qemu/hw/arm/strongarm.c
Manos Pitsidianakis 5e5deca183 hw/arm/strongarm.c: convert DPRINTF to trace events and guest errors
Tracing DPRINTFs to stderr might not be desired. A developer that relies
on trace events should be able to opt-in to each trace event and rely on
QEMU's log redirection, instead of stderr by default.

This commit converts DPRINTFs in this file that are used for tracing
into trace events. DPRINTFs that report guest errors are logged with
LOG_GUEST_ERROR.#

Signed-off-by: Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 39db71dd87bf2007cf7812f3d91dde53887f1f2f.1706544115.git.manos.pitsidianakis@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-02-02 13:51:58 +00:00

1672 lines
44 KiB
C

/*
* StrongARM SA-1100/SA-1110 emulation
*
* Copyright (C) 2011 Dmitry Eremin-Solenikov
*
* Largely based on StrongARM emulation:
* Copyright (c) 2006 Openedhand Ltd.
* Written by Andrzej Zaborowski <balrog@zabor.org>
*
* UART code based on QEMU 16550A UART emulation
* Copyright (c) 2003-2004 Fabrice Bellard
* Copyright (c) 2008 Citrix Systems, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*
* Contributions after 2012-01-13 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "strongarm.h"
#include "qemu/error-report.h"
#include "hw/arm/boot.h"
#include "chardev/char-fe.h"
#include "chardev/char-serial.h"
#include "sysemu/sysemu.h"
#include "sysemu/rtc.h"
#include "hw/ssi/ssi.h"
#include "qapi/error.h"
#include "qemu/cutils.h"
#include "qemu/log.h"
#include "qom/object.h"
#include "target/arm/cpu-qom.h"
#include "trace.h"
/*
TODO
- Implement cp15, c14 ?
- Implement cp15, c15 !!! (idle used in L)
- Implement idle mode handling/DIM
- Implement sleep mode/Wake sources
- Implement reset control
- Implement memory control regs
- PCMCIA handling
- Maybe support MBGNT/MBREQ
- DMA channels
- GPCLK
- IrDA
- MCP
- Enhance UART with modem signals
*/
static struct {
hwaddr io_base;
int irq;
} sa_serial[] = {
{ 0x80010000, SA_PIC_UART1 },
{ 0x80030000, SA_PIC_UART2 },
{ 0x80050000, SA_PIC_UART3 },
{ 0, 0 }
};
/* Interrupt Controller */
#define TYPE_STRONGARM_PIC "strongarm_pic"
OBJECT_DECLARE_SIMPLE_TYPE(StrongARMPICState, STRONGARM_PIC)
struct StrongARMPICState {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq irq;
qemu_irq fiq;
uint32_t pending;
uint32_t enabled;
uint32_t is_fiq;
uint32_t int_idle;
};
#define ICIP 0x00
#define ICMR 0x04
#define ICLR 0x08
#define ICFP 0x10
#define ICPR 0x20
#define ICCR 0x0c
#define SA_PIC_SRCS 32
static void strongarm_pic_update(void *opaque)
{
StrongARMPICState *s = opaque;
/* FIXME: reflect DIM */
qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq);
qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq);
}
static void strongarm_pic_set_irq(void *opaque, int irq, int level)
{
StrongARMPICState *s = opaque;
if (level) {
s->pending |= 1 << irq;
} else {
s->pending &= ~(1 << irq);
}
strongarm_pic_update(s);
}
static uint64_t strongarm_pic_mem_read(void *opaque, hwaddr offset,
unsigned size)
{
StrongARMPICState *s = opaque;
switch (offset) {
case ICIP:
return s->pending & ~s->is_fiq & s->enabled;
case ICMR:
return s->enabled;
case ICLR:
return s->is_fiq;
case ICCR:
return s->int_idle == 0;
case ICFP:
return s->pending & s->is_fiq & s->enabled;
case ICPR:
return s->pending;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad register offset 0x"HWADDR_FMT_plx"\n",
__func__, offset);
return 0;
}
}
static void strongarm_pic_mem_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
StrongARMPICState *s = opaque;
switch (offset) {
case ICMR:
s->enabled = value;
break;
case ICLR:
s->is_fiq = value;
break;
case ICCR:
