qemu/hw/scsi/esp.c
Peter Maydell e3d0814368 hw: Use device_class_set_legacy_reset() instead of opencoding
Use device_class_set_legacy_reset() instead of opencoding an
assignment to DeviceClass::reset. This change was produced
with:
 spatch --macro-file scripts/cocci-macro-file.h \
    --sp-file scripts/coccinelle/device-reset.cocci \
    --keep-comments --smpl-spacing --in-place --dir hw

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20240830145812.1967042-8-peter.maydell@linaro.org
2024-09-13 15:31:44 +01:00

1628 lines
42 KiB
C

/*
* QEMU ESP/NCR53C9x emulation
*
* Copyright (c) 2005-2006 Fabrice Bellard
* Copyright (c) 2012 Herve Poussineau
* Copyright (c) 2023 Mark Cave-Ayland
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "hw/irq.h"
#include "hw/scsi/esp.h"
#include "trace.h"
#include "qemu/log.h"
#include "qemu/module.h"
/*
* On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
* also produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
*
* On Macintosh Quadra it is a NCR53C96.
*/
static void esp_raise_irq(ESPState *s)
{
if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
s->rregs[ESP_RSTAT] |= STAT_INT;
qemu_irq_raise(s->irq);
trace_esp_raise_irq();
}
}
static void esp_lower_irq(ESPState *s)
{
if (s->rregs[ESP_RSTAT] & STAT_INT) {
s->rregs[ESP_RSTAT] &= ~STAT_INT;
qemu_irq_lower(s->irq);
trace_esp_lower_irq();
}
}
static void esp_raise_drq(ESPState *s)
{
if (!(s->drq_state)) {
qemu_irq_raise(s->drq_irq);
trace_esp_raise_drq();
s->drq_state = true;
}
}
static void esp_lower_drq(ESPState *s)
{
if (s->drq_state) {
qemu_irq_lower(s->drq_irq);
trace_esp_lower_drq();
s->drq_state = false;
}
}
static const char *esp_phase_names[8] = {
"DATA OUT", "DATA IN", "COMMAND", "STATUS",
"(reserved)", "(reserved)", "MESSAGE OUT", "MESSAGE IN"
};
static void esp_set_phase(ESPState *s, uint8_t phase)
{
s->rregs[ESP_RSTAT] &= ~7;
s->rregs[ESP_RSTAT] |= phase;
trace_esp_set_phase(esp_phase_names[phase]);
}
static uint8_t esp_get_phase(ESPState *s)
{
return s->rregs[ESP_RSTAT] & 7;
}
void esp_dma_enable(ESPState *s, int irq, int level)
{
if (level) {
s->dma_enabled = 1;
trace_esp_dma_enable();
if (s->dma_cb) {
s->dma_cb(s);
s->dma_cb = NULL;
}
} else {
trace_esp_dma_disable();
s->dma_enabled = 0;
}
}
void esp_request_cancelled(SCSIRequest *req)
{
ESPState *s = req->hba_private;
if (req == s->current_req) {
scsi_req_unref(s->current_req);
s->current_req = NULL;
s->current_dev = NULL;
s->async_len = 0;
}
}
static void esp_update_drq(ESPState *s)
{
bool to_device;
switch (esp_get_phase(s)) {
case STAT_MO:
case STAT_CD:
case STAT_DO:
to_device = true;
break;
case STAT_DI:
case STAT_ST:
case STAT_MI:
to_device = false;
break;
default:
return;
}
if (s->dma) {
/* DMA request so update DRQ according to transfer direction */
if (to_device) {
if (fifo8_num_free(&s->fifo) < 2) {
esp_lower_drq(s);
} else {
esp_raise_drq(s);
}
} else {
if (fifo8_num_used(&s->fifo) < 2) {
esp_lower_drq(s);
} else {
esp_raise_drq(s);
}
}
} else {
/* Not a DMA request */
esp_lower_drq(s);
}
}
static void esp_fifo_push(ESPState *s, uint8_t val)
{
if (fifo8_num_used(&s->fifo) == s->fifo.capacity) {
trace_esp_error_fifo_overrun();
} else {
fifo8_push(&s->fifo, val);
}
esp_update_drq(s);
}
static void esp_fifo_push_buf(ESPState *s, uint8_t *buf, int len)
{
fifo8_push_all(&s->fifo, buf, len);
esp_update_drq(s);
}
static uint8_t esp_fifo_pop(ESPState *s)
{
uint8_t val;
if (fifo8_is_empty(&s->fifo)) {
val = 0;
} else {
val = fifo8_pop(&s->fifo);
}
esp_update_drq(s);
return val;
}
static uint32_t esp_fifo_pop_buf(ESPState *s, uint8_t *dest, int maxlen)
{
uint32_t len = fifo8_pop_buf(&s->fifo, dest, maxlen);
esp_update_drq(s);
return len;
}
static uint32_t esp_get_tc(ESPState *s)
{
uint32_t dmalen;
dmalen = s->rregs[ESP_TCLO];
dmalen |= s->rregs[ESP_TCMID] << 8;
dmalen |= s->rregs[ESP_TCHI] << 16;
return dmalen;
}
static void esp_set_tc(ESPState *s, uint32_t dmalen)
{
uint32_t old_tc = esp_get_tc(s);
s->rregs[ESP_TCLO] = dmalen;
s->rregs[ESP_TCMID] = dmalen >> 8;
