdev->intx.mmap_timer);
}
vfio_teardown_msi(vdev);
vfio_bars_exit(vdev);
}
static void vfio_pci_reset(DeviceState *dev)
{
PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
trace_vfio_pci_reset(vdev->vbasedev.name);
vfio_pci_pre_reset(vdev);
if (vdev->resetfn && !vdev->resetfn(vdev)) {
goto post_reset;
}
if (vdev->vbasedev.reset_works &&
(vdev->has_flr || !vdev->has_pm_reset) &&
!ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
trace_vfio_pci_reset_flr(vdev->vbasedev.name);
goto post_reset;
}
/* See if we can do our own bus reset */
if (!vfio_pci_hot_reset_one(vdev)) {
goto post_reset;
}
/* If nothing else works and the device supports PM reset, use it */
if (vdev->vbasedev.reset_works && vdev->has_pm_reset &&
!ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
trace_vfio_pci_reset_pm(vdev->vbasedev.name);
goto post_reset;
}
post_reset:
vfio_pci_post_reset(vdev);
}
static void vfio_instance_init(Object *obj)
{
PCIDevice *pci_dev = PCI_DEVICE(obj);
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj));
device_add_bootindex_property(obj, &vdev->bootindex,
"bootindex", NULL,
&pci_dev->qdev, NULL);
}
static Property vfio_pci_dev_properties[] = {
DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host),
DEFINE_PROP_STRING("sysfsdev", VFIOPCIDevice, vbasedev.sysfsdev),
DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice,
intx.mmap_timeout, 1100),
DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features,
VFIO_FEATURE_ENABLE_VGA_BIT, false),
DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features,
VFIO_FEATURE_ENABLE_REQ_BIT, true),
DEFINE_PROP_BIT("x-igd-opregion", VFIOPCIDevice, features,
VFIO_FEATURE_ENABLE_IGD_OPREGION_BIT, false),
DEFINE_PROP_BOOL("x-no-mmap", VFIOPCIDevice, vbasedev.no_mmap, false),
DEFINE_PROP_BOOL("x-no-kvm-intx", VFIOPCIDevice, no_kvm_intx, false),
DEFINE_PROP_BOOL("x-no-kvm-msi", VFIOPCIDevice, no_kvm_msi, false),
DEFINE_PROP_BOOL("x-no-kvm-msix", VFIOPCIDevice, no_kvm_msix, false),
DEFINE_PROP_UINT32("x-pci-vendor-id", VFIOPCIDevice, vendor_id, PCI_ANY_ID),
DEFINE_PROP_UINT32("x-pci-device-id", VFIOPCIDevice, device_id, PCI_ANY_ID),
DEFINE_PROP_UINT32("x-pci-sub-vendor-id", VFIOPCIDevice,
sub_vendor_id, PCI_ANY_ID),
DEFINE_PROP_UINT32("x-pci-sub-device-id", VFIOPCIDevice,
sub_device_id, PCI_ANY_ID),
DEFINE_PROP_UINT32("x-igd-gms", VFIOPCIDevice, igd_gms, 0),
/*
* TODO - support passed fds... is this necessary?
* DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name),
* DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name),
*/
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vfio_pci_vmstate = {
.name = "vfio-pci",
.unmigratable = 1,
};
static void vfio_pci_dev_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass);
dc->reset = vfio_pci_reset;
dc->props = vfio_pci_dev_properties;
dc->vmsd = &vfio_pci_vmstate;
dc->desc = "VFIO-based PCI device assignment";
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
pdc->init = vfio_initfn;
pdc->exit = vfio_exitfn;
pdc->config_read = vfio_pci_read_config;
pdc->config_write = vfio_pci_write_config;
pdc->is_express = 1; /* We might be */
}
static const TypeInfo vfio_pci_dev_info = {
.name = "vfio-pci",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(VFIOPCIDevice),
.class_init = vfio_pci_dev_class_init,
.instance_init = vfio_instance_init,
.instance_finalize = vfio_instance_finalize,
};
static void register_vfio_pci_dev_type(void)
{
type_register_static(&vfio_pci_dev_info);
}
type_init(register_vfio_pci_dev_type)