s->int_idle = (value & 1) ? 0 : ~0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad register offset 0x"HWADDR_FMT_plx"\n",
__func__, offset);
break;
}
strongarm_pic_update(s);
}
static const MemoryRegionOps strongarm_pic_ops = {
.read = strongarm_pic_mem_read,
.write = strongarm_pic_mem_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void strongarm_pic_initfn(Object *obj)
{
DeviceState *dev = DEVICE(obj);
StrongARMPICState *s = STRONGARM_PIC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
qdev_init_gpio_in(dev, strongarm_pic_set_irq, SA_PIC_SRCS);
memory_region_init_io(&s->iomem, obj, &strongarm_pic_ops, s,
"pic", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
sysbus_init_irq(sbd, &s->fiq);
}
static int strongarm_pic_post_load(void *opaque, int version_id)
{
strongarm_pic_update(opaque);
return 0;
}
static const VMStateDescription vmstate_strongarm_pic_regs = {
.name = "strongarm_pic",
.version_id = 0,
.minimum_version_id = 0,
.post_load = strongarm_pic_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(pending, StrongARMPICState),
VMSTATE_UINT32(enabled, StrongARMPICState),
VMSTATE_UINT32(is_fiq, StrongARMPICState),
VMSTATE_UINT32(int_idle, StrongARMPICState),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_pic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "StrongARM PIC";
dc->vmsd = &vmstate_strongarm_pic_regs;
}
static const TypeInfo strongarm_pic_info = {
.name = TYPE_STRONGARM_PIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMPICState),
.instance_init = strongarm_pic_initfn,
.class_init = strongarm_pic_class_init,
};
/* Real-Time Clock */
#define RTAR 0x00 /* RTC Alarm register */
#define RCNR 0x04 /* RTC Counter register */
#define RTTR 0x08 /* RTC Timer Trim register */
#define RTSR 0x10 /* RTC Status register */
#define RTSR_AL (1 << 0) /* RTC Alarm detected */
#define RTSR_HZ (1 << 1) /* RTC 1Hz detected */
#define RTSR_ALE (1 << 2) /* RTC Alarm enable */
#define RTSR_HZE (1 << 3) /* RTC 1Hz enable */
/* 16 LSB of RTTR are clockdiv for internal trim logic,
* trim delete isn't emulated, so
* f = 32 768 / (RTTR_trim + 1) */
#define TYPE_STRONGARM_RTC "strongarm-rtc"
OBJECT_DECLARE_SIMPLE_TYPE(StrongARMRTCState, STRONGARM_RTC)
struct StrongARMRTCState {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t rttr;
uint32_t rtsr;
uint32_t rtar;
uint32_t last_rcnr;
int64_t last_hz;
QEMUTimer *rtc_alarm;
QEMUTimer *rtc_hz;
qemu_irq rtc_irq;
qemu_irq rtc_hz_irq;
};
static inline void strongarm_rtc_int_update(StrongARMRTCState *s)
{
qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL);
qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ);
}
static void strongarm_rtc_hzupdate(StrongARMRTCState *s)
{
int64_t rt = qemu_clock_get_ms(rtc_clock);
s->last_rcnr += ((rt - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
s->last_hz = rt;
}
static inline void strongarm_rtc_timer_update(StrongARMRTCState *s)
{
if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) {
timer_mod(s->rtc_hz, s->last_hz + 1000);
} else {
timer_del(s->rtc_hz);
}
if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) {
timer_mod(s->rtc_alarm, s->last_hz +
(((s->rtar - s->last_rcnr) * 1000 *
((s->rttr & 0xffff) + 1)) >> 15));
} else {
timer_del(s->rtc_alarm);
}
}
static inline void strongarm_rtc_alarm_tick(void *opaque)
{
StrongARMRTCState *s = opaque;
s->rtsr |= RTSR_AL;
strongarm_rtc_timer_update(s);
strongarm_rtc_int_update(s);
}
static inline void strongarm_rtc_hz_tick(void *opaque)
{
StrongARMRTCState *s = opaque;
s->rtsr |= RTSR_HZ;
strongarm_rtc_timer_update(s);
strongarm_rtc_int_update(s);
}
static uint64_t strongarm_rtc_read(void *opaque, hwaddr addr,
unsigned size)
{
StrongARMRTCState *s = opaque;
switch (addr) {
case RTTR:
return s->rttr;