s->rregs[ESP_TCHI] = dmalen >> 16;
if (old_tc && dmalen == 0) {
s->rregs[ESP_RSTAT] |= STAT_TC;
}
}
static uint32_t esp_get_stc(ESPState *s)
{
uint32_t dmalen;
dmalen = s->wregs[ESP_TCLO];
dmalen |= s->wregs[ESP_TCMID] << 8;
dmalen |= s->wregs[ESP_TCHI] << 16;
return dmalen;
}
static uint8_t esp_pdma_read(ESPState *s)
{
uint8_t val;
val = esp_fifo_pop(s);
return val;
}
static void esp_pdma_write(ESPState *s, uint8_t val)
{
uint32_t dmalen = esp_get_tc(s);
esp_fifo_push(s, val);
if (dmalen && s->drq_state) {
dmalen--;
esp_set_tc(s, dmalen);
}
}
static int esp_select(ESPState *s)
{
int target;
target = s->wregs[ESP_WBUSID] & BUSID_DID;
s->ti_size = 0;
s->rregs[ESP_RSEQ] = SEQ_0;
if (s->current_req) {
/* Started a new command before the old one finished. Cancel it. */
scsi_req_cancel(s->current_req);
}
s->current_dev = scsi_device_find(&s->bus, 0, target, 0);
if (!s->current_dev) {
/* No such drive */
s->rregs[ESP_RSTAT] = 0;
s->rregs[ESP_RINTR] = INTR_DC;
esp_raise_irq(s);
return -1;
}
/*
* Note that we deliberately don't raise the IRQ here: this will be done
* either in esp_transfer_data() or esp_command_complete()
*/
return 0;
}
static void esp_do_dma(ESPState *s);
static void esp_do_nodma(ESPState *s);
static void do_command_phase(ESPState *s)
{
uint32_t cmdlen;
int32_t datalen;
SCSIDevice *current_lun;
uint8_t buf[ESP_CMDFIFO_SZ];
trace_esp_do_command_phase(s->lun);
cmdlen = fifo8_num_used(&s->cmdfifo);
if (!cmdlen || !s->current_dev) {
return;
}
fifo8_pop_buf(&s->cmdfifo, buf, cmdlen);
current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, s->lun);
if (!current_lun) {
/* No such drive */
s->rregs[ESP_RSTAT] = 0;
s->rregs[ESP_RINTR] = INTR_DC;
s->rregs[ESP_RSEQ] = SEQ_0;
esp_raise_irq(s);
return;
}
s->current_req = scsi_req_new(current_lun, 0, s->lun, buf, cmdlen, s);
datalen = scsi_req_enqueue(s->current_req);
s->ti_size = datalen;
fifo8_reset(&s->cmdfifo);
s->data_ready = false;
if (datalen != 0) {
/*
* Switch to DATA phase but wait until initial data xfer is
* complete before raising the command completion interrupt
*/
if (datalen > 0) {
esp_set_phase(s, STAT_DI);
} else {
esp_set_phase(s, STAT_DO);
}
scsi_req_continue(s->current_req);
return;
}
}
static void do_message_phase(ESPState *s)
{
if (s->cmdfifo_cdb_offset) {
uint8_t message = fifo8_is_empty(&s->cmdfifo) ? 0 :
fifo8_pop(&s->cmdfifo);
trace_esp_do_identify(message);
s->lun = message & 7;
s->cmdfifo_cdb_offset--;
}
/* Ignore extended messages for now */
if (s->cmdfifo_cdb_offset) {
int len = MIN(s->cmdfifo_cdb_offset, fifo8_num_used(&s->cmdfifo));
fifo8_drop(&s->cmdfifo, len);
s->cmdfifo_cdb_offset = 0;
}
}
static void do_cmd(ESPState *s)
{
do_message_phase(s);
assert(s->cmdfifo_cdb_offset == 0);
do_command_phase(s);
}
static void handle_satn(ESPState *s)
{
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_satn;
return;
}
if (esp_select(s) < 0) {
return;
}
esp_set_phase(s, STAT_MO);
if (s->dma) {
esp_do_dma(s);
} else {
esp_do_nodma(s);
}
}
static void handle_s_without_atn(ESPState *s)
{
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_s_without_atn;
return;
}
if (esp_select(s) < 0) {
return;
}
esp_set_phase(s, STAT_CD);
s->cmdfifo_cdb_offset = 0;
if (s->dma) {
esp_do_dma(s);
} else {
esp_do_nodma(s);
}
}
static void handle_satn_stop(ESPState *s)
{
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_satn_stop;
return;
}
if (esp_select(s) < 0) {
return;
}
esp_set_phase(s, STAT_MO);
s->cmdfifo_cdb_offset = 0;
if (s->dma) {
esp_do_dma(s);
} else {
esp_do_nodma(s);
}
}
static void handle_pad(ESPState *s)
{
if (s->dma) {
esp_do_dma(s);
} else {
esp_do_nodma(s);
}
}
static void write_response(ESPState *s)
{
trace_esp_write_response(s->status);
if (s->dma) {
esp_do_dma(s);
} else {
esp_do_nodma(s);
}
}
static bool esp_cdb_ready(ESPState *s)
{
int len = fifo8_num_used(&s->cmdfifo) - s->cmdfifo_cdb_offset;
const uint8_t *pbuf;
uint32_t n;
int cdblen;
if (len <= 0) {
return false;
}
pbuf = fifo8_peek_bufptr(&s->cmdfifo, len, &n);
if (n < len) {
/*
