qemu/bsd-user/aarch64/target_arch_cpu.h
Stacey Son ce6c541dcb bsd-user:Add AArch64 improvements and signal handling functions
Added get_ucontext_sigreturn function to check processor state ensuring current execution mode is EL0 and no flags
indicating interrupts or exceptions are set.
Updated AArch64 code to use CF directly without reading/writing the entire processor state, improving efficiency.
Changed FP data structures to use Int128 instead of __uint128_t, leveraging QEMU's generic mechanism for referencing this type.

Signed-off-by: Stacey Son <sson@FreeBSD.org>
Signed-off-by: Ajeet Singh <itachis@FreeBSD.org>
Signed-off-by: Warner Losh <imp@bsdimp.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20240707191128.10509-9-itachis@FreeBSD.org>
Signed-off-by: Warner Losh <imp@bsdimp.com>
2024-07-23 10:50:54 -06:00

190 lines
6.0 KiB
C

/*
* ARM AArch64 cpu init and loop
*
* Copyright (c) 2015 Stacey Son
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TARGET_ARCH_CPU_H
#define TARGET_ARCH_CPU_H
#include "target_arch.h"
#include "signal-common.h"
#include "target/arm/syndrome.h"
#define TARGET_DEFAULT_CPU_MODEL "any"
static inline void target_cpu_init(CPUARMState *env,
struct target_pt_regs *regs)
{
int i;
if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
fprintf(stderr, "The selected ARM CPU does not support 64 bit mode\n");
exit(1);
}
for (i = 0; i < 31; i++) {
env->xregs[i] = regs->regs[i];
}
env->pc = regs->pc;
env->xregs[31] = regs->sp;
}
static inline void target_cpu_loop(CPUARMState *env)
{
CPUState *cs = env_cpu(env);
int trapnr, ec, fsc, si_code, si_signo;
uint64_t code, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
abi_long ret;
for (;;) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
switch (trapnr) {
case EXCP_SWI:
/* See arm64/arm64/trap.c cpu_fetch_syscall_args() */
code = env->xregs[8];
if (code == TARGET_FREEBSD_NR_syscall ||
code == TARGET_FREEBSD_NR___syscall) {
code = env->xregs[0];
arg1 = env->xregs[1];
arg2 = env->xregs[2];
arg3 = env->xregs[3];
arg4 = env->xregs[4];
arg5 = env->xregs[5];
arg6 = env->xregs[6];
arg7 = env->xregs[7];
arg8 = 0;
} else {
arg1 = env->xregs[0];
arg2 = env->xregs[1];
arg3 = env->xregs[2];
arg4 = env->xregs[3];
arg5 = env->xregs[4];
arg6 = env->xregs[5];
arg7 = env->xregs[6];
arg8 = env->xregs[7];
}
ret = do_freebsd_syscall(env, code, arg1, arg2, arg3,
arg4, arg5, arg6, arg7, arg8);
/*
* The carry bit is cleared for no error; set for error.
* See arm64/arm64/vm_machdep.c cpu_set_syscall_retval()
*/
if (ret >= 0) {
env->CF = 0;
env->xregs[0] = ret;
} else if (ret == -TARGET_ERESTART) {
env->pc -= 4;
break;
} else if (ret != -TARGET_EJUSTRETURN) {
env->CF = 1;
env->xregs[0] = -ret;
}
break;
case EXCP_INTERRUPT:
/* Just indicate that signals should be handle ASAP. */
break;
case EXCP_UDEF:
force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN, env->pc);
break;
case EXCP_PREFETCH_ABORT:
case EXCP_DATA_ABORT:
/* We should only arrive here with EC in {DATAABORT, INSNABORT}. */
ec = syn_get_ec(env->exception.syndrome);
assert(ec == EC_DATAABORT || ec == EC_INSNABORT);
/* Both EC have the same format for FSC, or close enough. */
fsc = extract32(env->exception.syndrome, 0, 6);
switch (fsc) {
case 0x04 ... 0x07: /* Translation fault, level {0-3} */
si_signo = TARGET_SIGSEGV;
si_code = TARGET_SEGV_MAPERR;
break;
case 0x09 ... 0x0b: /* Access flag fault, level {1-3} */
case 0x0d ... 0x0f: /* Permission fault, level {1-3} */
si_signo = TARGET_SIGSEGV;
si_code = TARGET_SEGV_ACCERR;
break;
case 0x11: /* Synchronous Tag Check Fault */
si_signo = TARGET_SIGSEGV;
si_code = /* TARGET_SEGV_MTESERR; */ TARGET_SEGV_ACCERR;
break;
case 0x21: /* Alignment fault */
si_signo = TARGET_SIGBUS;
si_code = TARGET_BUS_ADRALN;
break;
default:
g_assert_not_reached();
}
force_sig_fault(si_signo, si_code, env->exception.vaddress);
break;
case EXCP_DEBUG:
case EXCP_BKPT:
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->pc);
break;
case EXCP_ATOMIC:
cpu_exec_step_atomic(cs);
break;
case EXCP_YIELD:
/* nothing to do here for user-mode, just resume guest code */
break;
default:
fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
trapnr);
cpu_dump_state(cs, stderr, 0);
abort();
} /* switch() */
process_pending_signals(env);
/*
* Exception return on AArch64 always clears the exclusive
* monitor, so any return to running guest code implies this.
* A strex (successful or otherwise) also clears the monitor, so
* we don't need to specialcase EXCP_STREX.
*/
env->exclusive_addr = -1;
} /* for (;;) */
}
/* See arm64/arm64/vm_machdep.c cpu_fork() */
static inline void target_cpu_clone_regs(CPUARMState *env, target_ulong newsp)
{
if (newsp) {
env->xregs[31] = newsp;
}
env->regs[0] = 0;
env->regs[1] = 0;
pstate_write(env, 0);
}
static inline void target_cpu_reset(CPUArchState *env)
{
}
#endif /* TARGET_ARCH_CPU_H */