qemu/xen-hvm.c
Markus Armbruster acef5c02e5 xen-hvm: Mark inappropriate error handling FIXME
Cc: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Cc: xen-devel@lists.xensource.com
Signed-off-by: Markus Armbruster <armbru@redhat.com>
Message-Id: <1450370121-5768-14-git-send-email-armbru@redhat.com>
2016-01-13 15:16:16 +01:00

1407 lines
42 KiB
C

/*
* Copyright (C) 2010 Citrix Ltd.
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include <sys/mman.h>
#include "hw/pci/pci.h"
#include "hw/i386/pc.h"
#include "hw/xen/xen_common.h"
#include "hw/xen/xen_backend.h"
#include "qmp-commands.h"
#include "sysemu/char.h"
#include "qemu/range.h"
#include "sysemu/xen-mapcache.h"
#include "trace.h"
#include "exec/address-spaces.h"
#include <xen/hvm/ioreq.h>
#include <xen/hvm/params.h>
#include <xen/hvm/e820.h>
//#define DEBUG_XEN_HVM
#ifdef DEBUG_XEN_HVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi;
static MemoryRegion *framebuffer;
static bool xen_in_migration;
/* Compatibility with older version */
/* This allows QEMU to build on a system that has Xen 4.5 or earlier
* installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h
* needs to be included before this block and hw/xen/xen_common.h needs to
* be included before xen/hvm/ioreq.h
*/
#ifndef IOREQ_TYPE_VMWARE_PORT
#define IOREQ_TYPE_VMWARE_PORT 3
struct vmware_regs {
uint32_t esi;
uint32_t edi;
uint32_t ebx;
uint32_t ecx;
uint32_t edx;
};
typedef struct vmware_regs vmware_regs_t;
struct shared_vmport_iopage {
struct vmware_regs vcpu_vmport_regs[1];
};
typedef struct shared_vmport_iopage shared_vmport_iopage_t;
#endif
#if __XEN_LATEST_INTERFACE_VERSION__ < 0x0003020a
static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
{
return shared_page->vcpu_iodata[i].vp_eport;
}
static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
{
return &shared_page->vcpu_iodata[vcpu].vp_ioreq;
}
# define FMT_ioreq_size PRIx64
#else
static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i)
{
return shared_page->vcpu_ioreq[i].vp_eport;
}
static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu)
{
return &shared_page->vcpu_ioreq[vcpu];
}
# define FMT_ioreq_size "u"
#endif
#define BUFFER_IO_MAX_DELAY 100
typedef struct XenPhysmap {
hwaddr start_addr;
ram_addr_t size;
const char *name;
hwaddr phys_offset;
QLIST_ENTRY(XenPhysmap) list;
} XenPhysmap;
typedef struct XenIOState {
ioservid_t ioservid;
shared_iopage_t *shared_page;
shared_vmport_iopage_t *shared_vmport_page;
buffered_iopage_t *buffered_io_page;
QEMUTimer *buffered_io_timer;
CPUState **cpu_by_vcpu_id;
/* the evtchn port for polling the notification, */
evtchn_port_t *ioreq_local_port;
/* evtchn local port for buffered io */
evtchn_port_t bufioreq_local_port;
/* the evtchn fd for polling */
XenEvtchn xce_handle;
/* which vcpu we are serving */
int send_vcpu;
struct xs_handle *xenstore;
MemoryListener memory_listener;
MemoryListener io_listener;
DeviceListener device_listener;
QLIST_HEAD(, XenPhysmap) physmap;
hwaddr free_phys_offset;
const XenPhysmap *log_for_dirtybit;
Notifier exit;
Notifier suspend;
Notifier wakeup;
} XenIOState;
/* Xen specific function for piix pci */
int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
{
return irq_num + ((pci_dev->devfn >> 3) << 2);
}
void xen_piix3_set_irq(void *opaque, int irq_num, int level)
{
xc_hvm_set_pci_intx_level(xen_xc, xen_domid, 0, 0, irq_num >> 2,
irq_num & 3, level);
}
void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len)
{
int i;
/* Scan for updates to PCI link routes (0x60-0x63). */
for (i = 0; i < len; i++) {
uint8_t v = (val >> (8 * i)) & 0xff;
if (v & 0x80) {
v = 0;
}
v &= 0xf;
if (((address + i) >= 0x60) && ((address + i) <= 0x63)) {
xc_hvm_set_pci_link_route(xen_xc, xen_domid, address + i - 0x60, v);
}
}
}
void xen_hvm_inject_msi(uint64_t addr, uint32_t data)
{
xen_xc_hvm_inject_msi(xen_xc, xen_domid, addr, data);
}
static void xen_suspend_notifier(Notifier *notifier, void *data)
{
xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3);
}
/* Xen Interrupt Controller */
static void xen_set_irq(void *opaque, int irq, int level)
{
xc_hvm_set_isa_irq_level(xen_xc, xen_domid, irq, level);
}
qemu_irq *xen_interrupt_controller_init(void)
{
return qemu_allocate_irqs(xen_set_irq, NULL, 16);
}
/* Memory Ops */
static void xen_ram_init(PCMachineState *pcms,
ram_addr_t ram_size, MemoryRegion **ram_memory_p)
{
MemoryRegion *sysmem = get_system_memory();
ram_addr_t block_len;
uint64_t user_lowmem = object_property_get_int(qdev_get_machine(),
PC_MACHINE_MAX_RAM_BELOW_4G,
&error_abort);
/* Handle the machine opt max-ram-below-4g. It is basically doing
* min(xen limit, user limit).