case RTSR:
return s->rtsr;
case RTAR:
return s->rtar;
case RCNR:
return s->last_rcnr +
((qemu_clock_get_ms(rtc_clock) - s->last_hz) << 15) /
(1000 * ((s->rttr & 0xffff) + 1));
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad rtc register read 0x"HWADDR_FMT_plx"\n",
__func__, addr);
return 0;
}
}
static void strongarm_rtc_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
StrongARMRTCState *s = opaque;
uint32_t old_rtsr;
switch (addr) {
case RTTR:
strongarm_rtc_hzupdate(s);
s->rttr = value;
strongarm_rtc_timer_update(s);
break;
case RTSR:
old_rtsr = s->rtsr;
s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) |
(s->rtsr & ~(value & (RTSR_AL | RTSR_HZ)));
if (s->rtsr != old_rtsr) {
strongarm_rtc_timer_update(s);
}
strongarm_rtc_int_update(s);
break;
case RTAR:
s->rtar = value;
strongarm_rtc_timer_update(s);
break;
case RCNR:
strongarm_rtc_hzupdate(s);
s->last_rcnr = value;
strongarm_rtc_timer_update(s);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad rtc register write 0x"HWADDR_FMT_plx"\n",
__func__, addr);
}
}
static const MemoryRegionOps strongarm_rtc_ops = {
.read = strongarm_rtc_read,
.write = strongarm_rtc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void strongarm_rtc_init(Object *obj)
{
StrongARMRTCState *s = STRONGARM_RTC(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
struct tm tm;
s->rttr = 0x0;
s->rtsr = 0;
qemu_get_timedate(&tm, 0);
s->last_rcnr = (uint32_t) mktimegm(&tm);
s->last_hz = qemu_clock_get_ms(rtc_clock);
sysbus_init_irq(dev, &s->rtc_irq);
sysbus_init_irq(dev, &s->rtc_hz_irq);
memory_region_init_io(&s->iomem, obj, &strongarm_rtc_ops, s,
"rtc", 0x10000);
sysbus_init_mmio(dev, &s->iomem);
}
static void strongarm_rtc_realize(DeviceState *dev, Error **errp)
{
StrongARMRTCState *s = STRONGARM_RTC(dev);
s->rtc_alarm = timer_new_ms(rtc_clock, strongarm_rtc_alarm_tick, s);
s->rtc_hz = timer_new_ms(rtc_clock, strongarm_rtc_hz_tick, s);
}
static int strongarm_rtc_pre_save(void *opaque)
{
StrongARMRTCState *s = opaque;
strongarm_rtc_hzupdate(s);
return 0;
}
static int strongarm_rtc_post_load(void *opaque, int version_id)
{
StrongARMRTCState *s = opaque;
strongarm_rtc_timer_update(s);
strongarm_rtc_int_update(s);
return 0;
}
static const VMStateDescription vmstate_strongarm_rtc_regs = {
.name = "strongarm-rtc",
.version_id = 0,
.minimum_version_id = 0,
.pre_save = strongarm_rtc_pre_save,
.post_load = strongarm_rtc_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(rttr, StrongARMRTCState),
VMSTATE_UINT32(rtsr, StrongARMRTCState),
VMSTATE_UINT32(rtar, StrongARMRTCState),
VMSTATE_UINT32(last_rcnr, StrongARMRTCState),
VMSTATE_INT64(last_hz, StrongARMRTCState),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_rtc_sysbus_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "StrongARM RTC Controller";
dc->vmsd = &vmstate_strongarm_rtc_regs;
dc->realize = strongarm_rtc_realize;
}
static const TypeInfo strongarm_rtc_sysbus_info = {
.name = TYPE_STRONGARM_RTC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMRTCState),
.instance_init = strongarm_rtc_init,
.class_init = strongarm_rtc_sysbus_class_init,
};
/* GPIO */
#define GPLR 0x00
#define GPDR 0x04
#define GPSR 0x08
#define GPCR 0x0c
#define GRER 0x10
#define GFER 0x14
#define GEDR 0x18
#define GAFR 0x1c
#define TYPE_STRONGARM_GPIO "strongarm-gpio"
OBJECT_DECLARE_SIMPLE_TYPE(StrongARMGPIOInfo, STRONGARM_GPIO)
struct StrongARMGPIOInfo {
SysBusDevice busdev;
MemoryRegion iomem;
qemu_irq handler[28];
qemu_irq irqs[11];
qemu_irq irqX;
uint32_t ilevel;
uint32_t olevel;
uint32_t dir;
uint32_t rising;
uint32_t falling;
uint32_t status;
uint32_t gafr;
uint32_t prev_level;
};
static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s)