* In normal use the cmdfifo should never wrap, but include this check
* to prevent a malicious guest from reading past the end of the
* cmdfifo data buffer below
*/
return false;
}
cdblen = scsi_cdb_length((uint8_t *)&pbuf[s->cmdfifo_cdb_offset]);
return cdblen < 0 ? false : (len >= cdblen);
}
static void esp_dma_ti_check(ESPState *s)
{
if (esp_get_tc(s) == 0 && fifo8_num_used(&s->fifo) < 2) {
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
}
static void esp_do_dma(ESPState *s)
{
uint32_t len, cmdlen;
uint8_t buf[ESP_CMDFIFO_SZ];
len = esp_get_tc(s);
switch (esp_get_phase(s)) {
case STAT_MO:
if (s->dma_memory_read) {
len = MIN(len, fifo8_num_free(&s->cmdfifo));
s->dma_memory_read(s->dma_opaque, buf, len);
esp_set_tc(s, esp_get_tc(s) - len);
} else {
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
len = MIN(fifo8_num_free(&s->cmdfifo), len);
}
fifo8_push_all(&s->cmdfifo, buf, len);
s->cmdfifo_cdb_offset += len;
switch (s->rregs[ESP_CMD]) {
case CMD_SELATN | CMD_DMA:
if (fifo8_num_used(&s->cmdfifo) >= 1) {
/* First byte received, switch to command phase */
esp_set_phase(s, STAT_CD);
s->rregs[ESP_RSEQ] = SEQ_CD;
s->cmdfifo_cdb_offset = 1;
if (fifo8_num_used(&s->cmdfifo) > 1) {
/* Process any additional command phase data */
esp_do_dma(s);
}
}
break;
case CMD_SELATNS | CMD_DMA:
if (fifo8_num_used(&s->cmdfifo) == 1) {
/* First byte received, stop in message out phase */
s->rregs[ESP_RSEQ] = SEQ_MO;
s->cmdfifo_cdb_offset = 1;
/* Raise command completion interrupt */
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
esp_raise_irq(s);
}
break;
case CMD_TI | CMD_DMA:
/* ATN remains asserted until TC == 0 */
if (esp_get_tc(s) == 0) {
esp_set_phase(s, STAT_CD);
s->rregs[ESP_CMD] = 0;
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
break;
}
break;
case STAT_CD:
cmdlen = fifo8_num_used(&s->cmdfifo);
trace_esp_do_dma(cmdlen, len);
if (s->dma_memory_read) {
len = MIN(len, fifo8_num_free(&s->cmdfifo));
s->dma_memory_read(s->dma_opaque, buf, len);
fifo8_push_all(&s->cmdfifo, buf, len);
esp_set_tc(s, esp_get_tc(s) - len);
} else {
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
len = MIN(fifo8_num_free(&s->cmdfifo), len);
fifo8_push_all(&s->cmdfifo, buf, len);
}
trace_esp_handle_ti_cmd(cmdlen);
s->ti_size = 0;
if (esp_get_tc(s) == 0) {
/* Command has been received */
do_cmd(s);
}
break;
case STAT_DO:
if (!s->current_req) {
return;
}
if (s->async_len == 0 && esp_get_tc(s)) {
/* Defer until data is available. */
return;
}
if (len > s->async_len) {
len = s->async_len;
}
switch (s->rregs[ESP_CMD]) {
case CMD_TI | CMD_DMA:
if (s->dma_memory_read) {
s->dma_memory_read(s->dma_opaque, s->async_buf, len);
esp_set_tc(s, esp_get_tc(s) - len);
} else {
/* Copy FIFO data to device */
len = MIN(s->async_len, ESP_FIFO_SZ);
len = MIN(len, fifo8_num_used(&s->fifo));
len = esp_fifo_pop_buf(s, s->async_buf, len);
}
s->async_buf += len;
s->async_len -= len;
s->ti_size += len;
break;
case CMD_PAD | CMD_DMA:
/* Copy TC zero bytes into the incoming stream */
if (!s->dma_memory_read) {
len = MIN(s->async_len, ESP_FIFO_SZ);
len = MIN(len, fifo8_num_free(&s->fifo));
}
memset(s->async_buf, 0, len);
s->async_buf += len;
s->async_len -= len;
s->ti_size += len;
break;
}
if (s->async_len == 0 && fifo8_num_used(&s->fifo) < 2) {
/* Defer until the scsi layer has completed */
scsi_req_continue(s->current_req);
return;
}
esp_dma_ti_check(s);
break;
case STAT_DI:
if (!s->current_req) {
return;
}
if (s->async_len == 0 && esp_get_tc(s)) {
/* Defer until data is available. */
return;
}
if (len > s->async_len) {
len = s->async_len;
}
switch (s->rregs[ESP_CMD]) {
case CMD_TI | CMD_DMA:
if (s->dma_memory_write) {
s->dma_memory_write(s->dma_opaque, s->async_buf, len);
} else {
/* Copy device data to FIFO */
len = MIN(len, fifo8_num_free(&s->fifo));
esp_fifo_push_buf(s, s->async_buf, len);
}
s->async_buf += len;
s->async_len -= len;
s->ti_size -= len;
esp_set_tc(s, esp_get_tc(s) - len);
break;
case CMD_PAD | CMD_DMA:
/* Drop TC bytes from the incoming stream */