*/
if (HVM_BELOW_4G_RAM_END <= user_lowmem) {
user_lowmem = HVM_BELOW_4G_RAM_END;
}
if (ram_size >= user_lowmem) {
pcms->above_4g_mem_size = ram_size - user_lowmem;
pcms->below_4g_mem_size = user_lowmem;
} else {
pcms->above_4g_mem_size = 0;
pcms->below_4g_mem_size = ram_size;
}
if (!pcms->above_4g_mem_size) {
block_len = ram_size;
} else {
/*
* Xen does not allocate the memory continuously, it keeps a
* hole of the size computed above or passed in.
*/
block_len = (1ULL << 32) + pcms->above_4g_mem_size;
}
memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len,
&error_fatal);
*ram_memory_p = &ram_memory;
vmstate_register_ram_global(&ram_memory);
memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k",
&ram_memory, 0, 0xa0000);
memory_region_add_subregion(sysmem, 0, &ram_640k);
/* Skip of the VGA IO memory space, it will be registered later by the VGA
* emulated device.
*
* The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load
* the Options ROM, so it is registered here as RAM.
*/
memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo",
&ram_memory, 0xc0000,
pcms->below_4g_mem_size - 0xc0000);
memory_region_add_subregion(sysmem, 0xc0000, &ram_lo);
if (pcms->above_4g_mem_size > 0) {
memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi",
&ram_memory, 0x100000000ULL,
pcms->above_4g_mem_size);
memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi);
}
}
void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr)
{
/* FIXME caller ram_block_add() wants error_setg() on failure */
unsigned long nr_pfn;
xen_pfn_t *pfn_list;
int i;
if (runstate_check(RUN_STATE_INMIGRATE)) {
/* RAM already populated in Xen */
fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT
" bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n",
__func__, size, ram_addr);
return;
}
if (mr == &ram_memory) {
return;
}
trace_xen_ram_alloc(ram_addr, size);
nr_pfn = size >> TARGET_PAGE_BITS;
pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn);
for (i = 0; i < nr_pfn; i++) {
pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i;
}
if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) {
hw_error("xen: failed to populate ram at " RAM_ADDR_FMT, ram_addr);
}
g_free(pfn_list);
}
static XenPhysmap *get_physmapping(XenIOState *state,
hwaddr start_addr, ram_addr_t size)
{
XenPhysmap *physmap = NULL;
start_addr &= TARGET_PAGE_MASK;
QLIST_FOREACH(physmap, &state->physmap, list) {
if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) {
return physmap;
}
}
return NULL;
}
static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr,
ram_addr_t size, void *opaque)
{
hwaddr addr = start_addr & TARGET_PAGE_MASK;
XenIOState *xen_io_state = opaque;
XenPhysmap *physmap = NULL;
QLIST_FOREACH(physmap, &xen_io_state->physmap, list) {
if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) {
return physmap->start_addr;
}
}
return start_addr;
}
#if CONFIG_XEN_CTRL_INTERFACE_VERSION >= 340
static int xen_add_to_physmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size,
MemoryRegion *mr,
hwaddr offset_within_region)
{
unsigned long i = 0;
int rc = 0;
XenPhysmap *physmap = NULL;
hwaddr pfn, start_gpfn;
hwaddr phys_offset = memory_region_get_ram_addr(mr);
char path[80], value[17];
const char *mr_name;
if (get_physmapping(state, start_addr, size)) {
return 0;
}
if (size <= 0) {
return -1;
}
/* Xen can only handle a single dirty log region for now and we want
* the linear framebuffer to be that region.
