qemu/hw/ssi/xilinx_spips.c
Philippe Mathieu-Daudé 526668c734 hw/ssi/xilinx_spips: Avoid out-of-bound access to lqspi_buf[]
Both lqspi_read() and lqspi_load_cache() expect a 32-bit
aligned address.

>From UG1085 datasheet [*] chapter on 'Quad-SPI Controller':

  Transfer Size Limitations

    Because of the 32-bit wide TX, RX, and generic FIFO, all
    APB/AXI transfers must be an integer multiple of 4-bytes.
    Shorter transfers are not possible.

Set MemoryRegionOps.impl values to force 32-bit accesses,
this way we are sure we do not access the lqspi_buf[] array
out of bound.

[*] https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf

Reviewed-by: Francisco Iglesias <frasse.iglesias@gmail.com>
Tested-by: Francisco Iglesias <frasse.iglesias@gmail.com>
Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2019-07-15 14:17:03 +01:00

1495 lines
48 KiB
C

/*
* QEMU model of the Xilinx Zynq SPI controller
*
* Copyright (c) 2012 Peter A. G. Crosthwaite
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "hw/ptimer.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/bitops.h"
#include "hw/ssi/xilinx_spips.h"
#include "qapi/error.h"
#include "hw/register.h"
#include "sysemu/dma.h"
#include "migration/blocker.h"
#ifndef XILINX_SPIPS_ERR_DEBUG
#define XILINX_SPIPS_ERR_DEBUG 0
#endif
#define DB_PRINT_L(level, ...) do { \
if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} \
} while (0)
/* config register */
#define R_CONFIG (0x00 / 4)
#define IFMODE (1U << 31)
#define R_CONFIG_ENDIAN (1 << 26)
#define MODEFAIL_GEN_EN (1 << 17)
#define MAN_START_COM (1 << 16)
#define MAN_START_EN (1 << 15)
#define MANUAL_CS (1 << 14)
#define CS (0xF << 10)
#define CS_SHIFT (10)
#define PERI_SEL (1 << 9)
#define REF_CLK (1 << 8)
#define FIFO_WIDTH (3 << 6)
#define BAUD_RATE_DIV (7 << 3)
#define CLK_PH (1 << 2)
#define CLK_POL (1 << 1)
#define MODE_SEL (1 << 0)
#define R_CONFIG_RSVD (0x7bf40000)
/* interrupt mechanism */
#define R_INTR_STATUS (0x04 / 4)
#define R_INTR_STATUS_RESET (0x104)
#define R_INTR_EN (0x08 / 4)
#define R_INTR_DIS (0x0C / 4)
#define R_INTR_MASK (0x10 / 4)
#define IXR_TX_FIFO_UNDERFLOW (1 << 6)
/* Poll timeout not implemented */
#define IXR_RX_FIFO_EMPTY (1 << 11)
#define IXR_GENERIC_FIFO_FULL (1 << 10)
#define IXR_GENERIC_FIFO_NOT_FULL (1 << 9)
#define IXR_TX_FIFO_EMPTY (1 << 8)
#define IXR_GENERIC_FIFO_EMPTY (1 << 7)
#define IXR_RX_FIFO_FULL (1 << 5)
#define IXR_RX_FIFO_NOT_EMPTY (1 << 4)
#define IXR_TX_FIFO_FULL (1 << 3)
#define IXR_TX_FIFO_NOT_FULL (1 << 2)
#define IXR_TX_FIFO_MODE_FAIL (1 << 1)
#define IXR_RX_FIFO_OVERFLOW (1 << 0)
#define IXR_ALL ((1 << 13) - 1)
#define GQSPI_IXR_MASK 0xFBE
#define IXR_SELF_CLEAR \
(IXR_GENERIC_FIFO_EMPTY \
| IXR_GENERIC_FIFO_FULL \
| IXR_GENERIC_FIFO_NOT_FULL \
| IXR_TX_FIFO_EMPTY \
| IXR_TX_FIFO_FULL \
| IXR_TX_FIFO_NOT_FULL \
| IXR_RX_FIFO_EMPTY \
| IXR_RX_FIFO_FULL \
| IXR_RX_FIFO_NOT_EMPTY)
#define R_EN (0x14 / 4)
#define R_DELAY (0x18 / 4)
#define R_TX_DATA (0x1C / 4)
#define R_RX_DATA (0x20 / 4)
#define R_SLAVE_IDLE_COUNT (0x24 / 4)
#define R_TX_THRES (0x28 / 4)
#define R_RX_THRES (0x2C / 4)
#define R_GPIO (0x30 / 4)
#define R_LPBK_DLY_ADJ (0x38 / 4)
#define R_LPBK_DLY_ADJ_RESET (0x33)
#define R_TXD1 (0x80 / 4)
#define R_TXD2 (0x84 / 4)
#define R_TXD3 (0x88 / 4)
#define R_LQSPI_CFG (0xa0 / 4)
#define R_LQSPI_CFG_RESET 0x03A002EB
#define LQSPI_CFG_LQ_MODE (1U << 31)
#define LQSPI_CFG_TWO_MEM (1 << 30)
#define LQSPI_CFG_SEP_BUS (1 << 29)
#define LQSPI_CFG_U_PAGE (1 << 28)
#define LQSPI_CFG_ADDR4 (1 << 27)
#define LQSPI_CFG_MODE_EN (1 << 25)
#define LQSPI_CFG_MODE_WIDTH 8
#define LQSPI_CFG_MODE_SHIFT 16
#define LQSPI_CFG_DUMMY_WIDTH 3
#define LQSPI_CFG_DUMMY_SHIFT 8
#define LQSPI_CFG_INST_CODE 0xFF
#define R_CMND (0xc0 / 4)
#define R_CMND_RXFIFO_DRAIN (1 << 19)
FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3)
#define R_CMND_EXT_ADD (1 << 15)
FIELD(CMND, RX_DISCARD, 8, 7)
FIELD(CMND, DUMMY_CYCLES, 2, 6)
#define R_CMND_DMA_EN (1 << 1)
#define R_CMND_PUSH_WAIT (1 << 0)
#define R_TRANSFER_SIZE (0xc4 / 4)
#define R_LQSPI_STS (0xA4 / 4)
#define LQSPI_STS_WR_RECVD (1 << 1)
#define R_MOD_ID (0xFC / 4)
#define R_GQSPI_SELECT (0x144 / 4)
FIELD(GQSPI_SELECT, GENERIC_QSPI_EN, 0, 1)
#define R_GQSPI_ISR (0x104 / 4)
#define R_GQSPI_IER (0x108 / 4)
#define R_GQSPI_IDR (0x10c / 4)
#define R_GQSPI_IMR (0x110 / 4)
#define R_GQSPI_IMR_RESET (0xfbe)
#define R_GQSPI_TX_THRESH (0x128 / 4)
#define R_GQSPI_RX_THRESH (0x12c / 4)
#define R_GQSPI_GPIO (0x130 / 4)
#define R_GQSPI_LPBK_DLY_ADJ (0x138 / 4)
#define R_GQSPI_LPBK_DLY_ADJ_RESET (0x33)
#define R_GQSPI_CNFG (0x100 / 4)
