qemu/target-i386/helper2.c
bellard 54ca9095f0 generate GPF if non canonical addresses
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1681 c046a42c-6fe2-441c-8c8c-71466251a162
2005-12-04 18:46:06 +00:00

1029 lines
32 KiB
C

/*
* i386 helpers (without register variable usage)
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include <signal.h>
#include <assert.h>
#include "cpu.h"
#include "exec-all.h"
//#define DEBUG_MMU
#ifdef USE_CODE_COPY
#include <asm/ldt.h>
#include <linux/unistd.h>
#include <linux/version.h>
_syscall3(int, modify_ldt, int, func, void *, ptr, unsigned long, bytecount)
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 5, 66)
#define modify_ldt_ldt_s user_desc
#endif
#endif /* USE_CODE_COPY */
CPUX86State *cpu_x86_init(void)
{
CPUX86State *env;
static int inited;
env = qemu_mallocz(sizeof(CPUX86State));
if (!env)
return NULL;
cpu_exec_init(env);
/* init various static tables */
if (!inited) {
inited = 1;
optimize_flags_init();
}
#ifdef USE_CODE_COPY
/* testing code for code copy case */
{
struct modify_ldt_ldt_s ldt;
ldt.entry_number = 1;
ldt.base_addr = (unsigned long)env;
ldt.limit = (sizeof(CPUState) + 0xfff) >> 12;
ldt.seg_32bit = 1;
ldt.contents = MODIFY_LDT_CONTENTS_DATA;
ldt.read_exec_only = 0;
ldt.limit_in_pages = 1;
ldt.seg_not_present = 0;
ldt.useable = 1;
modify_ldt(1, &ldt, sizeof(ldt)); /* write ldt entry */
asm volatile ("movl %0, %%fs" : : "r" ((1 << 3) | 7));
}
#endif
{
int family, model, stepping;
#ifdef TARGET_X86_64
env->cpuid_vendor1 = 0x68747541; /* "Auth" */
env->cpuid_vendor2 = 0x69746e65; /* "enti" */
env->cpuid_vendor3 = 0x444d4163; /* "cAMD" */
family = 6;
model = 2;
stepping = 3;
#else
env->cpuid_vendor1 = 0x756e6547; /* "Genu" */
env->cpuid_vendor2 = 0x49656e69; /* "ineI" */
env->cpuid_vendor3 = 0x6c65746e; /* "ntel" */
#if 0
/* pentium 75-200 */
family = 5;
model = 2;
stepping = 11;
#else
/* pentium pro */
family = 6;
model = 3;
stepping = 3;
#endif
#endif
env->cpuid_level = 2;
env->cpuid_version = (family << 8) | (model << 4) | stepping;
env->cpuid_features = (CPUID_FP87 | CPUID_DE | CPUID_PSE |
CPUID_TSC | CPUID_MSR | CPUID_MCE |
CPUID_CX8 | CPUID_PGE | CPUID_CMOV |
CPUID_PAT);
env->pat = 0x0007040600070406ULL;
env->cpuid_ext_features = 0;
env->cpuid_features |= CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | CPUID_PAE | CPUID_SEP;
env->cpuid_xlevel = 0;
{
const char *model_id = "QEMU Virtual CPU version " QEMU_VERSION;
int c, len, i;
len = strlen(model_id);
for(i = 0; i < 48; i++) {
if (i >= len)
c = '\0';
else
c = model_id[i];
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
#ifdef TARGET_X86_64
/* currently not enabled for std i386 because not fully tested */
env->cpuid_features |= CPUID_APIC;
env->cpuid_ext2_features = (env->cpuid_features & 0x0183F3FF);
env->cpuid_ext2_features |= CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX;
env->cpuid_xlevel = 0x80000008;
/* these features are needed for Win64 and aren't fully implemented */
env->cpuid_features |= CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA;
#endif
}
cpu_reset(env);
#ifdef USE_KQEMU
kqemu_init(env);
#endif
return env;
}
/* NOTE: must be called outside the CPU execute loop */
void cpu_reset(CPUX86State *env)
{
int i;
memset(env, 0, offsetof(CPUX86State, breakpoints));
tlb_flush(env, 1);
/* init to reset state */
#ifdef CONFIG_SOFTMMU
env->hflags |= HF_SOFTMMU_MASK;
#endif
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = 0xffffffff;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK;