* Avoid tracking any regions that is not videoram and avoid tracking
* the legacy vga region. */
if (mr == framebuffer && start_addr > 0xbffff) {
goto go_physmap;
}
return -1;
go_physmap:
DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n",
start_addr, start_addr + size);
pfn = phys_offset >> TARGET_PAGE_BITS;
start_gpfn = start_addr >> TARGET_PAGE_BITS;
for (i = 0; i < size >> TARGET_PAGE_BITS; i++) {
unsigned long idx = pfn + i;
xen_pfn_t gpfn = start_gpfn + i;
rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
if (rc) {
DPRINTF("add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
return -rc;
}
}
mr_name = memory_region_name(mr);
physmap = g_malloc(sizeof (XenPhysmap));
physmap->start_addr = start_addr;
physmap->size = size;
physmap->name = mr_name;
physmap->phys_offset = phys_offset;
QLIST_INSERT_HEAD(&state->physmap, physmap, list);
xc_domain_pin_memory_cacheattr(xen_xc, xen_domid,
start_addr >> TARGET_PAGE_BITS,
(start_addr + size - 1) >> TARGET_PAGE_BITS,
XEN_DOMCTL_MEM_CACHEATTR_WB);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr",
xen_domid, (uint64_t)phys_offset);
snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)start_addr);
if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
return -1;
}
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%"PRIx64"/size",
xen_domid, (uint64_t)phys_offset);
snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)size);
if (!xs_write(state->xenstore, 0, path, value, strlen(value))) {
return -1;
}
if (mr_name) {
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%"PRIx64"/name",
xen_domid, (uint64_t)phys_offset);
if (!xs_write(state->xenstore, 0, path, mr_name, strlen(mr_name))) {
return -1;
}
}
return 0;
}
static int xen_remove_from_physmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size)
{
unsigned long i = 0;
int rc = 0;
XenPhysmap *physmap = NULL;
hwaddr phys_offset = 0;
physmap = get_physmapping(state, start_addr, size);
if (physmap == NULL) {
return -1;
}
phys_offset = physmap->phys_offset;
size = physmap->size;
DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at "
"%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset);
size >>= TARGET_PAGE_BITS;
start_addr >>= TARGET_PAGE_BITS;
phys_offset >>= TARGET_PAGE_BITS;
for (i = 0; i < size; i++) {
xen_pfn_t idx = start_addr + i;
xen_pfn_t gpfn = phys_offset + i;
rc = xen_xc_domain_add_to_physmap(xen_xc, xen_domid, XENMAPSPACE_gmfn, idx, gpfn);
if (rc) {
fprintf(stderr, "add_to_physmap MFN %"PRI_xen_pfn" to PFN %"
PRI_xen_pfn" failed: %d (errno: %d)\n", idx, gpfn, rc, errno);
return -rc;
}
}
QLIST_REMOVE(physmap, list);
if (state->log_for_dirtybit == physmap) {
state->log_for_dirtybit = NULL;
}
g_free(physmap);
return 0;
}
#else
static int xen_add_to_physmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size,
MemoryRegion *mr,
hwaddr offset_within_region)
{
return -ENOSYS;
}
static int xen_remove_from_physmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size)
{
return -ENOSYS;
}
#endif
static void xen_set_memory(struct MemoryListener *listener,
MemoryRegionSection *section,
bool add)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
hwaddr start_addr = section->offset_within_address_space;
ram_addr_t size = int128_get64(section->size);
bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA);
hvmmem_type_t mem_type;
if (section->mr == &ram_memory) {
return;
} else {
if (add) {
xen_map_memory_section(xen_xc, xen_domid, state->ioservid,
section);
} else {
xen_unmap_memory_section(xen_xc, xen_domid, state->ioservid,
section);
}
}
if (!memory_region_is_ram(section->mr)) {
return;
}
if (log_dirty != add) {
return;
}
trace_xen_client_set_memory(start_addr, size, log_dirty);
start_addr &= TARGET_PAGE_MASK;
size = TARGET_PAGE_ALIGN(size);
if (add) {
if (!memory_region_is_rom(section->mr)) {
xen_add_to_physmap(state, start_addr, size,
section->mr, section->offset_within_region);
} else {
mem_type = HVMMEM_ram_ro;
if (xc_hvm_set_mem_type(xen_xc, xen_domid, mem_type,
start_addr >> TARGET_PAGE_BITS,
size >> TARGET_PAGE_BITS)) {
DPRINTF("xc_hvm_set_mem_type error, addr: "TARGET_FMT_plx"\n",
start_addr);
}
}
} else {
if (xen_remove_from_physmap(state, start_addr, size) < 0) {
DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr);
}
}
}