{
int i;
for (i = 0; i < 11; i++) {
qemu_set_irq(s->irqs[i], s->status & (1 << i));
}
qemu_set_irq(s->irqX, (s->status & ~0x7ff));
}
static void strongarm_gpio_set(void *opaque, int line, int level)
{
StrongARMGPIOInfo *s = opaque;
uint32_t mask;
mask = 1 << line;
if (level) {
s->status |= s->rising & mask &
~s->ilevel & ~s->dir;
s->ilevel |= mask;
} else {
s->status |= s->falling & mask &
s->ilevel & ~s->dir;
s->ilevel &= ~mask;
}
if (s->status & mask) {
strongarm_gpio_irq_update(s);
}
}
static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s)
{
uint32_t level, diff;
int bit;
level = s->olevel & s->dir;
for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
bit = ctz32(diff);
qemu_set_irq(s->handler[bit], (level >> bit) & 1);
}
s->prev_level = level;
}
static uint64_t strongarm_gpio_read(void *opaque, hwaddr offset,
unsigned size)
{
StrongARMGPIOInfo *s = opaque;
switch (offset) {
case GPDR: /* GPIO Pin-Direction registers */
return s->dir;
case GPSR: /* GPIO Pin-Output Set registers */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: read from write only register GPSR\n", __func__);
return 0;
case GPCR: /* GPIO Pin-Output Clear registers */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: read from write only register GPCR\n", __func__);
return 0;
case GRER: /* GPIO Rising-Edge Detect Enable registers */
return s->rising;
case GFER: /* GPIO Falling-Edge Detect Enable registers */
return s->falling;
case GAFR: /* GPIO Alternate Function registers */
return s->gafr;
case GPLR: /* GPIO Pin-Level registers */
return (s->olevel & s->dir) |
(s->ilevel & ~s->dir);
case GEDR: /* GPIO Edge Detect Status registers */
return s->status;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad gpio read offset 0x"HWADDR_FMT_plx"\n",
__func__, offset);
}
return 0;
}
static void strongarm_gpio_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
StrongARMGPIOInfo *s = opaque;
switch (offset) {
case GPDR: /* GPIO Pin-Direction registers */
s->dir = value & 0x0fffffff;
strongarm_gpio_handler_update(s);
break;
case GPSR: /* GPIO Pin-Output Set registers */
s->olevel |= value & 0x0fffffff;
strongarm_gpio_handler_update(s);
break;
case GPCR: /* GPIO Pin-Output Clear registers */
s->olevel &= ~value;
strongarm_gpio_handler_update(s);
break;
case GRER: /* GPIO Rising-Edge Detect Enable registers */
s->rising = value;
break;
case GFER: /* GPIO Falling-Edge Detect Enable registers */
s->falling = value;
break;
case GAFR: /* GPIO Alternate Function registers */
s->gafr = value;
break;
case GEDR: /* GPIO Edge Detect Status registers */
s->status &= ~value;
strongarm_gpio_irq_update(s);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad write offset 0x"HWADDR_FMT_plx"\n",
__func__, offset);
}
}
static const MemoryRegionOps strongarm_gpio_ops = {
.read = strongarm_gpio_read,
.write = strongarm_gpio_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static DeviceState *strongarm_gpio_init(hwaddr base,
DeviceState *pic)
{
DeviceState *dev;
int i;
dev = qdev_new(TYPE_STRONGARM_GPIO);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
for (i = 0; i < 12; i++)
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i));
return dev;
}
static void strongarm_gpio_initfn(Object *obj)
{
DeviceState *dev = DEVICE(obj);
StrongARMGPIOInfo *s = STRONGARM_GPIO(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
int i;
qdev_init_gpio_in(dev, strongarm_gpio_set, 28);
qdev_init_gpio_out(dev, s->handler, 28);
memory_region_init_io(&s->iomem, obj, &strongarm_gpio_ops, s,
"gpio", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
for (i = 0; i < 11; i++) {
sysbus_init_irq(sbd, &s->irqs[i]);
}
sysbus_init_irq(sbd, &s->irqX);
}