if (!s->dma_memory_write) {
len = MIN(len, fifo8_num_free(&s->fifo));
}
s->async_buf += len;
s->async_len -= len;
s->ti_size -= len;
esp_set_tc(s, esp_get_tc(s) - len);
break;
}
if (s->async_len == 0 && s->ti_size == 0 && esp_get_tc(s)) {
/* If the guest underflows TC then terminate SCSI request */
scsi_req_continue(s->current_req);
return;
}
if (s->async_len == 0 && fifo8_num_used(&s->fifo) < 2) {
/* Defer until the scsi layer has completed */
scsi_req_continue(s->current_req);
return;
}
esp_dma_ti_check(s);
break;
case STAT_ST:
switch (s->rregs[ESP_CMD]) {
case CMD_ICCS | CMD_DMA:
len = MIN(len, 1);
if (len) {
buf[0] = s->status;
if (s->dma_memory_write) {
s->dma_memory_write(s->dma_opaque, buf, len);
} else {
esp_fifo_push_buf(s, buf, len);
}
esp_set_tc(s, esp_get_tc(s) - len);
esp_set_phase(s, STAT_MI);
if (esp_get_tc(s) > 0) {
/* Process any message in phase data */
esp_do_dma(s);
}
}
break;
default:
/* Consume remaining data if the guest underflows TC */
if (fifo8_num_used(&s->fifo) < 2) {
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
break;
}
break;
case STAT_MI:
switch (s->rregs[ESP_CMD]) {
case CMD_ICCS | CMD_DMA:
len = MIN(len, 1);
if (len) {
buf[0] = 0;
if (s->dma_memory_write) {
s->dma_memory_write(s->dma_opaque, buf, len);
} else {
esp_fifo_push_buf(s, buf, len);
}
esp_set_tc(s, esp_get_tc(s) - len);
/* Raise end of command interrupt */
s->rregs[ESP_RINTR] |= INTR_FC;
esp_raise_irq(s);
}
break;
}
break;
}
}
static void esp_nodma_ti_dataout(ESPState *s)
{
int len;
if (!s->current_req) {
return;
}
if (s->async_len == 0) {
/* Defer until data is available. */
return;
}
len = MIN(s->async_len, ESP_FIFO_SZ);
len = MIN(len, fifo8_num_used(&s->fifo));
esp_fifo_pop_buf(s, s->async_buf, len);
s->async_buf += len;
s->async_len -= len;
s->ti_size += len;
if (s->async_len == 0) {
scsi_req_continue(s->current_req);
return;
}
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
static void esp_do_nodma(ESPState *s)
{
uint8_t buf[ESP_FIFO_SZ];
uint32_t cmdlen;
int len;
switch (esp_get_phase(s)) {
case STAT_MO:
switch (s->rregs[ESP_CMD]) {
case CMD_SELATN:
/* Copy FIFO into cmdfifo */
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
len = MIN(fifo8_num_free(&s->cmdfifo), len);
fifo8_push_all(&s->cmdfifo, buf, len);
if (fifo8_num_used(&s->cmdfifo) >= 1) {
/* First byte received, switch to command phase */
esp_set_phase(s, STAT_CD);
s->rregs[ESP_RSEQ] = SEQ_CD;
s->cmdfifo_cdb_offset = 1;
if (fifo8_num_used(&s->cmdfifo) > 1) {
/* Process any additional command phase data */
esp_do_nodma(s);
}
}
break;
case CMD_SELATNS:
/* Copy one byte from FIFO into cmdfifo */
len = esp_fifo_pop_buf(s, buf,
MIN(fifo8_num_used(&s->fifo), 1));
len = MIN(fifo8_num_free(&s->cmdfifo), len);
fifo8_push_all(&s->cmdfifo, buf, len);
if (fifo8_num_used(&s->cmdfifo) >= 1) {
/* First byte received, stop in message out phase */
s->rregs[ESP_RSEQ] = SEQ_MO;
s->cmdfifo_cdb_offset = 1;
/* Raise command completion interrupt */
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
esp_raise_irq(s);
}
break;
case CMD_TI:
/* Copy FIFO into cmdfifo */
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
len = MIN(fifo8_num_free(&s->cmdfifo), len);
fifo8_push_all(&s->cmdfifo, buf, len);
/* ATN remains asserted until FIFO empty */
s->cmdfifo_cdb_offset = fifo8_num_used(&s->cmdfifo);
esp_set_phase(s, STAT_CD);
s->rregs[ESP_CMD] = 0;
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
break;
}
break;
case STAT_CD:
switch (s->rregs[ESP_CMD]) {
case CMD_TI:
/* Copy FIFO into cmdfifo */
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
len = MIN(fifo8_num_free(&s->cmdfifo), len);
fifo8_push_all(&s->cmdfifo, buf, len);
cmdlen = fifo8_num_used(&s->cmdfifo);
trace_esp_handle_ti_cmd(cmdlen);
/* CDB may be transferred in one or more TI commands */
if (esp_cdb_ready(s)) {
/* Command has been received */
do_cmd(s);
} else {
/*
* If data was transferred from the FIFO then raise bus
* service interrupt to indicate transfer complete. Otherwise
* defer until the next FIFO write.