static void xen_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
memory_region_ref(section->mr);
xen_set_memory(listener, section, true);
}
static void xen_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
xen_set_memory(listener, section, false);
memory_region_unref(section->mr);
}
static void xen_io_add(MemoryListener *listener,
MemoryRegionSection *section)
{
XenIOState *state = container_of(listener, XenIOState, io_listener);
memory_region_ref(section->mr);
xen_map_io_section(xen_xc, xen_domid, state->ioservid, section);
}
static void xen_io_del(MemoryListener *listener,
MemoryRegionSection *section)
{
XenIOState *state = container_of(listener, XenIOState, io_listener);
xen_unmap_io_section(xen_xc, xen_domid, state->ioservid, section);
memory_region_unref(section->mr);
}
static void xen_device_realize(DeviceListener *listener,
DeviceState *dev)
{
XenIOState *state = container_of(listener, XenIOState, device_listener);
if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
PCIDevice *pci_dev = PCI_DEVICE(dev);
xen_map_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
}
}
static void xen_device_unrealize(DeviceListener *listener,
DeviceState *dev)
{
XenIOState *state = container_of(listener, XenIOState, device_listener);
if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
PCIDevice *pci_dev = PCI_DEVICE(dev);
xen_unmap_pcidev(xen_xc, xen_domid, state->ioservid, pci_dev);
}
}
static void xen_sync_dirty_bitmap(XenIOState *state,
hwaddr start_addr,
ram_addr_t size)
{
hwaddr npages = size >> TARGET_PAGE_BITS;
const int width = sizeof(unsigned long) * 8;
unsigned long bitmap[(npages + width - 1) / width];
int rc, i, j;
const XenPhysmap *physmap = NULL;
physmap = get_physmapping(state, start_addr, size);
if (physmap == NULL) {
/* not handled */
return;
}
if (state->log_for_dirtybit == NULL) {
state->log_for_dirtybit = physmap;
} else if (state->log_for_dirtybit != physmap) {
/* Only one range for dirty bitmap can be tracked. */
return;
}
rc = xc_hvm_track_dirty_vram(xen_xc, xen_domid,
start_addr >> TARGET_PAGE_BITS, npages,
bitmap);
if (rc < 0) {
#ifndef ENODATA
#define ENODATA ENOENT
#endif
if (errno == ENODATA) {
memory_region_set_dirty(framebuffer, 0, size);
DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx
", 0x" TARGET_FMT_plx "): %s\n",
start_addr, start_addr + size, strerror(errno));
}
return;
}
for (i = 0; i < ARRAY_SIZE(bitmap); i++) {
unsigned long map = bitmap[i];
while (map != 0) {
j = ctzl(map);
map &= ~(1ul << j);
memory_region_set_dirty(framebuffer,
(i * width + j) * TARGET_PAGE_SIZE,
TARGET_PAGE_SIZE);
};
}
}
static void xen_log_start(MemoryListener *listener,
MemoryRegionSection *section,
int old, int new)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
if (new & ~old & (1 << DIRTY_MEMORY_VGA)) {
xen_sync_dirty_bitmap(state, section->offset_within_address_space,
int128_get64(section->size));
}
}
static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section,
int old, int new)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
if (old & ~new & (1 << DIRTY_MEMORY_VGA)) {
state->log_for_dirtybit = NULL;
/* Disable dirty bit tracking */
xc_hvm_track_dirty_vram(xen_xc, xen_domid, 0, 0, NULL);
}
}
static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section)
{
XenIOState *state = container_of(listener, XenIOState, memory_listener);
xen_sync_dirty_bitmap(state, section->offset_within_address_space,
int128_get64(section->size));
}
static void xen_log_global_start(MemoryListener *listener)
{
if (xen_enabled()) {
xen_in_migration = true;
}
}
static void xen_log_global_stop(MemoryListener *listener)
{
xen_in_migration = false;
}
static MemoryListener xen_memory_listener = {
.region_add = xen_region_add,
.region_del = xen_region_del,
.log_start = xen_log_start,
.log_stop = xen_log_stop,
.log_sync = xen_log_sync,
.log_global_start = xen_log_global_start,
.log_global_stop = xen_log_global_stop,
.priority = 10,
};
static MemoryListener xen_io_listener = {
.region_add = xen_io_add,
.region_del = xen_io_del,
.priority = 10,
};
static DeviceListener xen_device_listener = {
.realize = xen_device_realize,
.unrealize = xen_device_unrealize,
};
/* get the ioreq packets from share mem */
static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu)
{
ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu);
if (req->state != STATE_IOREQ_READY) {
DPRINTF("I/O request not ready: "
"%x, ptr: %x, port: %"PRIx64", "
"data: %"PRIx64", count: %" FMT_ioreq_size ", size: %" FMT_ioreq_size "\n",
req->state, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
return NULL;
}
xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */
req->state = STATE_IOREQ_INPROCESS;
return req;
}
/* use poll to get the port notification */
/* ioreq_vec--out,the */
/* retval--the number of ioreq packet */
static ioreq_t *cpu_get_ioreq(XenIOState *state)
{
int i;
evtchn_port_t port;
port = xc_evtchn_pending(state->xce_handle);
if (port == state->bufioreq_local_port) {
timer_mod(state->buffered_io_timer,
BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
return NULL;
}
if (port != -1) {
for (i = 0; i < max_cpus; i++) {
if (state->ioreq_local_port[i] == port) {
break;
}
}
if (i == max_cpus) {
hw_error("Fatal error while trying to get io event!\n");
}
/* unmask the wanted port again */
xc_evtchn_unmask(state->xce_handle, port);
/* get the io packet from shared memory */
state->send_vcpu = i;
return cpu_get_ioreq_from_shared_memory(state, i);
}
/* read error or read nothing */
return NULL;
}
static uint32_t do_inp(pio_addr_t addr, unsigned long size)
{
switch (size) {
case 1:
return cpu_inb(addr);
case 2:
return cpu_inw(addr);
case 4:
return cpu_inl(addr);
default:
hw_error("inp: bad size: %04"FMT_pioaddr" %lx", addr, size);
}
}
static void do_outp(pio_addr_t addr,
unsigned long size, uint32_t val)
{
switch (size) {
case 1:
return cpu_outb(addr, val);
case 2:
return cpu_outw(addr, val);
case 4:
return cpu_outl(addr, val);
default:
hw_error("outp: bad size: %04"FMT_pioaddr" %lx", addr, size);
}
}
/*
* Helper functions which read/write an object from/to physical guest
* memory, as part of the implementation of an ioreq.
*
* Equivalent to
* cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i,
* val, req->size, 0/1)
* except without the integer overflow problems.
*/
static void rw_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val, int rw)
{
/* Do everything unsigned so overflow just results in a truncated result
* and accesses to undesired parts of guest memory, which is up
* to the guest */
hwaddr offset = (hwaddr)req->size * i;
if (req->df) {
addr -= offset;
} else {
addr += offset;
}
cpu_physical_memory_rw(addr, val, req->size, rw);
}
static inline void read_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val)
{
rw_phys_req_item(addr, req, i, val, 0);
}
static inline void write_phys_req_item(hwaddr addr,
ioreq_t *req, uint32_t i, void *val)
{
rw_phys_req_item(addr, req, i, val, 1);
}
static void cpu_ioreq_pio(ioreq_t *req)
{
uint32_t i;
trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
if (req->dir == IOREQ_READ) {
if (!req->data_is_ptr) {
req->data = do_inp(req->addr, req->size);
trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr,
req->size);
} else {
uint32_t tmp;
for (i = 0; i < req->count; i++) {
tmp = do_inp(req->addr, req->size);
write_phys_req_item(req->data, req, i, &tmp);
}
}
} else if (req->dir == IOREQ_WRITE) {
if (!req->data_is_ptr) {
trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr,
req->size);
do_outp(req->addr, req->size, req->data);
} else {
for (i = 0; i < req->count; i++) {
uint32_t tmp = 0;
read_phys_req_item(req->data, req, i, &tmp);
do_outp(req->addr, req->size, tmp);
}
}
}
}
static void cpu_ioreq_move(ioreq_t *req)
{
uint32_t i;
trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr,
req->data, req->count, req->size);
if (!req->data_is_ptr) {
if (req->dir == IOREQ_READ) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->addr, req, i, &req->data);
}
} else if (req->dir == IOREQ_WRITE) {
for (i = 0; i < req->count; i++) {
write_phys_req_item(req->addr, req, i, &req->data);
}
}
} else {
uint64_t tmp;
if (req->dir == IOREQ_READ) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->addr, req, i, &tmp);
write_phys_req_item(req->data, req, i, &tmp);
}
} else if (req->dir == IOREQ_WRITE) {
for (i = 0; i < req->count; i++) {
read_phys_req_item(req->data, req, i, &tmp);
write_phys_req_item(req->addr, req, i, &tmp);
}
}
}
}
static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req)
{
X86CPU *cpu;
CPUX86State *env;
cpu = X86_CPU(current_cpu);
