qemu/tests/unit/test-crypto-hmac.c
Daniel P. Berrangé 7ea450b0f0 crypto: use &error_fatal in crypto tests
Using error_fatal provides better diagnostics when tests
failed, than using asserts, because we see the text of
the error message.

Reviewed-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
2021-07-14 14:15:52 +01:00

255 lines
6.8 KiB
C

/*
* QEMU Crypto hmac algorithms tests
*
* Copyright (c) 2016 HUAWEI TECHNOLOGIES CO., LTD.
*
* Authors:
* Longpeng(Mike) <longpeng2@huawei.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or
* (at your option) any later version. See the COPYING file in the
* top-level directory.
*
*/
#include "qemu/osdep.h"
#include "crypto/init.h"
#include "crypto/hmac.h"
#define INPUT_TEXT1 "ABCDEFGHIJKLMNOPQRSTUVWXY"
#define INPUT_TEXT2 "Zabcdefghijklmnopqrstuvwx"
#define INPUT_TEXT3 "yz0123456789"
#define INPUT_TEXT INPUT_TEXT1 \
INPUT_TEXT2 \
INPUT_TEXT3
#define KEY "monkey monkey monkey monkey"
typedef struct QCryptoHmacTestData QCryptoHmacTestData;
struct QCryptoHmacTestData {
QCryptoHashAlgorithm alg;
const char *hex_digest;
};
static QCryptoHmacTestData test_data[] = {
{
.alg = QCRYPTO_HASH_ALG_MD5,
.hex_digest =
"ede9cb83679ba82d88fbeae865b3f8fc",
},
{
.alg = QCRYPTO_HASH_ALG_SHA1,
.hex_digest =
"c7b5a631e3aac975c4ededfcd346e469"
"dbc5f2d1",
},
{
.alg = QCRYPTO_HASH_ALG_SHA224,
.hex_digest =
"5f768179dbb29ca722875d0f461a2e2f"
"597d0210340a84df1a8e9c63",
},
{
.alg = QCRYPTO_HASH_ALG_SHA256,
.hex_digest =
"3798f363c57afa6edaffe39016ca7bad"
"efd1e670afb0e3987194307dec3197db",
},
{
.alg = QCRYPTO_HASH_ALG_SHA384,
.hex_digest =
"d218680a6032d33dccd9882d6a6a7164"
"64f26623be257a9b2919b185294f4a49"
"9e54b190bfd6bc5cedd2cd05c7e65e82",
},
{
.alg = QCRYPTO_HASH_ALG_SHA512,
.hex_digest =
"835a4f5b3750b4c1fccfa88da2f746a4"
"900160c9f18964309bb736c13b59491b"
"8e32d37b724cc5aebb0f554c6338a3b5"
"94c4ba26862b2dadb59b7ede1d08d53e",
},
{
.alg = QCRYPTO_HASH_ALG_RIPEMD160,
.hex_digest =
"94964ed4c1155b62b668c241d67279e5"
"8a711676",
},
};
static const char hex[] = "0123456789abcdef";
static void test_hmac_alloc(void)
{
size_t i;
for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
QCryptoHmacTestData *data = &test_data[i];
QCryptoHmac *hmac = NULL;
uint8_t *result = NULL;
size_t resultlen = 0;
const char *exp_output = NULL;
int ret;
size_t j;
if (!qcrypto_hmac_supports(data->alg)) {
return;
}
exp_output = data->hex_digest;
hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
strlen(KEY), &error_fatal);
g_assert(hmac != NULL);
ret = qcrypto_hmac_bytes(hmac, (const char *)INPUT_TEXT,
strlen(INPUT_TEXT), &result,
&resultlen, &error_fatal);
g_assert(ret == 0);
for (j = 0; j < resultlen; j++) {
g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
}
qcrypto_hmac_free(hmac);
g_free(result);
}
}
static void test_hmac_prealloc(void)
{
size_t i;
for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
QCryptoHmacTestData *data = &test_data[i];
QCryptoHmac *hmac = NULL;
uint8_t *result = NULL;
size_t resultlen = 0;
const char *exp_output = NULL;
int ret;
size_t j;
if (!qcrypto_hmac_supports(data->alg)) {
return;
}
exp_output = data->hex_digest;
resultlen = strlen(exp_output) / 2;
result = g_new0(uint8_t, resultlen);
hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
strlen(KEY), &error_fatal);
g_assert(hmac != NULL);
ret = qcrypto_hmac_bytes(hmac, (const char *)INPUT_TEXT,
strlen(INPUT_TEXT), &result,
&resultlen, &error_fatal);
g_assert(ret == 0);
exp_output = data->hex_digest;
for (j = 0; j < resultlen; j++) {
g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
}
qcrypto_hmac_free(hmac);
g_free(result);
}
}
static void test_hmac_iov(void)
{
size_t i;
for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
QCryptoHmacTestData *data = &test_data[i];
QCryptoHmac *hmac = NULL;
uint8_t *result = NULL;
size_t resultlen = 0;
const char *exp_output = NULL;
int ret;
size_t j;
struct iovec iov[3] = {
{ .iov_base = (char *)INPUT_TEXT1, .iov_len = strlen(INPUT_TEXT1) },
{ .iov_base = (char *)INPUT_TEXT2, .iov_len = strlen(INPUT_TEXT2) },
{ .iov_base = (char *)INPUT_TEXT3, .iov_len = strlen(INPUT_TEXT3) },
};
if (!qcrypto_hmac_supports(data->alg)) {
return;
}
exp_output = data->hex_digest;
hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
strlen(KEY), &error_fatal);
g_assert(hmac != NULL);
ret = qcrypto_hmac_bytesv(hmac, iov, 3, &result,
&resultlen, &error_fatal);
g_assert(ret == 0);
for (j = 0; j < resultlen; j++) {
g_assert(exp_output[j * 2] == hex[(result[j] >> 4) & 0xf]);
g_assert(exp_output[j * 2 + 1] == hex[result[j] & 0xf]);
}
qcrypto_hmac_free(hmac);
g_free(result);
}
}
static void test_hmac_digest(void)
{
size_t i;
for (i = 0; i < G_N_ELEMENTS(test_data); i++) {
QCryptoHmacTestData *data = &test_data[i];
QCryptoHmac *hmac = NULL;
uint8_t *result = NULL;
const char *exp_output = NULL;
int ret;
if (!qcrypto_hmac_supports(data->alg)) {
return;
}
exp_output = data->hex_digest;
hmac = qcrypto_hmac_new(data->alg, (const uint8_t *)KEY,
strlen(KEY), &error_fatal);
g_assert(hmac != NULL);
ret = qcrypto_hmac_digest(hmac, (const char *)INPUT_TEXT,
strlen(INPUT_TEXT), (char **)&result,
&error_fatal);
g_assert(ret == 0);
g_assert_cmpstr((const char *)result, ==, exp_output);
qcrypto_hmac_free(hmac);
g_free(result);
}
}
int main(int argc, char **argv)
{
g_test_init(&argc, &argv, NULL);
g_assert(qcrypto_init(NULL) == 0);
g_test_add_func("/crypto/hmac/iov", test_hmac_iov);
g_test_add_func("/crypto/hmac/alloc", test_hmac_alloc);
g_test_add_func("/crypto/hmac/prealloc", test_hmac_prealloc);
g_test_add_func("/crypto/hmac/digest", test_hmac_digest);
return g_test_run();
}