*/
if (len) {
/* Raise interrupt to indicate transfer complete */
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
}
}
break;
case CMD_SEL | CMD_DMA:
case CMD_SELATN | CMD_DMA:
/* Copy FIFO into cmdfifo */
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
len = MIN(fifo8_num_free(&s->cmdfifo), len);
fifo8_push_all(&s->cmdfifo, buf, len);
/* Handle when DMA transfer is terminated by non-DMA FIFO write */
if (esp_cdb_ready(s)) {
/* Command has been received */
do_cmd(s);
}
break;
case CMD_SEL:
case CMD_SELATN:
/* FIFO already contain entire CDB: copy to cmdfifo and execute */
len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo));
len = MIN(fifo8_num_free(&s->cmdfifo), len);
fifo8_push_all(&s->cmdfifo, buf, len);
do_cmd(s);
break;
}
break;
case STAT_DO:
/* Accumulate data in FIFO until non-DMA TI is executed */
break;
case STAT_DI:
if (!s->current_req) {
return;
}
if (s->async_len == 0) {
/* Defer until data is available. */
return;
}
if (fifo8_is_empty(&s->fifo)) {
esp_fifo_push(s, s->async_buf[0]);
s->async_buf++;
s->async_len--;
s->ti_size--;
}
if (s->async_len == 0) {
scsi_req_continue(s->current_req);
return;
}
/* If preloading the FIFO, defer until TI command issued */
if (s->rregs[ESP_CMD] != CMD_TI) {
return;
}
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
break;
case STAT_ST:
switch (s->rregs[ESP_CMD]) {
case CMD_ICCS:
esp_fifo_push(s, s->status);
esp_set_phase(s, STAT_MI);
/* Process any message in phase data */
esp_do_nodma(s);
break;
}
break;
case STAT_MI:
switch (s->rregs[ESP_CMD]) {
case CMD_ICCS:
esp_fifo_push(s, 0);
/* Raise end of command interrupt */
s->rregs[ESP_RINTR] |= INTR_FC;
esp_raise_irq(s);
break;
}
break;
}
}
void esp_command_complete(SCSIRequest *req, size_t resid)
{
ESPState *s = req->hba_private;
int to_device = (esp_get_phase(s) == STAT_DO);
trace_esp_command_complete();
/*
* Non-DMA transfers from the target will leave the last byte in
* the FIFO so don't reset ti_size in this case
*/
if (s->dma || to_device) {
if (s->ti_size != 0) {
trace_esp_command_complete_unexpected();
}
}
s->async_len = 0;
if (req->status) {
trace_esp_command_complete_fail();
}
s->status = req->status;
/*
* Switch to status phase. For non-DMA transfers from the target the last
* byte is still in the FIFO
*/
s->ti_size = 0;
switch (s->rregs[ESP_CMD]) {
case CMD_SEL | CMD_DMA:
case CMD_SEL:
case CMD_SELATN | CMD_DMA:
case CMD_SELATN:
/*
* No data phase for sequencer command so raise deferred bus service
* and function complete interrupt
*/
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
break;
case CMD_TI | CMD_DMA:
case CMD_TI:
s->rregs[ESP_CMD] = 0;
break;
}
/* Raise bus service interrupt to indicate change to STATUS phase */
esp_set_phase(s, STAT_ST);
s->rregs[ESP_RINTR] |= INTR_BS;
esp_raise_irq(s);
if (s->current_req) {
scsi_req_unref(s->current_req);
s->current_req = NULL;
s->current_dev = NULL;
}
}
void esp_transfer_data(SCSIRequest *req, uint32_t len)
{
ESPState *s = req->hba_private;
uint32_t dmalen = esp_get_tc(s);
trace_esp_transfer_data(dmalen, s->ti_size);
s->async_len = len;
s->async_buf = scsi_req_get_buf(req);
if (!s->data_ready) {
s->data_ready = true;
switch (s->rregs[ESP_CMD]) {
case CMD_SEL | CMD_DMA:
case CMD_SEL:
case CMD_SELATN | CMD_DMA:
case CMD_SELATN:
/*
* Initial incoming data xfer is complete for sequencer command
* so raise deferred bus service and function complete interrupt
*/
s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
break;
case CMD_SELATNS | CMD_DMA:
case CMD_SELATNS:
/*
* Initial incoming data xfer is complete so raise command
* completion interrupt
*/
s->rregs[ESP_RINTR] |= INTR_BS;
s->rregs[ESP_RSEQ] = SEQ_MO;
break;
case CMD_TI | CMD_DMA:
case CMD_TI:
/*
* Bus service interrupt raised because of initial change to
* DATA phase
*/
s->rregs[ESP_CMD] = 0;
s->rregs[ESP_RINTR] |= INTR_BS;
break;
}
esp_raise_irq(s);
}
/*
* Always perform the initial transfer upon reception of the next TI
* command to ensure the DMA/non-DMA status of the command is correct.
* It is not possible to use s->dma directly in the section below as
* some OSs send non-DMA NOP commands after a DMA transfer. Hence if the
* async data transfer is delayed then s->dma is set incorrectly.