env = &cpu->env;
env->regs[R_EAX] = req->data;
env->regs[R_EBX] = vmport_regs->ebx;
env->regs[R_ECX] = vmport_regs->ecx;
env->regs[R_EDX] = vmport_regs->edx;
env->regs[R_ESI] = vmport_regs->esi;
env->regs[R_EDI] = vmport_regs->edi;
}
static void regs_from_cpu(vmware_regs_t *vmport_regs)
{
X86CPU *cpu = X86_CPU(current_cpu);
CPUX86State *env = &cpu->env;
vmport_regs->ebx = env->regs[R_EBX];
vmport_regs->ecx = env->regs[R_ECX];
vmport_regs->edx = env->regs[R_EDX];
vmport_regs->esi = env->regs[R_ESI];
vmport_regs->edi = env->regs[R_EDI];
}
static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req)
{
vmware_regs_t *vmport_regs;
assert(state->shared_vmport_page);
vmport_regs =
&state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu];
QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs));
current_cpu = state->cpu_by_vcpu_id[state->send_vcpu];
regs_to_cpu(vmport_regs, req);
cpu_ioreq_pio(req);
regs_from_cpu(vmport_regs);
current_cpu = NULL;
}
static void handle_ioreq(XenIOState *state, ioreq_t *req)
{
trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) &&
(req->size < sizeof (target_ulong))) {
req->data &= ((target_ulong) 1 << (8 * req->size)) - 1;
}
if (req->dir == IOREQ_WRITE)
trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
switch (req->type) {
case IOREQ_TYPE_PIO:
cpu_ioreq_pio(req);
break;
case IOREQ_TYPE_COPY:
cpu_ioreq_move(req);
break;
case IOREQ_TYPE_VMWARE_PORT:
handle_vmport_ioreq(state, req);
break;
case IOREQ_TYPE_TIMEOFFSET:
break;
case IOREQ_TYPE_INVALIDATE:
xen_invalidate_map_cache();
break;
case IOREQ_TYPE_PCI_CONFIG: {
uint32_t sbdf = req->addr >> 32;
uint32_t val;
/* Fake a write to port 0xCF8 so that
* the config space access will target the
* correct device model.
*/
val = (1u << 31) |
((req->addr & 0x0f00) << 16) |
((sbdf & 0xffff) << 8) |
(req->addr & 0xfc);
do_outp(0xcf8, 4, val);
/* Now issue the config space access via
* port 0xCFC
*/
req->addr = 0xcfc | (req->addr & 0x03);
cpu_ioreq_pio(req);
break;
}
default:
hw_error("Invalid ioreq type 0x%x\n", req->type);
}
if (req->dir == IOREQ_READ) {
trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr,
req->addr, req->data, req->count, req->size);
}
}
static int handle_buffered_iopage(XenIOState *state)
{
buffered_iopage_t *buf_page = state->buffered_io_page;
buf_ioreq_t *buf_req = NULL;
ioreq_t req;
int qw;
if (!buf_page) {
return 0;
}
memset(&req, 0x00, sizeof(req));
for (;;) {
uint32_t rdptr = buf_page->read_pointer, wrptr;
xen_rmb();
wrptr = buf_page->write_pointer;
xen_rmb();
if (rdptr != buf_page->read_pointer) {
continue;
}
if (rdptr == wrptr) {
break;
}
buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM];
req.size = 1UL << buf_req->size;
req.count = 1;
req.addr = buf_req->addr;
req.data = buf_req->data;
req.state = STATE_IOREQ_READY;
req.dir = buf_req->dir;
req.df = 1;
req.type = buf_req->type;
req.data_is_ptr = 0;
qw = (req.size == 8);
if (qw) {
buf_req = &buf_page->buf_ioreq[(rdptr + 1) %
IOREQ_BUFFER_SLOT_NUM];
req.data |= ((uint64_t)buf_req->data) << 32;
}
handle_ioreq(state, &req);
atomic_add(&buf_page->read_pointer, qw + 1);
}
return req.count;
}
static void handle_buffered_io(void *opaque)
{
XenIOState *state = opaque;
if (handle_buffered_iopage(state)) {
timer_mod(state->buffered_io_timer,
BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME));
} else {
timer_del(state->buffered_io_timer);
xc_evtchn_unmask(state->xce_handle, state->bufioreq_local_port);
}
}
static void cpu_handle_ioreq(void *opaque)
{
XenIOState *state = opaque;
ioreq_t *req = cpu_get_ioreq(state);
handle_buffered_iopage(state);
if (req) {
handle_ioreq(state, req);
if (req->state != STATE_IOREQ_INPROCESS) {
fprintf(stderr, "Badness in I/O request ... not in service?!: "
"%x, ptr: %x, port: %"PRIx64", "
"data: %"PRIx64", count: %" FMT_ioreq_size
", size: %" FMT_ioreq_size
", type: %"FMT_ioreq_size"\n",
req->state, req->data_is_ptr, req->addr,
req->data, req->count, req->size, req->type);
destroy_hvm_domain(false);
return;
}
xen_wmb(); /* Update ioreq contents /then/ update state. */
/*
* We do this before we send the response so that the tools
* have the opportunity to pick up on the reset before the
* guest resumes and does a hlt with interrupts disabled which
* causes Xen to powerdown the domain.