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK;
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff, 0);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff, 0);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff, 0);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff, 0);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff, 0);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff, 0);
env->eip = 0xfff0;
env->regs[R_EDX] = 0x600; /* indicate P6 processor */
env->eflags = 0x2;
/* FPU init */
for(i = 0;i < 8; i++)
env->fptags[i] = 1;
env->fpuc = 0x37f;
env->mxcsr = 0x1f80;
}
void cpu_x86_close(CPUX86State *env)
{
free(env);
}
/***********************************************************/
/* x86 debug */
static const char *cc_op_str[] = {
"DYNAMIC",
"EFLAGS",
"MULB",
"MULW",
"MULL",
"MULQ",
"ADDB",
"ADDW",
"ADDL",
"ADDQ",
"ADCB",
"ADCW",
"ADCL",
"ADCQ",
"SUBB",
"SUBW",
"SUBL",
"SUBQ",
"SBBB",
"SBBW",
"SBBL",
"SBBQ",
"LOGICB",
"LOGICW",
"LOGICL",
"LOGICQ",
"INCB",
"INCW",
"INCL",
"INCQ",
"DECB",
"DECW",
"DECL",
"DECQ",
"SHLB",
"SHLW",
"SHLL",
"SHLQ",
"SARB",
"SARW",
"SARL",
"SARQ",
};
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags)
{
int eflags, i, nb;
char cc_op_name[32];
static const char *seg_name[6] = { "ES", "CS", "SS", "DS", "FS", "GS" };
eflags = env->eflags;
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f,
"RAX=%016llx RBX=%016llx RCX=%016llx RDX=%016llx\n"
"RSI=%016llx RDI=%016llx RBP=%016llx RSP=%016llx\n"
"R8 =%016llx R9 =%016llx R10=%016llx R11=%016llx\n"
"R12=%016llx R13=%016llx R14=%016llx R15=%016llx\n"
"RIP=%016llx RFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d HLT=%d\n",
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
env->regs[R_ESP],
env->regs[8],
env->regs[9],
env->regs[10],
env->regs[11],
env->regs[12],
env->regs[13],
env->regs[14],
env->regs[15],
env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(env->a20_mask >> 20) & 1,
(env->hflags >> HF_HALTED_SHIFT) & 1);
} else
#endif
{
cpu_fprintf(f, "EAX=%08x EBX=%08x ECX=%08x EDX=%08x\n"
"ESI=%08x EDI=%08x EBP=%08x ESP=%08x\n"
"EIP=%08x EFL=%08x [%c%c%c%c%c%c%c] CPL=%d II=%d A20=%d HLT=%d\n",
(uint32_t)env->regs[R_EAX],
(uint32_t)env->regs[R_EBX],
(uint32_t)env->regs[R_ECX],
(uint32_t)env->regs[R_EDX],
(uint32_t)env->regs[R_ESI],
(uint32_t)env->regs[R_EDI],
(uint32_t)env->regs[R_EBP],
(uint32_t)env->regs[R_ESP],
(uint32_t)env->eip, eflags,
eflags & DF_MASK ? 'D' : '-',
eflags & CC_O ? 'O' : '-',
eflags & CC_S ? 'S' : '-',
eflags & CC_Z ? 'Z' : '-',
eflags & CC_A ? 'A' : '-',
eflags & CC_P ? 'P' : '-',
eflags & CC_C ? 'C' : '-',
env->hflags & HF_CPL_MASK,
(env->hflags >> HF_INHIBIT_IRQ_SHIFT) & 1,
(env->a20_mask >> 20) & 1,
(env->hflags >> HF_HALTED_SHIFT) & 1);
}
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
for(i = 0; i < 6; i++) {
SegmentCache *sc = &env->segs[i];
cpu_fprintf(f, "%s =%04x %016llx %08x %08x\n",
seg_name[i],
sc->selector,
sc->base,
sc->limit,
sc->flags);
}
cpu_fprintf(f, "LDT=%04x %016llx %08x %08x\n",
env->ldt.selector,
env->ldt.base,
env->ldt.limit,
env->ldt.flags);
cpu_fprintf(f, "TR =%04x %016llx %08x %08x\n",
env->tr.selector,
env->tr.base,
env->tr.limit,
env->tr.flags);
cpu_fprintf(f, "GDT= %016llx %08x\n",
env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %016llx %08x\n",
env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%016llx CR3=%016llx CR4=%08x\n",
(uint32_t)env->cr[0],
env->cr[2],
env->cr[3],
(uint32_t)env->cr[4]);
} else
#endif
{
for(i = 0; i < 6; i++) {
SegmentCache *sc = &env->segs[i];