static const VMStateDescription vmstate_strongarm_gpio_regs = {
.name = "strongarm-gpio",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(ilevel, StrongARMGPIOInfo),
VMSTATE_UINT32(olevel, StrongARMGPIOInfo),
VMSTATE_UINT32(dir, StrongARMGPIOInfo),
VMSTATE_UINT32(rising, StrongARMGPIOInfo),
VMSTATE_UINT32(falling, StrongARMGPIOInfo),
VMSTATE_UINT32(status, StrongARMGPIOInfo),
VMSTATE_UINT32(gafr, StrongARMGPIOInfo),
VMSTATE_UINT32(prev_level, StrongARMGPIOInfo),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_gpio_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "StrongARM GPIO controller";
dc->vmsd = &vmstate_strongarm_gpio_regs;
}
static const TypeInfo strongarm_gpio_info = {
.name = TYPE_STRONGARM_GPIO,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMGPIOInfo),
.instance_init = strongarm_gpio_initfn,
.class_init = strongarm_gpio_class_init,
};
/* Peripheral Pin Controller */
#define PPDR 0x00
#define PPSR 0x04
#define PPAR 0x08
#define PSDR 0x0c
#define PPFR 0x10
#define TYPE_STRONGARM_PPC "strongarm-ppc"
OBJECT_DECLARE_SIMPLE_TYPE(StrongARMPPCInfo, STRONGARM_PPC)
struct StrongARMPPCInfo {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq handler[28];
uint32_t ilevel;
uint32_t olevel;
uint32_t dir;
uint32_t ppar;
uint32_t psdr;
uint32_t ppfr;
uint32_t prev_level;
};
static void strongarm_ppc_set(void *opaque, int line, int level)
{
StrongARMPPCInfo *s = opaque;
if (level) {
s->ilevel |= 1 << line;
} else {
s->ilevel &= ~(1 << line);
}
}
static void strongarm_ppc_handler_update(StrongARMPPCInfo *s)
{
uint32_t level, diff;
int bit;
level = s->olevel & s->dir;
for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) {
bit = ctz32(diff);
qemu_set_irq(s->handler[bit], (level >> bit) & 1);
}
s->prev_level = level;
}
static uint64_t strongarm_ppc_read(void *opaque, hwaddr offset,
unsigned size)
{
StrongARMPPCInfo *s = opaque;
switch (offset) {
case PPDR: /* PPC Pin Direction registers */
return s->dir | ~0x3fffff;
case PPSR: /* PPC Pin State registers */
return (s->olevel & s->dir) |
(s->ilevel & ~s->dir) |
~0x3fffff;
case PPAR:
return s->ppar | ~0x41000;
case PSDR:
return s->psdr;
case PPFR:
return s->ppfr | ~0x7f001;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad ppc read offset 0x"HWADDR_FMT_plx "\n",
__func__, offset);
}
return 0;
}
static void strongarm_ppc_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
StrongARMPPCInfo *s = opaque;
switch (offset) {
case PPDR: /* PPC Pin Direction registers */
s->dir = value & 0x3fffff;
strongarm_ppc_handler_update(s);
break;
case PPSR: /* PPC Pin State registers */
s->olevel = value & s->dir & 0x3fffff;
strongarm_ppc_handler_update(s);
break;
case PPAR:
s->ppar = value & 0x41000;
break;
case PSDR:
s->psdr = value & 0x3fffff;
break;
case PPFR:
s->ppfr = value & 0x7f001;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad ppc write offset 0x"HWADDR_FMT_plx"\n",
__func__, offset);
}
}
static const MemoryRegionOps strongarm_ppc_ops = {
.read = strongarm_ppc_read,
.write = strongarm_ppc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void strongarm_ppc_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
StrongARMPPCInfo *s = STRONGARM_PPC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
qdev_init_gpio_in(dev, strongarm_ppc_set, 22);
qdev_init_gpio_out(dev, s->handler, 22);
memory_region_init_io(&s->iomem, obj, &strongarm_ppc_ops, s,
"ppc", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
static const VMStateDescription vmstate_strongarm_ppc_regs = {
.name = "strongarm-ppc",
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(ilevel, StrongARMPPCInfo),
VMSTATE_UINT32(olevel, StrongARMPPCInfo),
VMSTATE_UINT32(dir, StrongARMPPCInfo),