FIELD(GQSPI_CNFG, MODE_EN, 30, 2)
FIELD(GQSPI_CNFG, GEN_FIFO_START_MODE, 29, 1)
FIELD(GQSPI_CNFG, GEN_FIFO_START, 28, 1)
FIELD(GQSPI_CNFG, ENDIAN, 26, 1)
/* Poll timeout not implemented */
FIELD(GQSPI_CNFG, EN_POLL_TIMEOUT, 20, 1)
/* QEMU doesnt care about any of these last three */
FIELD(GQSPI_CNFG, BR, 3, 3)
FIELD(GQSPI_CNFG, CPH, 2, 1)
FIELD(GQSPI_CNFG, CPL, 1, 1)
#define R_GQSPI_GEN_FIFO (0x140 / 4)
#define R_GQSPI_TXD (0x11c / 4)
#define R_GQSPI_RXD (0x120 / 4)
#define R_GQSPI_FIFO_CTRL (0x14c / 4)
FIELD(GQSPI_FIFO_CTRL, RX_FIFO_RESET, 2, 1)
FIELD(GQSPI_FIFO_CTRL, TX_FIFO_RESET, 1, 1)
FIELD(GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET, 0, 1)
#define R_GQSPI_GFIFO_THRESH (0x150 / 4)
#define R_GQSPI_DATA_STS (0x15c / 4)
/* We use the snapshot register to hold the core state for the currently
* or most recently executed command. So the generic fifo format is defined
* for the snapshot register
*/
#define R_GQSPI_GF_SNAPSHOT (0x160 / 4)
FIELD(GQSPI_GF_SNAPSHOT, POLL, 19, 1)
FIELD(GQSPI_GF_SNAPSHOT, STRIPE, 18, 1)
FIELD(GQSPI_GF_SNAPSHOT, RECIEVE, 17, 1)
FIELD(GQSPI_GF_SNAPSHOT, TRANSMIT, 16, 1)
FIELD(GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT, 14, 2)
FIELD(GQSPI_GF_SNAPSHOT, CHIP_SELECT, 12, 2)
FIELD(GQSPI_GF_SNAPSHOT, SPI_MODE, 10, 2)
FIELD(GQSPI_GF_SNAPSHOT, EXPONENT, 9, 1)
FIELD(GQSPI_GF_SNAPSHOT, DATA_XFER, 8, 1)
FIELD(GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA, 0, 8)
#define R_GQSPI_MOD_ID (0x1fc / 4)
#define R_GQSPI_MOD_ID_RESET (0x10a0000)
#define R_QSPIDMA_DST_CTRL (0x80c / 4)
#define R_QSPIDMA_DST_CTRL_RESET (0x803ffa00)
#define R_QSPIDMA_DST_I_MASK (0x820 / 4)
#define R_QSPIDMA_DST_I_MASK_RESET (0xfe)
#define R_QSPIDMA_DST_CTRL2 (0x824 / 4)
#define R_QSPIDMA_DST_CTRL2_RESET (0x081bfff8)
/* size of TXRX FIFOs */
#define RXFF_A (128)
#define TXFF_A (128)
#define RXFF_A_Q (64 * 4)
#define TXFF_A_Q (64 * 4)
/* 16MB per linear region */
#define LQSPI_ADDRESS_BITS 24
#define SNOOP_CHECKING 0xFF
#define SNOOP_ADDR 0xF0
#define SNOOP_NONE 0xEE
#define SNOOP_STRIPING 0
#define MIN_NUM_BUSSES 1
#define MAX_NUM_BUSSES 2
static inline int num_effective_busses(XilinxSPIPS *s)
{
return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
}
static void xilinx_spips_update_cs(XilinxSPIPS *s, int field)
{
int i;
for (i = 0; i < s->num_cs * s->num_busses; i++) {
bool old_state = s->cs_lines_state[i];
bool new_state = field & (1 << i);
if (old_state != new_state) {
s->cs_lines_state[i] = new_state;
s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD);
DB_PRINT_L(1, "%sselecting slave %d\n", new_state ? "" : "de", i);
}
qemu_set_irq(s->cs_lines[i], !new_state);
}
if (!(field & ((1 << (s->num_cs * s->num_busses)) - 1))) {
s->snoop_state = SNOOP_CHECKING;
s->cmd_dummies = 0;
s->link_state = 1;
s->link_state_next = 1;
s->link_state_next_when = 0;
DB_PRINT_L(1, "moving to snoop check state\n");
}
}
static void xlnx_zynqmp_qspips_update_cs_lines(XlnxZynqMPQSPIPS *s)
{
if (s->regs[R_GQSPI_GF_SNAPSHOT]) {
int field = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, CHIP_SELECT);
bool upper_cs_sel = field & (1 << 1);
bool lower_cs_sel = field & 1;
bool bus0_enabled;
bool bus1_enabled;
uint8_t buses;
int cs = 0;
buses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT);
bus0_enabled = buses & 1;
bus1_enabled = buses & (1 << 1);
if (bus0_enabled && bus1_enabled) {
if (lower_cs_sel) {
cs |= 1;
}
if (upper_cs_sel) {
cs |= 1 << 3;
}
} else if (bus0_enabled) {
if (lower_cs_sel) {
cs |= 1;
}
if (upper_cs_sel) {
cs |= 1 << 1;
}
} else if (bus1_enabled) {
if (lower_cs_sel) {
cs |= 1 << 2;
}
if (upper_cs_sel) {
cs |= 1 << 3;
}
}
xilinx_spips_update_cs(XILINX_SPIPS(s), cs);
}
}
static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
{
int field = ~((s->regs[R_CONFIG] & CS) >> CS_SHIFT);
/* In dual parallel, mirror low CS to both */
if (num_effective_busses(s) == 2) {
/* Single bit chip-select for qspi */
field &= 0x1;
field |= field << 3;
/* Dual stack U-Page */
} else if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM &&
s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE) {
/* Single bit chip-select for qspi */
field &= 0x1;
/* change from CS0 to CS1 */
field <<= 1;
}
/* Auto CS */
if (!(s->regs[R_CONFIG] & MANUAL_CS) &&
fifo8_is_empty(&s->tx_fifo)) {
field = 0;
}
xilinx_spips_update_cs(s, field);
}
static void xilinx_spips_update_ixr(XilinxSPIPS *s)
{
if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
s->regs[R_INTR_STATUS] &= ~IXR_SELF_CLEAR;
s->regs[R_INTR_STATUS] |=
(fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
(s->rx_fifo.num >= s->regs[R_RX_THRES] ?