*/
if (s->rregs[ESP_CMD] == (CMD_TI | CMD_DMA)) {
/* When the SCSI layer returns more data, raise deferred INTR_BS */
esp_dma_ti_check(s);
esp_do_dma(s);
} else if (s->rregs[ESP_CMD] == CMD_TI) {
esp_do_nodma(s);
}
}
static void handle_ti(ESPState *s)
{
uint32_t dmalen;
if (s->dma && !s->dma_enabled) {
s->dma_cb = handle_ti;
return;
}
if (s->dma) {
dmalen = esp_get_tc(s);
trace_esp_handle_ti(dmalen);
esp_do_dma(s);
} else {
trace_esp_handle_ti(s->ti_size);
esp_do_nodma(s);
if (esp_get_phase(s) == STAT_DO) {
esp_nodma_ti_dataout(s);
}
}
}
void esp_hard_reset(ESPState *s)
{
memset(s->rregs, 0, ESP_REGS);
memset(s->wregs, 0, ESP_REGS);
s->tchi_written = 0;
s->ti_size = 0;
s->async_len = 0;
fifo8_reset(&s->fifo);
fifo8_reset(&s->cmdfifo);
s->dma = 0;
s->dma_cb = NULL;
s->rregs[ESP_CFG1] = 7;
}
static void esp_soft_reset(ESPState *s)
{
qemu_irq_lower(s->irq);
qemu_irq_lower(s->drq_irq);
esp_hard_reset(s);
}
static void esp_bus_reset(ESPState *s)
{
bus_cold_reset(BUS(&s->bus));
}
static void parent_esp_reset(ESPState *s, int irq, int level)
{
if (level) {
esp_soft_reset(s);
}
}
static void esp_run_cmd(ESPState *s)
{
uint8_t cmd = s->rregs[ESP_CMD];
if (cmd & CMD_DMA) {
s->dma = 1;
/* Reload DMA counter. */
if (esp_get_stc(s) == 0) {
esp_set_tc(s, 0x10000);
} else {
esp_set_tc(s, esp_get_stc(s));
}
} else {
s->dma = 0;
}
switch (cmd & CMD_CMD) {
case CMD_NOP:
trace_esp_mem_writeb_cmd_nop(cmd);
break;
case CMD_FLUSH:
trace_esp_mem_writeb_cmd_flush(cmd);
fifo8_reset(&s->fifo);
break;
case CMD_RESET:
trace_esp_mem_writeb_cmd_reset(cmd);
esp_soft_reset(s);
break;
case CMD_BUSRESET:
trace_esp_mem_writeb_cmd_bus_reset(cmd);
esp_bus_reset(s);
if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
s->rregs[ESP_RINTR] |= INTR_RST;
esp_raise_irq(s);
}
break;
case CMD_TI:
trace_esp_mem_writeb_cmd_ti(cmd);
handle_ti(s);
break;
case CMD_ICCS:
trace_esp_mem_writeb_cmd_iccs(cmd);
write_response(s);
break;
case CMD_MSGACC:
trace_esp_mem_writeb_cmd_msgacc(cmd);
s->rregs[ESP_RINTR] |= INTR_DC;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
esp_raise_irq(s);
break;
case CMD_PAD:
trace_esp_mem_writeb_cmd_pad(cmd);
handle_pad(s);
break;
case CMD_SATN:
trace_esp_mem_writeb_cmd_satn(cmd);
break;
case CMD_RSTATN:
trace_esp_mem_writeb_cmd_rstatn(cmd);
break;
case CMD_SEL:
trace_esp_mem_writeb_cmd_sel(cmd);
handle_s_without_atn(s);
break;
case CMD_SELATN:
trace_esp_mem_writeb_cmd_selatn(cmd);
handle_satn(s);
break;
case CMD_SELATNS:
trace_esp_mem_writeb_cmd_selatns(cmd);
handle_satn_stop(s);
break;
case CMD_ENSEL:
trace_esp_mem_writeb_cmd_ensel(cmd);
s->rregs[ESP_RINTR] = 0;
break;
case CMD_DISSEL:
trace_esp_mem_writeb_cmd_dissel(cmd);
s->rregs[ESP_RINTR] = 0;
esp_raise_irq(s);
break;
default:
trace_esp_error_unhandled_command(cmd);
break;
}
}
uint64_t esp_reg_read(ESPState *s, uint32_t saddr)
{
uint32_t val;
switch (saddr) {
case ESP_FIFO:
s->rregs[ESP_FIFO] = esp_fifo_pop(s);
val = s->rregs[ESP_FIFO];
break;
case ESP_RINTR:
/*
* Clear sequence step, interrupt register and all status bits
* except TC
*/
val = s->rregs[ESP_RINTR];
s->rregs[ESP_RINTR] = 0;
esp_lower_irq(s);
s->rregs[ESP_RSTAT] &= STAT_TC | 7;
/*
* According to the datasheet ESP_RSEQ should be cleared, but as the
* emulation currently defers information transfers to the next TI
* command leave it for now so that pedantic guests such as the old
* Linux 2.6 driver see the correct flags before the next SCSI phase
* transition.