cpu_fprintf(f, "%s =%04x %08x %08x %08x\n",
seg_name[i],
sc->selector,
(uint32_t)sc->base,
sc->limit,
sc->flags);
}
cpu_fprintf(f, "LDT=%04x %08x %08x %08x\n",
env->ldt.selector,
(uint32_t)env->ldt.base,
env->ldt.limit,
env->ldt.flags);
cpu_fprintf(f, "TR =%04x %08x %08x %08x\n",
env->tr.selector,
(uint32_t)env->tr.base,
env->tr.limit,
env->tr.flags);
cpu_fprintf(f, "GDT= %08x %08x\n",
(uint32_t)env->gdt.base, env->gdt.limit);
cpu_fprintf(f, "IDT= %08x %08x\n",
(uint32_t)env->idt.base, env->idt.limit);
cpu_fprintf(f, "CR0=%08x CR2=%08x CR3=%08x CR4=%08x\n",
(uint32_t)env->cr[0],
(uint32_t)env->cr[2],
(uint32_t)env->cr[3],
(uint32_t)env->cr[4]);
}
if (flags & X86_DUMP_CCOP) {
if ((unsigned)env->cc_op < CC_OP_NB)
snprintf(cc_op_name, sizeof(cc_op_name), "%s", cc_op_str[env->cc_op]);
else
snprintf(cc_op_name, sizeof(cc_op_name), "[%d]", env->cc_op);
#ifdef TARGET_X86_64
if (env->hflags & HF_CS64_MASK) {
cpu_fprintf(f, "CCS=%016llx CCD=%016llx CCO=%-8s\n",
env->cc_src, env->cc_dst,
cc_op_name);
} else
#endif
{
cpu_fprintf(f, "CCS=%08x CCD=%08x CCO=%-8s\n",
(uint32_t)env->cc_src, (uint32_t)env->cc_dst,
cc_op_name);
}
}
if (flags & X86_DUMP_FPU) {
int fptag;
fptag = 0;
for(i = 0; i < 8; i++) {
fptag |= ((!env->fptags[i]) << i);
}
cpu_fprintf(f, "FCW=%04x FSW=%04x [ST=%d] FTW=%02x MXCSR=%08x\n",
env->fpuc,
(env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11,
env->fpstt,
fptag,
env->mxcsr);
for(i=0;i<8;i++) {
#if defined(USE_X86LDOUBLE)
union {
long double d;
struct {
uint64_t lower;
uint16_t upper;
} l;
} tmp;
tmp.d = env->fpregs[i].d;
cpu_fprintf(f, "FPR%d=%016llx %04x",
i, tmp.l.lower, tmp.l.upper);
#else
cpu_fprintf(f, "FPR%d=%016llx",
i, env->fpregs[i].mmx.q);
#endif
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
if (env->hflags & HF_CS64_MASK)
nb = 16;
else
nb = 8;
for(i=0;i<nb;i++) {
cpu_fprintf(f, "XMM%02d=%08x%08x%08x%08x",
i,
env->xmm_regs[i].XMM_L(3),
env->xmm_regs[i].XMM_L(2),
env->xmm_regs[i].XMM_L(1),
env->xmm_regs[i].XMM_L(0));
if ((i & 1) == 1)
cpu_fprintf(f, "\n");
else
cpu_fprintf(f, " ");
}
}
}
/***********************************************************/
/* x86 mmu */
/* XXX: add PGE support */
void cpu_x86_set_a20(CPUX86State *env, int a20_state)
{
a20_state = (a20_state != 0);
if (a20_state != ((env->a20_mask >> 20) & 1)) {
#if defined(DEBUG_MMU)
printf("A20 update: a20=%d\n", a20_state);
#endif
/* if the cpu is currently executing code, we must unlink it and
all the potentially executing TB */
cpu_interrupt(env, CPU_INTERRUPT_EXITTB);
/* when a20 is changed, all the MMU mappings are invalid, so
we must flush everything */
tlb_flush(env, 1);
env->a20_mask = 0xffefffff | (a20_state << 20);
}
}
void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0)
{
int pe_state;
#if defined(DEBUG_MMU)
printf("CR0 update: CR0=0x%08x\n", new_cr0);
#endif
if ((new_cr0 & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK)) !=
(env->cr[0] & (CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK))) {
tlb_flush(env, 1);
}
#ifdef TARGET_X86_64
if (!(env->cr[0] & CR0_PG_MASK) && (new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LME)) {
/* enter in long mode */
/* XXX: generate an exception */
if (!(env->cr[4] & CR4_PAE_MASK))
return;
env->efer |= MSR_EFER_LMA;
env->hflags |= HF_LMA_MASK;
} else if ((env->cr[0] & CR0_PG_MASK) && !(new_cr0 & CR0_PG_MASK) &&
(env->efer & MSR_EFER_LMA)) {
/* exit long mode */
env->efer &= ~MSR_EFER_LMA;
env->hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
env->eip &= 0xffffffff;
}
#endif
env->cr[0] = new_cr0 | CR0_ET_MASK;