IXR_RX_FIFO_NOT_EMPTY : 0) |
(fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
(fifo8_is_empty(&s->tx_fifo) ? IXR_TX_FIFO_EMPTY : 0) |
(s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
}
int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
IXR_ALL);
if (new_irqline != s->irqline) {
s->irqline = new_irqline;
qemu_set_irq(s->irq, s->irqline);
}
}
static void xlnx_zynqmp_qspips_update_ixr(XlnxZynqMPQSPIPS *s)
{
uint32_t gqspi_int;
int new_irqline;
s->regs[R_GQSPI_ISR] &= ~IXR_SELF_CLEAR;
s->regs[R_GQSPI_ISR] |=
(fifo32_is_empty(&s->fifo_g) ? IXR_GENERIC_FIFO_EMPTY : 0) |
(fifo32_is_full(&s->fifo_g) ? IXR_GENERIC_FIFO_FULL : 0) |
(s->fifo_g.fifo.num < s->regs[R_GQSPI_GFIFO_THRESH] ?
IXR_GENERIC_FIFO_NOT_FULL : 0) |
(fifo8_is_empty(&s->rx_fifo_g) ? IXR_RX_FIFO_EMPTY : 0) |
(fifo8_is_full(&s->rx_fifo_g) ? IXR_RX_FIFO_FULL : 0) |
(s->rx_fifo_g.num >= s->regs[R_GQSPI_RX_THRESH] ?
IXR_RX_FIFO_NOT_EMPTY : 0) |
(fifo8_is_empty(&s->tx_fifo_g) ? IXR_TX_FIFO_EMPTY : 0) |
(fifo8_is_full(&s->tx_fifo_g) ? IXR_TX_FIFO_FULL : 0) |
(s->tx_fifo_g.num < s->regs[R_GQSPI_TX_THRESH] ?
IXR_TX_FIFO_NOT_FULL : 0);
/* GQSPI Interrupt Trigger Status */
gqspi_int = (~s->regs[R_GQSPI_IMR]) & s->regs[R_GQSPI_ISR] & GQSPI_IXR_MASK;
new_irqline = !!(gqspi_int & IXR_ALL);
/* drive external interrupt pin */
if (new_irqline != s->gqspi_irqline) {
s->gqspi_irqline = new_irqline;
qemu_set_irq(XILINX_SPIPS(s)->irq, s->gqspi_irqline);
}
}
static void xilinx_spips_reset(DeviceState *d)
{
XilinxSPIPS *s = XILINX_SPIPS(d);
memset(s->regs, 0, sizeof(s->regs));
fifo8_reset(&s->rx_fifo);
fifo8_reset(&s->rx_fifo);
/* non zero resets */
s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
s->regs[R_TX_THRES] = 1;
s->regs[R_RX_THRES] = 1;
/* FIXME: move magic number definition somewhere sensible */
s->regs[R_MOD_ID] = 0x01090106;
s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
s->link_state = 1;
s->link_state_next = 1;
s->link_state_next_when = 0;
s->snoop_state = SNOOP_CHECKING;
s->cmd_dummies = 0;
s->man_start_com = false;
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s);
}
static void xlnx_zynqmp_qspips_reset(DeviceState *d)
{
XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(d);
xilinx_spips_reset(d);
memset(s->regs, 0, sizeof(s->regs));
fifo8_reset(&s->rx_fifo_g);
fifo8_reset(&s->rx_fifo_g);
fifo32_reset(&s->fifo_g);
s->regs[R_INTR_STATUS] = R_INTR_STATUS_RESET;
s->regs[R_GPIO] = 1;
s->regs[R_LPBK_DLY_ADJ] = R_LPBK_DLY_ADJ_RESET;
s->regs[R_GQSPI_GFIFO_THRESH] = 0x10;
s->regs[R_MOD_ID] = 0x01090101;
s->regs[R_GQSPI_IMR] = R_GQSPI_IMR_RESET;
s->regs[R_GQSPI_TX_THRESH] = 1;
s->regs[R_GQSPI_RX_THRESH] = 1;
s->regs[R_GQSPI_GPIO] = 1;
s->regs[R_GQSPI_LPBK_DLY_ADJ] = R_GQSPI_LPBK_DLY_ADJ_RESET;
s->regs[R_GQSPI_MOD_ID] = R_GQSPI_MOD_ID_RESET;
s->regs[R_QSPIDMA_DST_CTRL] = R_QSPIDMA_DST_CTRL_RESET;
s->regs[R_QSPIDMA_DST_I_MASK] = R_QSPIDMA_DST_I_MASK_RESET;
s->regs[R_QSPIDMA_DST_CTRL2] = R_QSPIDMA_DST_CTRL2_RESET;
s->man_start_com_g = false;
s->gqspi_irqline = 0;
xlnx_zynqmp_qspips_update_ixr(s);
}
/* N way (num) in place bit striper. Lay out row wise bits (MSB to LSB)
* column wise (from element 0 to N-1). num is the length of x, and dir
* reverses the direction of the transform. Best illustrated by example:
* Each digit in the below array is a single bit (num == 3):
*
* {{ 76543210, } ----- stripe (dir == false) -----> {{ 741gdaFC, }
* { hgfedcba, } { 630fcHEB, }
* { HGFEDCBA, }} <---- upstripe (dir == true) ----- { 52hebGDA, }}
*/
static inline void stripe8(uint8_t *x, int num, bool dir)
{
uint8_t r[MAX_NUM_BUSSES];
int idx[2] = {0, 0};
int bit[2] = {0, 7};
int d = dir;
assert(num <= MAX_NUM_BUSSES);
memset(r, 0, sizeof(uint8_t) * num);
for (idx[0] = 0; idx[0] < num; ++idx[0]) {
for (bit[0] = 7; bit[0] >= 0; bit[0]--) {
r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0;
idx[1] = (idx[1] + 1) % num;
if (!idx[1]) {
bit[1]--;
}
}
}
memcpy(x, r, sizeof(uint8_t) * num);
}
static void xlnx_zynqmp_qspips_flush_fifo_g(XlnxZynqMPQSPIPS *s)
{
while (s->regs[R_GQSPI_DATA_STS] || !fifo32_is_empty(&s->fifo_g)) {
uint8_t tx_rx[2] = { 0 };
int num_stripes = 1;
uint8_t busses;
int i;
if (!s->regs[R_GQSPI_DATA_STS]) {
uint8_t imm;
s->regs[R_GQSPI_GF_SNAPSHOT] = fifo32_pop(&s->fifo_g);
DB_PRINT_L(0, "GQSPI command: %x\n", s->regs[R_GQSPI_GF_SNAPSHOT]);
if (!s->regs[R_GQSPI_GF_SNAPSHOT]) {
DB_PRINT_L(0, "Dummy GQSPI Delay Command Entry, Do nothing");
continue;
}
xlnx_zynqmp_qspips_update_cs_lines(s);
imm = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA);
if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) {
/* immedate transfer */
if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) ||
ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) {
