qemu/target/unicore32/ucf64_helper.c
Richard Henderson 31266e68d2 target/unicore32: Use env_cpu, env_archcpu
Cleanup in the boilerplate that each target must define.
Replace uc32_env_get_cpu with env_archcpu.  The combination
CPU(uc32_env_get_cpu) should have used ENV_GET_CPU to begin;
use env_cpu now.

Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2019-06-10 07:03:42 -07:00

327 lines
7.8 KiB
C

/*
* UniCore-F64 simulation helpers for QEMU.
*
* Copyright (C) 2010-2012 Guan Xuetao
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation, or any later version.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
/*
* The convention used for UniCore-F64 instructions:
* Single precition routines have a "s" suffix
* Double precision routines have a "d" suffix.
*/
/* Convert host exception flags to f64 form. */
static inline int ucf64_exceptbits_from_host(int host_bits)
{
int target_bits = 0;
if (host_bits & float_flag_invalid) {
target_bits |= UCF64_FPSCR_FLAG_INVALID;
}
if (host_bits & float_flag_divbyzero) {
target_bits |= UCF64_FPSCR_FLAG_DIVZERO;
}
if (host_bits & float_flag_overflow) {
target_bits |= UCF64_FPSCR_FLAG_OVERFLOW;
}
if (host_bits & float_flag_underflow) {
target_bits |= UCF64_FPSCR_FLAG_UNDERFLOW;
}
if (host_bits & float_flag_inexact) {
target_bits |= UCF64_FPSCR_FLAG_INEXACT;
}
return target_bits;
}
uint32_t HELPER(ucf64_get_fpscr)(CPUUniCore32State *env)
{
int i;
uint32_t fpscr;
fpscr = (env->ucf64.xregs[UC32_UCF64_FPSCR] & UCF64_FPSCR_MASK);
i = get_float_exception_flags(&env->ucf64.fp_status);
fpscr |= ucf64_exceptbits_from_host(i);
return fpscr;
}
/* Convert ucf64 exception flags to target form. */
static inline int ucf64_exceptbits_to_host(int target_bits)
{
int host_bits = 0;
if (target_bits & UCF64_FPSCR_FLAG_INVALID) {
host_bits |= float_flag_invalid;
}
if (target_bits & UCF64_FPSCR_FLAG_DIVZERO) {
host_bits |= float_flag_divbyzero;
}
if (target_bits & UCF64_FPSCR_FLAG_OVERFLOW) {
host_bits |= float_flag_overflow;
}
if (target_bits & UCF64_FPSCR_FLAG_UNDERFLOW) {
host_bits |= float_flag_underflow;
}
if (target_bits & UCF64_FPSCR_FLAG_INEXACT) {
host_bits |= float_flag_inexact;
}
return host_bits;
}
void HELPER(ucf64_set_fpscr)(CPUUniCore32State *env, uint32_t val)
{
UniCore32CPU *cpu = env_archcpu(env);
int i;
uint32_t changed;
changed = env->ucf64.xregs[UC32_UCF64_FPSCR];
env->ucf64.xregs[UC32_UCF64_FPSCR] = (val & UCF64_FPSCR_MASK);
changed ^= val;
if (changed & (UCF64_FPSCR_RND_MASK)) {
i = UCF64_FPSCR_RND(val);
switch (i) {
case 0:
i = float_round_nearest_even;
break;
case 1:
i = float_round_to_zero;
break;
case 2:
i = float_round_up;
break;
case 3:
i = float_round_down;
break;
default: /* 100 and 101 not implement */
cpu_abort(CPU(cpu), "Unsupported UniCore-F64 round mode");
}
set_float_rounding_mode(i, &env->ucf64.fp_status);
}
i = ucf64_exceptbits_to_host(UCF64_FPSCR_TRAPEN(val));
set_float_exception_flags(i, &env->ucf64.fp_status);
}
float32 HELPER(ucf64_adds)(float32 a, float32 b, CPUUniCore32State *env)
{
return float32_add(a, b, &env->ucf64.fp_status);
}
float64 HELPER(ucf64_addd)(float64 a, float64 b, CPUUniCore32State *env)
{
return float64_add(a, b, &env->ucf64.fp_status);
}
float32 HELPER(ucf64_subs)(float32 a, float32 b, CPUUniCore32State *env)
{
return float32_sub(a, b, &env->ucf64.fp_status);
}
float64 HELPER(ucf64_subd)(float64 a, float64 b, CPUUniCore32State *env)
{
return float64_sub(a, b, &env->ucf64.fp_status);
}