/* update PE flag in hidden flags */
pe_state = (env->cr[0] & CR0_PE_MASK);
env->hflags = (env->hflags & ~HF_PE_MASK) | (pe_state << HF_PE_SHIFT);
/* ensure that ADDSEG is always set in real mode */
env->hflags |= ((pe_state ^ 1) << HF_ADDSEG_SHIFT);
/* update FPU flags */
env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
((new_cr0 << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
}
/* XXX: in legacy PAE mode, generate a GPF if reserved bits are set in
the PDPT */
void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3)
{
env->cr[3] = new_cr3;
if (env->cr[0] & CR0_PG_MASK) {
#if defined(DEBUG_MMU)
printf("CR3 update: CR3=" TARGET_FMT_lx "\n", new_cr3);
#endif
tlb_flush(env, 0);
}
}
void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4)
{
#if defined(DEBUG_MMU)
printf("CR4 update: CR4=%08x\n", (uint32_t)env->cr[4]);
#endif
if ((new_cr4 & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK)) !=
(env->cr[4] & (CR4_PGE_MASK | CR4_PAE_MASK | CR4_PSE_MASK))) {
tlb_flush(env, 1);
}
/* SSE handling */
if (!(env->cpuid_features & CPUID_SSE))
new_cr4 &= ~CR4_OSFXSR_MASK;
if (new_cr4 & CR4_OSFXSR_MASK)
env->hflags |= HF_OSFXSR_MASK;
else
env->hflags &= ~HF_OSFXSR_MASK;
env->cr[4] = new_cr4;
}
/* XXX: also flush 4MB pages */
void cpu_x86_flush_tlb(CPUX86State *env, target_ulong addr)
{
tlb_flush_page(env, addr);
}
#if defined(CONFIG_USER_ONLY)
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write, int is_user, int is_softmmu)
{
/* user mode only emulation */
is_write &= 1;
env->cr[2] = addr;
env->error_code = (is_write << PG_ERROR_W_BIT);
env->error_code |= PG_ERROR_U_MASK;
env->exception_index = EXCP0E_PAGE;
return 1;
}
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
return addr;
}
#else
#define PHYS_ADDR_MASK 0xfffff000
/* return value:
-1 = cannot handle fault
0 = nothing more to do
1 = generate PF fault
2 = soft MMU activation required for this block
*/
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr,
int is_write1, int is_user, int is_softmmu)
{
uint64_t ptep, pte;
uint32_t pdpe_addr, pde_addr, pte_addr;
int error_code, is_dirty, prot, page_size, ret, is_write;
unsigned long paddr, page_offset;
target_ulong vaddr, virt_addr;
#if defined(DEBUG_MMU)
printf("MMU fault: addr=" TARGET_FMT_lx " w=%d u=%d eip=" TARGET_FMT_lx "\n",
addr, is_write1, is_user, env->eip);
#endif
is_write = is_write1 & 1;
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
virt_addr = addr & TARGET_PAGE_MASK;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
page_size = 4096;
goto do_mapping;
}
if (env->cr[4] & CR4_PAE_MASK) {
uint64_t pde, pdpe;
/* XXX: we only use 32 bit physical addresses */
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint32_t pml4e_addr;
uint64_t pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1) {
env->error_code = 0;
env->exception_index = EXCP0D_GPF;
return 1;
}
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = ldq_phys(pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
if (!(pml4e & PG_ACCESSED_MASK)) {
pml4e |= PG_ACCESSED_MASK;
stl_phys_notdirty(pml4e_addr, pml4e);
}
ptep = pml4e ^ PG_NX_MASK;
pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
ptep &= pdpe ^ PG_NX_MASK;
if (!(pdpe & PG_ACCESSED_MASK)) {
pdpe |= PG_ACCESSED_MASK;
stl_phys_notdirty(pdpe_addr, pdpe);
}
} else
#endif
{
/* XXX: load them when cr3 is loaded ? */
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 30) << 3)) &
env->a20_mask;
pdpe = ldq_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK;
}
pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = ldq_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
ptep &= pde ^ PG_NX_MASK;
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
ptep ^= PG_NX_MASK;
if ((ptep & PG_NX_MASK) && is_write1 == 2)
goto do_fault_protect;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_phys_notdirty(pde_addr, pde);
}
/* align to page_size */
pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff);
virt_addr = addr & ~(page_size - 1);
} else {
/* 4 KB page */
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_phys_notdirty(pde_addr, pde);
}
pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
pte = ldq_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) {
error_code = PG_ERROR_RSVD_MASK;
goto do_fault;
}
/* combine pde and pte nx, user and rw protections */
ptep &= pte ^ PG_NX_MASK;
ptep ^= PG_NX_MASK;
if ((ptep & PG_NX_MASK) && is_write1 == 2)
goto do_fault_protect;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_phys_notdirty(pte_addr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
pte = pte & (PHYS_ADDR_MASK | 0xfff);
}
} else {
uint32_t pde;
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & ~3)) &
env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* if PSE bit is set, then we use a 4MB page */
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
page_size = 4096 * 1024;
if (is_user) {
if (!(pde & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(pde & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pde & PG_DIRTY_MASK);
if (!(pde & PG_ACCESSED_MASK) || is_dirty) {
pde |= PG_ACCESSED_MASK;
if (is_dirty)
pde |= PG_DIRTY_MASK;
stl_phys_notdirty(pde_addr, pde);
}
pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
ptep = pte;
virt_addr = addr & ~(page_size - 1);
} else {
if (!(pde & PG_ACCESSED_MASK)) {
pde |= PG_ACCESSED_MASK;
stl_phys_notdirty(pde_addr, pde);
}
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) &
env->a20_mask;
pte = ldl_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK)) {
error_code = 0;
goto do_fault;
}
/* combine pde and pte user and rw protections */
ptep = pte & pde;
if (is_user) {
if (!(ptep & PG_USER_MASK))
goto do_fault_protect;
if (is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
} else {
if ((env->cr[0] & CR0_WP_MASK) &&
is_write && !(ptep & PG_RW_MASK))
goto do_fault_protect;
}
is_dirty = is_write && !(pte & PG_DIRTY_MASK);
if (!(pte & PG_ACCESSED_MASK) || is_dirty) {
pte |= PG_ACCESSED_MASK;
if (is_dirty)
pte |= PG_DIRTY_MASK;
stl_phys_notdirty(pte_addr, pte);
}
page_size = 4096;
virt_addr = addr & ~0xfff;
}
}
/* the page can be put in the TLB */
prot = PAGE_READ;
if (!(ptep & PG_NX_MASK))
prot |= PAGE_EXEC;
if (pte & PG_DIRTY_MASK) {
/* only set write access if already dirty... otherwise wait
for dirty access */
if (is_user) {
if (ptep & PG_RW_MASK)
prot |= PAGE_WRITE;
} else {
if (!(env->cr[0] & CR0_WP_MASK) ||
(ptep & PG_RW_MASK))
prot |= PAGE_WRITE;
}
}
do_mapping:
pte = pte & env->a20_mask;
/* Even if 4MB pages, we map only one 4KB page in the cache to
avoid filling it too fast */
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
vaddr = virt_addr + page_offset;
ret = tlb_set_page_exec(env, vaddr, paddr, prot, is_user, is_softmmu);
return ret;
do_fault_protect:
error_code = PG_ERROR_P_MASK;
do_fault:
env->cr[2] = addr;
error_code |= (is_write << PG_ERROR_W_BIT);
if (is_user)
error_code |= PG_ERROR_U_MASK;
if (is_write1 == 2 &&
(env->efer & MSR_EFER_NXE) &&
(env->cr[4] & CR4_PAE_MASK))
error_code |= PG_ERROR_I_D_MASK;
env->error_code = error_code;