s->regs[R_GQSPI_DATA_STS] = 1;
/* CS setup/hold - do nothing */
} else {
s->regs[R_GQSPI_DATA_STS] = 0;
}
} else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, EXPONENT)) {
if (imm > 31) {
qemu_log_mask(LOG_UNIMP, "QSPI exponential transfer too"
" long - 2 ^ %" PRId8 " requested\n", imm);
}
s->regs[R_GQSPI_DATA_STS] = 1ul << imm;
} else {
s->regs[R_GQSPI_DATA_STS] = imm;
}
}
/* Zero length transfer check */
if (!s->regs[R_GQSPI_DATA_STS]) {
continue;
}
if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE) &&
fifo8_is_full(&s->rx_fifo_g)) {
/* No space in RX fifo for transfer - try again later */
return;
}
if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, STRIPE) &&
(ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT) ||
ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE))) {
num_stripes = 2;
}
if (!ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_XFER)) {
tx_rx[0] = ARRAY_FIELD_EX32(s->regs,
GQSPI_GF_SNAPSHOT, IMMEDIATE_DATA);
} else if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, TRANSMIT)) {
for (i = 0; i < num_stripes; ++i) {
if (!fifo8_is_empty(&s->tx_fifo_g)) {
tx_rx[i] = fifo8_pop(&s->tx_fifo_g);
s->tx_fifo_g_align++;
} else {
return;
}
}
}
if (num_stripes == 1) {
/* mirror */
tx_rx[1] = tx_rx[0];
}
busses = ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, DATA_BUS_SELECT);
for (i = 0; i < 2; ++i) {
DB_PRINT_L(1, "bus %d tx = %02x\n", i, tx_rx[i]);
tx_rx[i] = ssi_transfer(XILINX_SPIPS(s)->spi[i], tx_rx[i]);
DB_PRINT_L(1, "bus %d rx = %02x\n", i, tx_rx[i]);
}
if (s->regs[R_GQSPI_DATA_STS] > 1 &&
busses == 0x3 && num_stripes == 2) {
s->regs[R_GQSPI_DATA_STS] -= 2;
} else if (s->regs[R_GQSPI_DATA_STS] > 0) {
s->regs[R_GQSPI_DATA_STS]--;
}
if (ARRAY_FIELD_EX32(s->regs, GQSPI_GF_SNAPSHOT, RECIEVE)) {
for (i = 0; i < 2; ++i) {
if (busses & (1 << i)) {
DB_PRINT_L(1, "bus %d push_byte = %02x\n", i, tx_rx[i]);
fifo8_push(&s->rx_fifo_g, tx_rx[i]);
s->rx_fifo_g_align++;
}
}
}
if (!s->regs[R_GQSPI_DATA_STS]) {
for (; s->tx_fifo_g_align % 4; s->tx_fifo_g_align++) {
fifo8_pop(&s->tx_fifo_g);
}
for (; s->rx_fifo_g_align % 4; s->rx_fifo_g_align++) {
fifo8_push(&s->rx_fifo_g, 0);
}
}
}
}
static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command)
{
if (!qs) {
/* The SPI device is not a QSPI device */
return -1;
}
switch (command) { /* check for dummies */
case READ: /* no dummy bytes/cycles */
case PP:
case DPP:
case QPP:
case READ_4:
case PP_4:
case QPP_4:
return 0;
case FAST_READ:
case DOR:
case QOR:
case DOR_4:
case QOR_4:
return 1;
case DIOR:
case FAST_READ_4:
case DIOR_4:
return 2;
case QIOR:
case QIOR_4:
return 4;
default:
return -1;
}
}
static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd)
{
switch (cmd) {
case PP_4:
case QPP_4:
case READ_4:
case QIOR_4:
case FAST_READ_4:
case DOR_4:
case QOR_4:
case DIOR_4:
return 4;
default:
return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3;
}
}
static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
{
int debug_level = 0;
XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s),
TYPE_XILINX_QSPIPS);
for (;;) {
int i;
uint8_t tx = 0;
uint8_t tx_rx[MAX_NUM_BUSSES] = { 0 };
uint8_t dummy_cycles = 0;
uint8_t addr_length;
if (fifo8_is_empty(&s->tx_fifo)) {
xilinx_spips_update_ixr(s);
return;
} else if (s->snoop_state == SNOOP_STRIPING ||
s->snoop_state == SNOOP_NONE) {
for (i = 0; i < num_effective_busses(s); ++i) {
tx_rx[i] = fifo8_pop(&s->tx_fifo);
}
stripe8(tx_rx, num_effective_busses(s), false);
} else if (s->snoop_state >= SNOOP_ADDR) {
tx = fifo8_pop(&s->tx_fifo);
for (i = 0; i < num_effective_busses(s); ++i) {
tx_rx[i] = tx;
}
} else {
/* Extract a dummy byte and generate dummy cycles according to the
* link state */
tx = fifo8_pop(&s->tx_fifo);
dummy_cycles = 8 / s->link_state;
}
for (i = 0; i < num_effective_busses(s); ++i) {
int bus = num_effective_busses(s) - 1 - i;
if (dummy_cycles) {
int d;
for (d = 0; d < dummy_cycles; ++d) {
tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]);
}
} else {
DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]);
DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
}
}
if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
DB_PRINT_L(debug_level, "dircarding drained rx byte\n");
/* Do nothing */
} else if (s->rx_discard) {
DB_PRINT_L(debug_level, "dircarding discarded rx byte\n");
s->rx_discard -= 8 / s->link_state;
} else if (fifo8_is_full(&s->rx_fifo)) {
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
DB_PRINT_L(0, "rx FIFO overflow");
} else if (s->snoop_state == SNOOP_STRIPING) {
stripe8(tx_rx, num_effective_busses(s), true);
for (i = 0; i < num_effective_busses(s); ++i) {
fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
DB_PRINT_L(debug_level, "pushing striped rx byte\n");