*/
if (runstate_is_running()) {
if (qemu_shutdown_requested_get()) {
destroy_hvm_domain(false);
}
if (qemu_reset_requested_get()) {
qemu_system_reset(VMRESET_REPORT);
destroy_hvm_domain(true);
}
}
req->state = STATE_IORESP_READY;
xc_evtchn_notify(state->xce_handle, state->ioreq_local_port[state->send_vcpu]);
}
}
static void xen_main_loop_prepare(XenIOState *state)
{
int evtchn_fd = -1;
if (state->xce_handle != XC_HANDLER_INITIAL_VALUE) {
evtchn_fd = xc_evtchn_fd(state->xce_handle);
}
state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io,
state);
if (evtchn_fd != -1) {
CPUState *cpu_state;
DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__);
CPU_FOREACH(cpu_state) {
DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n",
__func__, cpu_state->cpu_index, cpu_state);
state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state;
}
qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state);
}
}
static void xen_hvm_change_state_handler(void *opaque, int running,
RunState rstate)
{
XenIOState *state = opaque;
if (running) {
xen_main_loop_prepare(state);
}
xen_set_ioreq_server_state(xen_xc, xen_domid,
state->ioservid,
(rstate == RUN_STATE_RUNNING));
}
static void xen_exit_notifier(Notifier *n, void *data)
{
XenIOState *state = container_of(n, XenIOState, exit);
xc_evtchn_close(state->xce_handle);
xs_daemon_close(state->xenstore);
}
static void xen_read_physmap(XenIOState *state)
{
XenPhysmap *physmap = NULL;
unsigned int len, num, i;
char path[80], *value = NULL;
char **entries = NULL;
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap", xen_domid);
entries = xs_directory(state->xenstore, 0, path, &num);
if (entries == NULL)
return;
for (i = 0; i < num; i++) {
physmap = g_malloc(sizeof (XenPhysmap));
physmap->phys_offset = strtoull(entries[i], NULL, 16);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/start_addr",
xen_domid, entries[i]);
value = xs_read(state->xenstore, 0, path, &len);
if (value == NULL) {
g_free(physmap);
continue;
}
physmap->start_addr = strtoull(value, NULL, 16);
free(value);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/size",
xen_domid, entries[i]);
value = xs_read(state->xenstore, 0, path, &len);
if (value == NULL) {
g_free(physmap);
continue;
}
physmap->size = strtoull(value, NULL, 16);
free(value);
snprintf(path, sizeof(path),
"/local/domain/0/device-model/%d/physmap/%s/name",
xen_domid, entries[i]);
physmap->name = xs_read(state->xenstore, 0, path, &len);
QLIST_INSERT_HEAD(&state->physmap, physmap, list);
}
free(entries);
}
static void xen_wakeup_notifier(Notifier *notifier, void *data)
{
xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0);
}
/* return 0 means OK, or -1 means critical issue -- will exit(1) */
int xen_hvm_init(PCMachineState *pcms,
MemoryRegion **ram_memory)
{
/*
* FIXME Returns -1 without cleaning up on some errors (harmless
* as long as the caller exit()s on error), dies with hw_error()
* on others. hw_error() isn't approprate here. Should probably
* simply exit() on all errors.
*/
int i, rc;
xen_pfn_t ioreq_pfn;
xen_pfn_t bufioreq_pfn;
evtchn_port_t bufioreq_evtchn;
XenIOState *state;
state = g_malloc0(sizeof (XenIOState));
state->xce_handle = xen_xc_evtchn_open(NULL, 0);
if (state->xce_handle == XC_HANDLER_INITIAL_VALUE) {
perror("xen: event channel open");
return -1;
}
state->xenstore = xs_daemon_open();
if (state->xenstore == NULL) {
perror("xen: xenstore open");
return -1;
}
rc = xen_create_ioreq_server(xen_xc, xen_domid, &state->ioservid);
if (rc < 0) {
perror("xen: ioreq server create");
return -1;
}
state->exit.notify = xen_exit_notifier;
qemu_add_exit_notifier(&state->exit);
state->suspend.notify = xen_suspend_notifier;
qemu_register_suspend_notifier(&state->suspend);
state->wakeup.notify = xen_wakeup_notifier;
qemu_register_wakeup_notifier(&state->wakeup);
rc = xen_get_ioreq_server_info(xen_xc, xen_domid, state->ioservid,
&ioreq_pfn, &bufioreq_pfn,
&bufioreq_evtchn);
if (rc < 0) {
hw_error("failed to get ioreq server info: error %d handle=" XC_INTERFACE_FMT,
errno, xen_xc);
}
DPRINTF("shared page at pfn %lx\n", ioreq_pfn);
DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn);
DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn);