*
* s->rregs[ESP_RSEQ] = SEQ_0;
*/
break;
case ESP_TCHI:
/* Return the unique id if the value has never been written */
if (!s->tchi_written) {
val = s->chip_id;
} else {
val = s->rregs[saddr];
}
break;
case ESP_RFLAGS:
/* Bottom 5 bits indicate number of bytes in FIFO */
val = fifo8_num_used(&s->fifo);
break;
default:
val = s->rregs[saddr];
break;
}
trace_esp_mem_readb(saddr, val);
return val;
}
void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val)
{
trace_esp_mem_writeb(saddr, s->wregs[saddr], val);
switch (saddr) {
case ESP_TCHI:
s->tchi_written = true;
/* fall through */
case ESP_TCLO:
case ESP_TCMID:
s->rregs[ESP_RSTAT] &= ~STAT_TC;
break;
case ESP_FIFO:
if (!fifo8_is_full(&s->fifo)) {
esp_fifo_push(s, val);
}
esp_do_nodma(s);
break;
case ESP_CMD:
s->rregs[saddr] = val;
esp_run_cmd(s);
break;
case ESP_WBUSID ... ESP_WSYNO:
break;
case ESP_CFG1:
case ESP_CFG2: case ESP_CFG3:
case ESP_RES3: case ESP_RES4:
s->rregs[saddr] = val;
break;
case ESP_WCCF ... ESP_WTEST:
break;
default:
trace_esp_error_invalid_write(val, saddr);
return;
}
s->wregs[saddr] = val;
}
static bool esp_mem_accepts(void *opaque, hwaddr addr,
unsigned size, bool is_write,
MemTxAttrs attrs)
{
return (size == 1) || (is_write && size == 4);
}
static bool esp_is_before_version_5(void *opaque, int version_id)
{
ESPState *s = ESP(opaque);
version_id = MIN(version_id, s->mig_version_id);
return version_id < 5;
}
static bool esp_is_version_5(void *opaque, int version_id)
{
ESPState *s = ESP(opaque);
version_id = MIN(version_id, s->mig_version_id);
return version_id >= 5;
}
static bool esp_is_version_6(void *opaque, int version_id)
{
ESPState *s = ESP(opaque);
version_id = MIN(version_id, s->mig_version_id);
return version_id >= 6;
}
static bool esp_is_between_version_5_and_6(void *opaque, int version_id)
{
ESPState *s = ESP(opaque);
version_id = MIN(version_id, s->mig_version_id);
return version_id >= 5 && version_id <= 6;
}
int esp_pre_save(void *opaque)
{
ESPState *s = ESP(object_resolve_path_component(
OBJECT(opaque), "esp"));
s->mig_version_id = vmstate_esp.version_id;
return 0;
}
static int esp_post_load(void *opaque, int version_id)
{
ESPState *s = ESP(opaque);
int len, i;
version_id = MIN(version_id, s->mig_version_id);
if (version_id < 5) {
esp_set_tc(s, s->mig_dma_left);
/* Migrate ti_buf to fifo */
len = s->mig_ti_wptr - s->mig_ti_rptr;
for (i = 0; i < len; i++) {
fifo8_push(&s->fifo, s->mig_ti_buf[i]);
}
/* Migrate cmdbuf to cmdfifo */
for (i = 0; i < s->mig_cmdlen; i++) {
fifo8_push(&s->cmdfifo, s->mig_cmdbuf[i]);
}
}
s->mig_version_id = vmstate_esp.version_id;
return 0;
}
const VMStateDescription vmstate_esp = {
.name = "esp",
.version_id = 7,
.minimum_version_id = 3,
.post_load = esp_post_load,
.fields = (const VMStateField[]) {
VMSTATE_BUFFER(rregs, ESPState),
VMSTATE_BUFFER(wregs, ESPState),
VMSTATE_INT32(ti_size, ESPState),
VMSTATE_UINT32_TEST(mig_ti_rptr, ESPState, esp_is_before_version_5),
VMSTATE_UINT32_TEST(mig_ti_wptr, ESPState, esp_is_before_version_5),
VMSTATE_BUFFER_TEST(mig_ti_buf, ESPState, esp_is_before_version_5),
VMSTATE_UINT32(status, ESPState),
VMSTATE_UINT32_TEST(mig_deferred_status, ESPState,
esp_is_before_version_5),
VMSTATE_BOOL_TEST(mig_deferred_complete, ESPState,
esp_is_before_version_5),
VMSTATE_UINT32(dma, ESPState),
VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 0,
esp_is_before_version_5, 0, 16),
VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 4,
esp_is_before_version_5, 16,
sizeof(typeof_field(ESPState, mig_cmdbuf))),
VMSTATE_UINT32_TEST(mig_cmdlen, ESPState, esp_is_before_version_5),
VMSTATE_UINT32(do_cmd, ESPState),
VMSTATE_UINT32_TEST(mig_dma_left, ESPState, esp_is_before_version_5),
VMSTATE_BOOL_TEST(data_ready, ESPState, esp_is_version_5),
VMSTATE_UINT8_TEST(cmdfifo_cdb_offset, ESPState, esp_is_version_5),
VMSTATE_FIFO8_TEST(fifo, ESPState, esp_is_version_5),
VMSTATE_FIFO8_TEST(cmdfifo, ESPState, esp_is_version_5),
VMSTATE_UINT8_TEST(mig_ti_cmd, ESPState,
esp_is_between_version_5_and_6),
VMSTATE_UINT8_TEST(lun, ESPState, esp_is_version_6),
VMSTATE_BOOL(drq_state, ESPState),
VMSTATE_END_OF_LIST()
},
};
static void sysbus_esp_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int size)
{
SysBusESPState *sysbus = opaque;
ESPState *s = ESP(&sysbus->esp);
uint32_t saddr;
saddr = addr >> sysbus->it_shift;
esp_reg_write(s, saddr, val);
}
static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr,
unsigned int size)
{