}
} else {
DB_PRINT_L(debug_level, "pushing unstriped rx byte\n");
fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
}
if (s->link_state_next_when) {
s->link_state_next_when--;
if (!s->link_state_next_when) {
s->link_state = s->link_state_next;
}
}
DB_PRINT_L(debug_level, "initial snoop state: %x\n",
(unsigned)s->snoop_state);
switch (s->snoop_state) {
case (SNOOP_CHECKING):
/* Store the count of dummy bytes in the txfifo */
s->cmd_dummies = xilinx_spips_num_dummies(q, tx);
addr_length = get_addr_length(s, tx);
if (s->cmd_dummies < 0) {
s->snoop_state = SNOOP_NONE;
} else {
s->snoop_state = SNOOP_ADDR + addr_length - 1;
}
switch (tx) {
case DPP:
case DOR:
case DOR_4:
s->link_state_next = 2;
s->link_state_next_when = addr_length + s->cmd_dummies;
break;
case QPP:
case QPP_4:
case QOR:
case QOR_4:
s->link_state_next = 4;
s->link_state_next_when = addr_length + s->cmd_dummies;
break;
case DIOR:
case DIOR_4:
s->link_state = 2;
break;
case QIOR:
case QIOR_4:
s->link_state = 4;
break;
}
break;
case (SNOOP_ADDR):
/* Address has been transmitted, transmit dummy cycles now if
* needed */
if (s->cmd_dummies < 0) {
s->snoop_state = SNOOP_NONE;
} else {
s->snoop_state = s->cmd_dummies;
}
break;
case (SNOOP_STRIPING):
case (SNOOP_NONE):
/* Once we hit the boring stuff - squelch debug noise */
if (!debug_level) {
DB_PRINT_L(0, "squelching debug info ....\n");
debug_level = 1;
}
break;
default:
s->snoop_state--;
}
DB_PRINT_L(debug_level, "final snoop state: %x\n",
(unsigned)s->snoop_state);
}
}
static inline void tx_data_bytes(Fifo8 *fifo, uint32_t value, int num, bool be)
{
int i;
for (i = 0; i < num && !fifo8_is_full(fifo); ++i) {
if (be) {
fifo8_push(fifo, (uint8_t)(value >> 24));
value <<= 8;
} else {
fifo8_push(fifo, (uint8_t)value);
value >>= 8;
}
}
}
static void xilinx_spips_check_zero_pump(XilinxSPIPS *s)
{
if (!s->regs[R_TRANSFER_SIZE]) {
return;
}
if (!fifo8_is_empty(&s->tx_fifo) && s->regs[R_CMND] & R_CMND_PUSH_WAIT) {
return;
}
/*
* The zero pump must never fill tx fifo such that rx overflow is
* possible
*/
while (s->regs[R_TRANSFER_SIZE] &&
s->rx_fifo.num + s->tx_fifo.num < RXFF_A_Q - 3) {
/* endianess just doesn't matter when zero pumping */
tx_data_bytes(&s->tx_fifo, 0, 4, false);
s->regs[R_TRANSFER_SIZE] &= ~0x03ull;
s->regs[R_TRANSFER_SIZE] -= 4;
}
}
static void xilinx_spips_check_flush(XilinxSPIPS *s)
{
if (s->man_start_com ||
(!fifo8_is_empty(&s->tx_fifo) &&
!(s->regs[R_CONFIG] & MAN_START_EN))) {
xilinx_spips_check_zero_pump(s);
xilinx_spips_flush_txfifo(s);
}
if (fifo8_is_empty(&s->tx_fifo) && !s->regs[R_TRANSFER_SIZE]) {
s->man_start_com = false;
}
xilinx_spips_update_ixr(s);
}
static void xlnx_zynqmp_qspips_check_flush(XlnxZynqMPQSPIPS *s)
{
bool gqspi_has_work = s->regs[R_GQSPI_DATA_STS] ||
!fifo32_is_empty(&s->fifo_g);
if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) {
if (s->man_start_com_g || (gqspi_has_work &&
!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE))) {
xlnx_zynqmp_qspips_flush_fifo_g(s);
}
} else {
xilinx_spips_check_flush(XILINX_SPIPS(s));
}
if (!gqspi_has_work) {
s->man_start_com_g = false;
}
xlnx_zynqmp_qspips_update_ixr(s);
}
static inline int rx_data_bytes(Fifo8 *fifo, uint8_t *value, int max)
{
int i;
for (i = 0; i < max && !fifo8_is_empty(fifo); ++i) {
value[i] = fifo8_pop(fifo);
}
return max - i;
}
static const void *pop_buf(Fifo8 *fifo, uint32_t max, uint32_t *num)
{
void *ret;
if (max == 0 || max > fifo->num) {
abort();
}
*num = MIN(fifo->capacity - fifo->head, max);
ret = &fifo->data[fifo->head];
fifo->head += *num;
fifo->head %= fifo->capacity;
fifo->num -= *num;
return ret;
}
static void xlnx_zynqmp_qspips_notify(void *opaque)
{
XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(opaque);
XilinxSPIPS *s = XILINX_SPIPS(rq);
Fifo8 *recv_fifo;
if (ARRAY_FIELD_EX32(rq->regs, GQSPI_SELECT, GENERIC_QSPI_EN)) {
if (!(ARRAY_FIELD_EX32(rq->regs, GQSPI_CNFG, MODE_EN) == 2)) {
return;
}
recv_fifo = &rq->rx_fifo_g;
} else {
if (!(s->regs[R_CMND] & R_CMND_DMA_EN)) {
return;
}
recv_fifo = &s->rx_fifo;
}
while (recv_fifo->num >= 4
&& stream_can_push(rq->dma, xlnx_zynqmp_qspips_notify, rq))
{
size_t ret;
uint32_t num;
const void *rxd;
int len;
len = recv_fifo->num >= rq->dma_burst_size ? rq->dma_burst_size :
recv_fifo->num;
rxd = pop_buf(recv_fifo, len, &num);
memcpy(rq->dma_buf, rxd, num);
ret = stream_push(rq->dma, rq->dma_buf, num);
assert(ret == num);
xlnx_zynqmp_qspips_check_flush(rq);
}
}
static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
unsigned size)
{
XilinxSPIPS *s = opaque;
uint32_t mask = ~0;
uint32_t ret;
uint8_t rx_buf[4];
int shortfall;
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = ~(R_CONFIG_RSVD | MAN_START_COM);
break;