state->shared_page = xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
PROT_READ|PROT_WRITE, ioreq_pfn);
if (state->shared_page == NULL) {
hw_error("map shared IO page returned error %d handle=" XC_INTERFACE_FMT,
errno, xen_xc);
}
rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn);
if (!rc) {
DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn);
state->shared_vmport_page =
xc_map_foreign_range(xen_xc, xen_domid, XC_PAGE_SIZE,
PROT_READ|PROT_WRITE, ioreq_pfn);
if (state->shared_vmport_page == NULL) {
hw_error("map shared vmport IO page returned error %d handle="
XC_INTERFACE_FMT, errno, xen_xc);
}
} else if (rc != -ENOSYS) {
hw_error("get vmport regs pfn returned error %d, rc=%d", errno, rc);
}
state->buffered_io_page = xc_map_foreign_range(xen_xc, xen_domid,
XC_PAGE_SIZE,
PROT_READ|PROT_WRITE,
bufioreq_pfn);
if (state->buffered_io_page == NULL) {
hw_error("map buffered IO page returned error %d", errno);
}
/* Note: cpus is empty at this point in init */
state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *));
rc = xen_set_ioreq_server_state(xen_xc, xen_domid, state->ioservid, true);
if (rc < 0) {
hw_error("failed to enable ioreq server info: error %d handle=" XC_INTERFACE_FMT,
errno, xen_xc);
}
state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t));
/* FIXME: how about if we overflow the page here? */
for (i = 0; i < max_cpus; i++) {
rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
xen_vcpu_eport(state->shared_page, i));
if (rc == -1) {
fprintf(stderr, "shared evtchn %d bind error %d\n", i, errno);
return -1;
}
state->ioreq_local_port[i] = rc;
}
rc = xc_evtchn_bind_interdomain(state->xce_handle, xen_domid,
bufioreq_evtchn);
if (rc == -1) {
fprintf(stderr, "buffered evtchn bind error %d\n", errno);
return -1;
}
state->bufioreq_local_port = rc;
/* Init RAM management */
xen_map_cache_init(xen_phys_offset_to_gaddr, state);
xen_ram_init(pcms, ram_size, ram_memory);
qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state);
state->memory_listener = xen_memory_listener;
QLIST_INIT(&state->physmap);
memory_listener_register(&state->memory_listener, &address_space_memory);
state->log_for_dirtybit = NULL;
state->io_listener = xen_io_listener;
memory_listener_register(&state->io_listener, &address_space_io);
state->device_listener = xen_device_listener;
device_listener_register(&state->device_listener);
/* Initialize backend core & drivers */
if (xen_be_init() != 0) {
fprintf(stderr, "%s: xen backend core setup failed\n", __FUNCTION__);
return -1;
}
xen_be_register("console", &xen_console_ops);
xen_be_register("vkbd", &xen_kbdmouse_ops);
xen_be_register("qdisk", &xen_blkdev_ops);
xen_read_physmap(state);
return 0;
}
void destroy_hvm_domain(bool reboot)
{
XenXC xc_handle;
int sts;
xc_handle = xen_xc_interface_open(0, 0, 0);
if (xc_handle == XC_HANDLER_INITIAL_VALUE) {
fprintf(stderr, "Cannot acquire xenctrl handle\n");
} else {
sts = xc_domain_shutdown(xc_handle, xen_domid,
reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff);
if (sts != 0) {
fprintf(stderr, "xc_domain_shutdown failed to issue %s, "
"sts %d, %s\n", reboot ? "reboot" : "poweroff",
sts, strerror(errno));
} else {
fprintf(stderr, "Issued domain %d %s\n", xen_domid,
reboot ? "reboot" : "poweroff");
}
xc_interface_close(xc_handle);
}
}
void xen_register_framebuffer(MemoryRegion *mr)
{
framebuffer = mr;
}
void xen_shutdown_fatal_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
fprintf(stderr, "Will destroy the domain.\n");
/* destroy the domain */
qemu_system_shutdown_request();
}
void xen_modified_memory(ram_addr_t start, ram_addr_t length)
{
if (unlikely(xen_in_migration)) {
int rc;
ram_addr_t start_pfn, nb_pages;
if (length == 0) {
length = TARGET_PAGE_SIZE;
}
start_pfn = start >> TARGET_PAGE_BITS;
nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS)
- start_pfn;
rc = xc_hvm_modified_memory(xen_xc, xen_domid, start_pfn, nb_pages);
if (rc) {
fprintf(stderr,
"%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n",
__func__, start, nb_pages, rc, strerror(-rc));
}
}
}
void qmp_xen_set_global_dirty_log(bool enable, Error **errp)
{
if (enable) {
memory_global_dirty_log_start();
} else {
memory_global_dirty_log_stop();
}
}