env->exception_index = EXCP0E_PAGE;
return 1;
}
target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
{
uint32_t pde_addr, pte_addr;
uint32_t pde, pte, paddr, page_offset, page_size;
if (env->cr[4] & CR4_PAE_MASK) {
uint32_t pdpe_addr, pde_addr, pte_addr;
uint32_t pdpe;
/* XXX: we only use 32 bit physical addresses */
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
uint32_t pml4e_addr, pml4e;
int32_t sext;
/* test virtual address sign extension */
sext = (int64_t)addr >> 47;
if (sext != 0 && sext != -1)
return -1;
pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) &
env->a20_mask;
pml4e = ldl_phys(pml4e_addr);
if (!(pml4e & PG_PRESENT_MASK))
return -1;
pdpe_addr = ((pml4e & ~0xfff) + (((addr >> 30) & 0x1ff) << 3)) &
env->a20_mask;
pdpe = ldl_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
} else
#endif
{
pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 30) << 3)) &
env->a20_mask;
pdpe = ldl_phys(pdpe_addr);
if (!(pdpe & PG_PRESENT_MASK))
return -1;
}
pde_addr = ((pdpe & ~0xfff) + (((addr >> 21) & 0x1ff) << 3)) &
env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK)) {
return -1;
}
if (pde & PG_PSE_MASK) {
/* 2 MB page */
page_size = 2048 * 1024;
pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */
} else {
/* 4 KB page */
pte_addr = ((pde & ~0xfff) + (((addr >> 12) & 0x1ff) << 3)) &
env->a20_mask;
page_size = 4096;
pte = ldl_phys(pte_addr);
}
} else {
if (!(env->cr[0] & CR0_PG_MASK)) {
pte = addr;
page_size = 4096;
} else {
/* page directory entry */
pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & ~3)) & env->a20_mask;
pde = ldl_phys(pde_addr);
if (!(pde & PG_PRESENT_MASK))
return -1;
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
pte = pde & ~0x003ff000; /* align to 4MB */
page_size = 4096 * 1024;
} else {
/* page directory entry */
pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask;
pte = ldl_phys(pte_addr);
if (!(pte & PG_PRESENT_MASK))
return -1;
page_size = 4096;
}
}
pte = pte & env->a20_mask;
}
page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1);
paddr = (pte & TARGET_PAGE_MASK) + page_offset;
return paddr;
}
#endif /* !CONFIG_USER_ONLY */
#if defined(USE_CODE_COPY)
struct fpstate {
uint16_t fpuc;
uint16_t dummy1;
uint16_t fpus;
uint16_t dummy2;
uint16_t fptag;
uint16_t dummy3;
uint32_t fpip;
uint32_t fpcs;
uint32_t fpoo;
uint32_t fpos;
uint8_t fpregs1[8 * 10];
};
void restore_native_fp_state(CPUState *env)
{
int fptag, i, j;
struct fpstate fp1, *fp = &fp1;
fp->fpuc = env->fpuc;
fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i=7; i>=0; i--) {
fptag <<= 2;
if (env->fptags[i]) {
fptag |= 3;
} else {
/* the FPU automatically computes it */
}
}
fp->fptag = fptag;
j = env->fpstt;
for(i = 0;i < 8; i++) {
memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
j = (j + 1) & 7;
}
asm volatile ("frstor %0" : "=m" (*fp));
env->native_fp_regs = 1;
}
void save_native_fp_state(CPUState *env)
{
int fptag, i, j;
uint16_t fpuc;
struct fpstate fp1, *fp = &fp1;
asm volatile ("fsave %0" : : "m" (*fp));
env->fpuc = fp->fpuc;
env->fpstt = (fp->fpus >> 11) & 7;
env->fpus = fp->fpus & ~0x3800;
fptag = fp->fptag;
for(i = 0;i < 8; i++) {
env->fptags[i] = ((fptag & 3) == 3);
fptag >>= 2;
}
j = env->fpstt;
for(i = 0;i < 8; i++) {
memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
j = (j + 1) & 7;
}
/* we must restore the default rounding state */
/* XXX: we do not restore the exception state */
fpuc = 0x037f | (env->fpuc & (3 << 10));
asm volatile("fldcw %0" : : "m" (fpuc));
env->native_fp_regs = 0;
}
#endif