case R_INTR_STATUS:
ret = s->regs[addr] & IXR_ALL;
s->regs[addr] = 0;
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
xilinx_spips_update_ixr(s);
return ret;
case R_INTR_MASK:
mask = IXR_ALL;
break;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_MOD_ID:
mask = 0x01FFFFFF;
break;
case R_INTR_EN:
case R_INTR_DIS:
case R_TX_DATA:
mask = 0;
break;
case R_RX_DATA:
memset(rx_buf, 0, sizeof(rx_buf));
shortfall = rx_data_bytes(&s->rx_fifo, rx_buf, s->num_txrx_bytes);
ret = s->regs[R_CONFIG] & R_CONFIG_ENDIAN ?
cpu_to_be32(*(uint32_t *)rx_buf) :
cpu_to_le32(*(uint32_t *)rx_buf);
if (!(s->regs[R_CONFIG] & R_CONFIG_ENDIAN)) {
ret <<= 8 * shortfall;
}
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
xilinx_spips_check_flush(s);
xilinx_spips_update_ixr(s);
return ret;
}
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
s->regs[addr] & mask);
return s->regs[addr] & mask;
}
static uint64_t xlnx_zynqmp_qspips_read(void *opaque,
hwaddr addr, unsigned size)
{
XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque);
uint32_t reg = addr / 4;
uint32_t ret;
uint8_t rx_buf[4];
int shortfall;
if (reg <= R_MOD_ID) {
return xilinx_spips_read(opaque, addr, size);
} else {
switch (reg) {
case R_GQSPI_RXD:
if (fifo8_is_empty(&s->rx_fifo_g)) {
qemu_log_mask(LOG_GUEST_ERROR,
"Read from empty GQSPI RX FIFO\n");
return 0;
}
memset(rx_buf, 0, sizeof(rx_buf));
shortfall = rx_data_bytes(&s->rx_fifo_g, rx_buf,
XILINX_SPIPS(s)->num_txrx_bytes);
ret = ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN) ?
cpu_to_be32(*(uint32_t *)rx_buf) :
cpu_to_le32(*(uint32_t *)rx_buf);
if (!ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN)) {
ret <<= 8 * shortfall;
}
xlnx_zynqmp_qspips_check_flush(s);
xlnx_zynqmp_qspips_update_ixr(s);
return ret;
default:
return s->regs[reg];
}
}
}
static void xilinx_spips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
int mask = ~0;
XilinxSPIPS *s = opaque;
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = ~(R_CONFIG_RSVD | MAN_START_COM);
if ((value & MAN_START_COM) && (s->regs[R_CONFIG] & MAN_START_EN)) {
s->man_start_com = true;
}
break;
case R_INTR_STATUS:
mask = IXR_ALL;
s->regs[R_INTR_STATUS] &= ~(mask & value);
goto no_reg_update;
case R_INTR_DIS:
mask = IXR_ALL;
s->regs[R_INTR_MASK] &= ~(mask & value);
goto no_reg_update;
case R_INTR_EN:
mask = IXR_ALL;
s->regs[R_INTR_MASK] |= mask & value;
goto no_reg_update;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_RX_DATA:
case R_INTR_MASK:
case R_MOD_ID:
mask = 0;
break;
case R_TX_DATA:
tx_data_bytes(&s->tx_fifo, (uint32_t)value, s->num_txrx_bytes,
s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
goto no_reg_update;
case R_TXD1:
tx_data_bytes(&s->tx_fifo, (uint32_t)value, 1,
s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
goto no_reg_update;
case R_TXD2:
tx_data_bytes(&s->tx_fifo, (uint32_t)value, 2,
s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
goto no_reg_update;
case R_TXD3:
tx_data_bytes(&s->tx_fifo, (uint32_t)value, 3,
s->regs[R_CONFIG] & R_CONFIG_ENDIAN);
goto no_reg_update;
}
s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
no_reg_update:
xilinx_spips_update_cs_lines(s);
xilinx_spips_check_flush(s);
xilinx_spips_update_cs_lines(s);
xilinx_spips_update_ixr(s);
}
static const MemoryRegionOps spips_ops = {
.read = xilinx_spips_read,
.write = xilinx_spips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q)
{
q->lqspi_cached_addr = ~0ULL;
}
static void xilinx_qspips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
XilinxSPIPS *s = XILINX_SPIPS(opaque);
xilinx_spips_write(opaque, addr, value, size);
addr >>= 2;
if (addr == R_LQSPI_CFG) {
xilinx_qspips_invalidate_mmio_ptr(q);
}
if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
fifo8_reset(&s->rx_fifo);
}
}
static void xlnx_zynqmp_qspips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(opaque);
uint32_t reg = addr / 4;
if (reg <= R_MOD_ID) {
xilinx_qspips_write(opaque, addr, value, size);
} else {
switch (reg) {
case R_GQSPI_CNFG:
if (FIELD_EX32(value, GQSPI_CNFG, GEN_FIFO_START) &&
ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, GEN_FIFO_START_MODE)) {
s->man_start_com_g = true;
}
s->regs[reg] = value & ~(R_GQSPI_CNFG_GEN_FIFO_START_MASK);
break;
case R_GQSPI_GEN_FIFO:
if (!fifo32_is_full(&s->fifo_g)) {
fifo32_push(&s->fifo_g, value);
}
break;
case R_GQSPI_TXD:
tx_data_bytes(&s->tx_fifo_g, (uint32_t)value, 4,
ARRAY_FIELD_EX32(s->regs, GQSPI_CNFG, ENDIAN));
break;
case R_GQSPI_FIFO_CTRL:
if (FIELD_EX32(value, GQSPI_FIFO_CTRL, GENERIC_FIFO_RESET)) {
fifo32_reset(&s->fifo_g);
}
if (FIELD_EX32(value, GQSPI_FIFO_CTRL, TX_FIFO_RESET)) {
fifo8_reset(&s->tx_fifo_g);
}
if (FIELD_EX32(value, GQSPI_FIFO_CTRL, RX_FIFO_RESET)) {
fifo8_reset(&s->rx_fifo_g);
}