float32 HELPER(ucf64_muls)(float32 a, float32 b, CPUUniCore32State *env)
{
return float32_mul(a, b, &env->ucf64.fp_status);
}
float64 HELPER(ucf64_muld)(float64 a, float64 b, CPUUniCore32State *env)
{
return float64_mul(a, b, &env->ucf64.fp_status);
}
float32 HELPER(ucf64_divs)(float32 a, float32 b, CPUUniCore32State *env)
{
return float32_div(a, b, &env->ucf64.fp_status);
}
float64 HELPER(ucf64_divd)(float64 a, float64 b, CPUUniCore32State *env)
{
return float64_div(a, b, &env->ucf64.fp_status);
}
float32 HELPER(ucf64_negs)(float32 a)
{
return float32_chs(a);
}
float64 HELPER(ucf64_negd)(float64 a)
{
return float64_chs(a);
}
float32 HELPER(ucf64_abss)(float32 a)
{
return float32_abs(a);
}
float64 HELPER(ucf64_absd)(float64 a)
{
return float64_abs(a);
}
void HELPER(ucf64_cmps)(float32 a, float32 b, uint32_t c,
CPUUniCore32State *env)
{
int flag;
flag = float32_compare_quiet(a, b, &env->ucf64.fp_status);
env->CF = 0;
switch (c & 0x7) {
case 0: /* F */
break;
case 1: /* UN */
if (flag == 2) {
env->CF = 1;
}
break;
case 2: /* EQ */
if (flag == 0) {
env->CF = 1;
}
break;
case 3: /* UEQ */
if ((flag == 0) || (flag == 2)) {
env->CF = 1;
}
break;
case 4: /* OLT */
if (flag == -1) {
env->CF = 1;
}
break;
case 5: /* ULT */
if ((flag == -1) || (flag == 2)) {
env->CF = 1;
}
break;
case 6: /* OLE */
if ((flag == -1) || (flag == 0)) {
env->CF = 1;
}
break;
case 7: /* ULE */
if (flag != 1) {
env->CF = 1;
}
break;
}
env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
| (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
}
void HELPER(ucf64_cmpd)(float64 a, float64 b, uint32_t c,
CPUUniCore32State *env)
{
int flag;
flag = float64_compare_quiet(a, b, &env->ucf64.fp_status);
env->CF = 0;
switch (c & 0x7) {
case 0: /* F */
break;
case 1: /* UN */
if (flag == 2) {
env->CF = 1;
}
break;
case 2: /* EQ */
if (flag == 0) {
env->CF = 1;
}
break;
case 3: /* UEQ */
if ((flag == 0) || (flag == 2)) {
env->CF = 1;
}
break;
case 4: /* OLT */
if (flag == -1) {
env->CF = 1;
}
break;
case 5: /* ULT */
if ((flag == -1) || (flag == 2)) {
env->CF = 1;
}
break;
case 6: /* OLE */
if ((flag == -1) || (flag == 0)) {
env->CF = 1;
}
break;
case 7: /* ULE */
if (flag != 1) {
env->CF = 1;
}
break;
}
env->ucf64.xregs[UC32_UCF64_FPSCR] = (env->CF << 29)
| (env->ucf64.xregs[UC32_UCF64_FPSCR] & 0x0fffffff);
}
/* Helper routines to perform bitwise copies between float and int. */
static inline float32 ucf64_itos(uint32_t i)
{
union {
uint32_t i;
float32 s;
} v;
v.i = i;
return v.s;
}
static inline uint32_t ucf64_stoi(float32 s)
{
union {
uint32_t i;
float32 s;
} v;
v.s = s;
return v.i;
}
/* Integer to float conversion. */
float32 HELPER(ucf64_si2sf)(float32 x, CPUUniCore32State *env)
{
return int32_to_float32(ucf64_stoi(x), &env->ucf64.fp_status);
}
float64 HELPER(ucf64_si2df)(float32 x, CPUUniCore32State *env)
{
return int32_to_float64(ucf64_stoi(x), &env->ucf64.fp_status);
}
/* Float to integer conversion. */
float32 HELPER(ucf64_sf2si)(float32 x, CPUUniCore32State *env)
{
return ucf64_itos(float32_to_int32(x, &env->ucf64.fp_status));
}
float32 HELPER(ucf64_df2si)(float64 x, CPUUniCore32State *env)
{
return ucf64_itos(float64_to_int32(x, &env->ucf64.fp_status));
}
/* floating point conversion */
float64 HELPER(ucf64_sf2df)(float32 x, CPUUniCore32State *env)
{
return float32_to_float64(x, &env->ucf64.fp_status);
}
float32 HELPER(ucf64_df2sf)(float64 x, CPUUniCore32State *env)
{
return float64_to_float32(x, &env->ucf64.fp_status);
}