SysBusESPState *sysbus = opaque;
ESPState *s = ESP(&sysbus->esp);
uint32_t saddr;
saddr = addr >> sysbus->it_shift;
return esp_reg_read(s, saddr);
}
static const MemoryRegionOps sysbus_esp_mem_ops = {
.read = sysbus_esp_mem_read,
.write = sysbus_esp_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.accepts = esp_mem_accepts,
};
static void sysbus_esp_pdma_write(void *opaque, hwaddr addr,
uint64_t val, unsigned int size)
{
SysBusESPState *sysbus = opaque;
ESPState *s = ESP(&sysbus->esp);
trace_esp_pdma_write(size);
switch (size) {
case 1:
esp_pdma_write(s, val);
break;
case 2:
esp_pdma_write(s, val >> 8);
esp_pdma_write(s, val);
break;
}
esp_do_dma(s);
}
static uint64_t sysbus_esp_pdma_read(void *opaque, hwaddr addr,
unsigned int size)
{
SysBusESPState *sysbus = opaque;
ESPState *s = ESP(&sysbus->esp);
uint64_t val = 0;
trace_esp_pdma_read(size);
switch (size) {
case 1:
val = esp_pdma_read(s);
break;
case 2:
val = esp_pdma_read(s);
val = (val << 8) | esp_pdma_read(s);
break;
}
esp_do_dma(s);
return val;
}
static void *esp_load_request(QEMUFile *f, SCSIRequest *req)
{
ESPState *s = container_of(req->bus, ESPState, bus);
scsi_req_ref(req);
s->current_req = req;
return s;
}
static const MemoryRegionOps sysbus_esp_pdma_ops = {
.read = sysbus_esp_pdma_read,
.write = sysbus_esp_pdma_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.impl.min_access_size = 1,
.impl.max_access_size = 2,
};
static const struct SCSIBusInfo esp_scsi_info = {
.tcq = false,
.max_target = ESP_MAX_DEVS,
.max_lun = 7,
.load_request = esp_load_request,
.transfer_data = esp_transfer_data,
.complete = esp_command_complete,
.cancel = esp_request_cancelled
};
static void sysbus_esp_gpio_demux(void *opaque, int irq, int level)
{
SysBusESPState *sysbus = SYSBUS_ESP(opaque);
ESPState *s = ESP(&sysbus->esp);
switch (irq) {
case 0:
parent_esp_reset(s, irq, level);
break;
case 1:
esp_dma_enable(s, irq, level);
break;
}
}
static void sysbus_esp_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
SysBusESPState *sysbus = SYSBUS_ESP(dev);
ESPState *s = ESP(&sysbus->esp);
if (!qdev_realize(DEVICE(s), NULL, errp)) {
return;
}
sysbus_init_irq(sbd, &s->irq);
sysbus_init_irq(sbd, &s->drq_irq);
assert(sysbus->it_shift != -1);
s->chip_id = TCHI_FAS100A;
memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops,
sysbus, "esp-regs", ESP_REGS << sysbus->it_shift);
sysbus_init_mmio(sbd, &sysbus->iomem);
memory_region_init_io(&sysbus->pdma, OBJECT(sysbus), &sysbus_esp_pdma_ops,
sysbus, "esp-pdma", 4);
sysbus_init_mmio(sbd, &sysbus->pdma);
qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2);
scsi_bus_init(&s->bus, sizeof(s->bus), dev, &esp_scsi_info);
}
static void sysbus_esp_hard_reset(DeviceState *dev)
{
SysBusESPState *sysbus = SYSBUS_ESP(dev);
ESPState *s = ESP(&sysbus->esp);
esp_hard_reset(s);
}
static void sysbus_esp_init(Object *obj)
{
SysBusESPState *sysbus = SYSBUS_ESP(obj);
object_initialize_child(obj, "esp", &sysbus->esp, TYPE_ESP);
}
static const VMStateDescription vmstate_sysbus_esp_scsi = {
.name = "sysbusespscsi",
.version_id = 2,
.minimum_version_id = 1,
.pre_save = esp_pre_save,
.fields = (const VMStateField[]) {
VMSTATE_UINT8_V(esp.mig_version_id, SysBusESPState, 2),
VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState),
VMSTATE_END_OF_LIST()
}
};
static void sysbus_esp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = sysbus_esp_realize;
device_class_set_legacy_reset(dc, sysbus_esp_hard_reset);
dc->vmsd = &vmstate_sysbus_esp_scsi;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static void esp_finalize(Object *obj)
{
ESPState *s = ESP(obj);
fifo8_destroy(&s->fifo);
fifo8_destroy(&s->cmdfifo);
}
static void esp_init(Object *obj)
{
ESPState *s = ESP(obj);
fifo8_create(&s->fifo, ESP_FIFO_SZ);
fifo8_create(&s->cmdfifo, ESP_CMDFIFO_SZ);
}
static void esp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
/* internal device for sysbusesp/pciespscsi, not user-creatable */
dc->user_creatable = false;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static const TypeInfo esp_info_types[] = {
{
.name = TYPE_SYSBUS_ESP,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = sysbus_esp_init,
.instance_size = sizeof(SysBusESPState),
.class_init = sysbus_esp_class_init,
},
{
.name = TYPE_ESP,
.parent = TYPE_DEVICE,
.instance_init = esp_init,
.instance_finalize = esp_finalize,
.instance_size = sizeof(ESPState),
.class_init = esp_class_init,
},
};
DEFINE_TYPES(esp_info_types)