break;
case R_GQSPI_IDR:
s->regs[R_GQSPI_IMR] |= value;
break;
case R_GQSPI_IER:
s->regs[R_GQSPI_IMR] &= ~value;
break;
case R_GQSPI_ISR:
s->regs[R_GQSPI_ISR] &= ~value;
break;
case R_GQSPI_IMR:
case R_GQSPI_RXD:
case R_GQSPI_GF_SNAPSHOT:
case R_GQSPI_MOD_ID:
break;
default:
s->regs[reg] = value;
break;
}
xlnx_zynqmp_qspips_update_cs_lines(s);
xlnx_zynqmp_qspips_check_flush(s);
xlnx_zynqmp_qspips_update_cs_lines(s);
xlnx_zynqmp_qspips_update_ixr(s);
}
xlnx_zynqmp_qspips_notify(s);
}
static const MemoryRegionOps qspips_ops = {
.read = xilinx_spips_read,
.write = xilinx_qspips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static const MemoryRegionOps xlnx_zynqmp_qspips_ops = {
.read = xlnx_zynqmp_qspips_read,
.write = xlnx_zynqmp_qspips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define LQSPI_CACHE_SIZE 1024
static void lqspi_load_cache(void *opaque, hwaddr addr)
{
XilinxQSPIPS *q = opaque;
XilinxSPIPS *s = opaque;
int i;
int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1))
/ num_effective_busses(s));
int slave = flash_addr >> LQSPI_ADDRESS_BITS;
int cache_entry = 0;
uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
if (addr < q->lqspi_cached_addr ||
addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
xilinx_qspips_invalidate_mmio_ptr(q);
s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0;
DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
/* instruction */
DB_PRINT_L(0, "pushing read instruction: %02x\n",
(unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
LQSPI_CFG_INST_CODE));
fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
/* read address */
DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_ADDR4) {
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 24));
}
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
/* mode bits */
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
LQSPI_CFG_MODE_SHIFT,
LQSPI_CFG_MODE_WIDTH));
}
/* dummy bytes */
for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
LQSPI_CFG_DUMMY_WIDTH)); ++i) {
DB_PRINT_L(0, "pushing dummy byte\n");
fifo8_push(&s->tx_fifo, 0);
}
xilinx_spips_update_cs_lines(s);
xilinx_spips_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
DB_PRINT_L(0, "starting QSPI data read\n");
while (cache_entry < LQSPI_CACHE_SIZE) {
for (i = 0; i < 64; ++i) {
tx_data_bytes(&s->tx_fifo, 0, 1, false);
}
xilinx_spips_flush_txfifo(s);
for (i = 0; i < 64; ++i) {
rx_data_bytes(&s->rx_fifo, &q->lqspi_buf[cache_entry++], 1);
}
}
s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] |= u_page_save;
xilinx_spips_update_cs_lines(s);
q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
}
}
static MemTxResult lqspi_read(void *opaque, hwaddr addr, uint64_t *value,
unsigned size, MemTxAttrs attrs)
{
XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
if (addr >= q->lqspi_cached_addr &&
addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
*value = cpu_to_le32(*(uint32_t *)retp);
DB_PRINT_L(1, "addr: %08" HWADDR_PRIx ", data: %08" PRIx64 "\n",
addr, *value);
return MEMTX_OK;
}
lqspi_load_cache(opaque, addr);
return lqspi_read(opaque, addr, value, size, attrs);
}
static MemTxResult lqspi_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size, MemTxAttrs attrs)
{
/*
* From UG1085, Chapter 24 (Quad-SPI controllers):
* - Writes are ignored
* - AXI writes generate an external AXI slave error (SLVERR)
*/
qemu_log_mask(LOG_GUEST_ERROR, "%s Unexpected %u-bit access to 0x%" PRIx64
" (value: 0x%" PRIx64 "\n",
__func__, size << 3, offset, value);
return MEMTX_ERROR;
}
static const MemoryRegionOps lqspi_ops = {
.read_with_attrs = lqspi_read,
.write_with_attrs = lqspi_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
.valid = {
.min_access_size = 1,
.max_access_size = 4
}
};
static void xilinx_spips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
qemu_irq *cs;
int i;
DB_PRINT_L(0, "realized spips\n");
if (s->num_busses > MAX_NUM_BUSSES) {
error_setg(errp,
"requested number of SPI busses %u exceeds maximum %d",
s->num_busses, MAX_NUM_BUSSES);
return;
}
if (s->num_busses < MIN_NUM_BUSSES) {
error_setg(errp,
"requested number of SPI busses %u is below minimum %d",
s->num_busses, MIN_NUM_BUSSES);
return;
}
s->spi = g_new(SSIBus *, s->num_busses);
for (i = 0; i < s->num_busses; ++i) {
char bus_name[16];
snprintf(bus_name, 16, "spi%d", i);
s->spi[i] = ssi_create_bus(dev, bus_name);
}
s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses);
for (i = 0, cs = s->cs_lines; i < s->num_busses; ++i, cs += s->num_cs) {
ssi_auto_connect_slaves(DEVICE(s), cs, s->spi[i]);
}
sysbus_init_irq(sbd, &s->irq);
for (i = 0; i < s->num_cs * s->num_busses; ++i) {
sysbus_init_irq(sbd, &s->cs_lines[i]);
}
memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
"spi", XLNX_ZYNQMP_SPIPS_R_MAX * 4);
sysbus_init_mmio(sbd, &s->iomem);
s->irqline = -1;
fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
}
static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
XilinxQSPIPS *q = XILINX_QSPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
DB_PRINT_L(0, "realized qspips\n");
s->num_busses = 2;
s->num_cs = 2;
s->num_txrx_bytes = 4;
xilinx_spips_realize(dev, errp);
memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
(1 << LQSPI_ADDRESS_BITS) * 2);
sysbus_init_mmio(sbd, &s->mmlqspi);
q->lqspi_cached_addr = ~0ULL;
}
static void xlnx_zynqmp_qspips_realize(DeviceState *dev, Error **errp)
{
XlnxZynqMPQSPIPS *s = XLNX_ZYNQMP_QSPIPS(dev);
XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
if (s->dma_burst_size > QSPI_DMA_MAX_BURST_SIZE) {
error_setg(errp,
"qspi dma burst size %u exceeds maximum limit %d",
s->dma_burst_size, QSPI_DMA_MAX_BURST_SIZE);
return;
}
xilinx_qspips_realize(dev, errp);
fifo8_create(&s->rx_fifo_g, xsc->rx_fifo_size);
fifo8_create(&s->tx_fifo_g, xsc->tx_fifo_size);
fifo32_create(&s->fifo_g, 32);
}
static void xlnx_zynqmp_qspips_init(Object *obj)
{
XlnxZynqMPQSPIPS *rq = XLNX_ZYNQMP_QSPIPS(obj);
object_property_add_link(obj, "stream-connected-dma", TYPE_STREAM_SLAVE,
(Object **)&rq->dma,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG,
NULL);
}
static int xilinx_spips_post_load(void *opaque, int version_id)
{
xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
return 0;
}
static const VMStateDescription vmstate_xilinx_spips = {
.name = "xilinx_spips",
.version_id = 2,
.minimum_version_id = 2,
.post_load = xilinx_spips_post_load,
.fields = (VMStateField[]) {
VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX),
VMSTATE_UINT8(snoop_state, XilinxSPIPS),
VMSTATE_END_OF_LIST()
}
};
static int xlnx_zynqmp_qspips_post_load(void *opaque, int version_id)
{
XlnxZynqMPQSPIPS *s = (XlnxZynqMPQSPIPS *)opaque;
XilinxSPIPS *qs = XILINX_SPIPS(s);
if (ARRAY_FIELD_EX32(s->regs, GQSPI_SELECT, GENERIC_QSPI_EN) &&
fifo8_is_empty(&qs->rx_fifo) && fifo8_is_empty(&qs->tx_fifo)) {
xlnx_zynqmp_qspips_update_ixr(s);
xlnx_zynqmp_qspips_update_cs_lines(s);
}
return 0;
}
static const VMStateDescription vmstate_xilinx_qspips = {
.name = "xilinx_qspips",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(parent_obj, XilinxQSPIPS, 0,
vmstate_xilinx_spips, XilinxSPIPS),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_xlnx_zynqmp_qspips = {
.name = "xlnx_zynqmp_qspips",
.version_id = 1,
.minimum_version_id = 1,
.post_load = xlnx_zynqmp_qspips_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(parent_obj, XlnxZynqMPQSPIPS, 0,
vmstate_xilinx_qspips, XilinxQSPIPS),
VMSTATE_FIFO8(tx_fifo_g, XlnxZynqMPQSPIPS),
VMSTATE_FIFO8(rx_fifo_g, XlnxZynqMPQSPIPS),
VMSTATE_FIFO32(fifo_g, XlnxZynqMPQSPIPS),
VMSTATE_UINT32_ARRAY(regs, XlnxZynqMPQSPIPS, XLNX_ZYNQMP_SPIPS_R_MAX),
VMSTATE_END_OF_LIST()
}
};
static Property xilinx_zynqmp_qspips_properties[] = {
DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64),
DEFINE_PROP_END_OF_LIST(),
};
static Property xilinx_spips_properties[] = {
DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_qspips_realize;
xsc->reg_ops = &qspips_ops;
xsc->rx_fifo_size = RXFF_A_Q;
xsc->tx_fifo_size = TXFF_A_Q;
}
static void xilinx_spips_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_spips_realize;
dc->reset = xilinx_spips_reset;
dc->props = xilinx_spips_properties;
dc->vmsd = &vmstate_xilinx_spips;
xsc->reg_ops = &spips_ops;
xsc->rx_fifo_size = RXFF_A;
xsc->tx_fifo_size = TXFF_A;
}
static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xlnx_zynqmp_qspips_realize;
dc->reset = xlnx_zynqmp_qspips_reset;
dc->vmsd = &vmstate_xlnx_zynqmp_qspips;
dc->props = xilinx_zynqmp_qspips_properties;
xsc->reg_ops = &xlnx_zynqmp_qspips_ops;
xsc->rx_fifo_size = RXFF_A_Q;
xsc->tx_fifo_size = TXFF_A_Q;
}
static const TypeInfo xilinx_spips_info = {
.name = TYPE_XILINX_SPIPS,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XilinxSPIPS),
.class_init = xilinx_spips_class_init,
.class_size = sizeof(XilinxSPIPSClass),
};
static const TypeInfo xilinx_qspips_info = {
.name = TYPE_XILINX_QSPIPS,
.parent = TYPE_XILINX_SPIPS,
.instance_size = sizeof(XilinxQSPIPS),
.class_init = xilinx_qspips_class_init,
};
static const TypeInfo xlnx_zynqmp_qspips_info = {
.name = TYPE_XLNX_ZYNQMP_QSPIPS,
.parent = TYPE_XILINX_QSPIPS,
.instance_size = sizeof(XlnxZynqMPQSPIPS),
.instance_init = xlnx_zynqmp_qspips_init,
.class_init = xlnx_zynqmp_qspips_class_init,
};
static void xilinx_spips_register_types(void)
{
type_register_static(&xilinx_spips_info);
type_register_static(&xilinx_qspips_info);
type_register_static(&xlnx_zynqmp_qspips_info);
}
type_init(xilinx_spips_register_types)