VMSTATE_UINT32(ppar, StrongARMPPCInfo),
VMSTATE_UINT32(psdr, StrongARMPPCInfo),
VMSTATE_UINT32(ppfr, StrongARMPPCInfo),
VMSTATE_UINT32(prev_level, StrongARMPPCInfo),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_ppc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "StrongARM PPC controller";
dc->vmsd = &vmstate_strongarm_ppc_regs;
}
static const TypeInfo strongarm_ppc_info = {
.name = TYPE_STRONGARM_PPC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMPPCInfo),
.instance_init = strongarm_ppc_init,
.class_init = strongarm_ppc_class_init,
};
/* UART Ports */
#define UTCR0 0x00
#define UTCR1 0x04
#define UTCR2 0x08
#define UTCR3 0x0c
#define UTDR 0x14
#define UTSR0 0x1c
#define UTSR1 0x20
#define UTCR0_PE (1 << 0) /* Parity enable */
#define UTCR0_OES (1 << 1) /* Even parity */
#define UTCR0_SBS (1 << 2) /* 2 stop bits */
#define UTCR0_DSS (1 << 3) /* 8-bit data */
#define UTCR3_RXE (1 << 0) /* Rx enable */
#define UTCR3_TXE (1 << 1) /* Tx enable */
#define UTCR3_BRK (1 << 2) /* Force Break */
#define UTCR3_RIE (1 << 3) /* Rx int enable */
#define UTCR3_TIE (1 << 4) /* Tx int enable */
#define UTCR3_LBM (1 << 5) /* Loopback */
#define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */
#define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */
#define UTSR0_RID (1 << 2) /* Receiver Idle */
#define UTSR0_RBB (1 << 3) /* Receiver begin break */
#define UTSR0_REB (1 << 4) /* Receiver end break */
#define UTSR0_EIF (1 << 5) /* Error in FIFO */
#define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */
#define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */
#define UTSR1_PRE (1 << 3) /* Parity error */
#define UTSR1_FRE (1 << 4) /* Frame error */
#define UTSR1_ROR (1 << 5) /* Receive Over Run */
#define RX_FIFO_PRE (1 << 8)
#define RX_FIFO_FRE (1 << 9)
#define RX_FIFO_ROR (1 << 10)
#define TYPE_STRONGARM_UART "strongarm-uart"
OBJECT_DECLARE_SIMPLE_TYPE(StrongARMUARTState, STRONGARM_UART)
struct StrongARMUARTState {
SysBusDevice parent_obj;
MemoryRegion iomem;
CharBackend chr;
qemu_irq irq;
uint8_t utcr0;
uint16_t brd;
uint8_t utcr3;
uint8_t utsr0;
uint8_t utsr1;
uint8_t tx_fifo[8];
uint8_t tx_start;
uint8_t tx_len;
uint16_t rx_fifo[12]; /* value + error flags in high bits */
uint8_t rx_start;
uint8_t rx_len;
uint64_t char_transmit_time; /* time to transmit a char in nanoseconds */
bool wait_break_end;
QEMUTimer *rx_timeout_timer;
QEMUTimer *tx_timer;
};
static void strongarm_uart_update_status(StrongARMUARTState *s)
{
uint16_t utsr1 = 0;
if (s->tx_len != 8) {
utsr1 |= UTSR1_TNF;
}
if (s->rx_len != 0) {
uint16_t ent = s->rx_fifo[s->rx_start];
utsr1 |= UTSR1_RNE;
if (ent & RX_FIFO_PRE) {
s->utsr1 |= UTSR1_PRE;
}
if (ent & RX_FIFO_FRE) {
s->utsr1 |= UTSR1_FRE;
}
if (ent & RX_FIFO_ROR) {
s->utsr1 |= UTSR1_ROR;
}
}
s->utsr1 = utsr1;
}
static void strongarm_uart_update_int_status(StrongARMUARTState *s)
{
uint16_t utsr0 = s->utsr0 &
(UTSR0_REB | UTSR0_RBB | UTSR0_RID);
int i;
if ((s->utcr3 & UTCR3_TXE) &&
(s->utcr3 & UTCR3_TIE) &&
s->tx_len <= 4) {
utsr0 |= UTSR0_TFS;
}
if ((s->utcr3 & UTCR3_RXE) &&
(s->utcr3 & UTCR3_RIE) &&
s->rx_len > 4) {
utsr0 |= UTSR0_RFS;
}
for (i = 0; i < s->rx_len && i < 4; i++)
if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) {
utsr0 |= UTSR0_EIF;
break;
}
s->utsr0 = utsr0;
qemu_set_irq(s->irq, utsr0);
}
static void strongarm_uart_update_parameters(StrongARMUARTState *s)
{
int speed, parity, data_bits, stop_bits, frame_size;
QEMUSerialSetParams ssp;
/* Start bit. */
frame_size = 1;
if (s->utcr0 & UTCR0_PE) {
/* Parity bit. */
frame_size++;
if (s->utcr0 & UTCR0_OES) {
parity = 'E';
} else {
parity = 'O';
}
} else {
parity = 'N';
}
if (s->utcr0 & UTCR0_SBS) {
stop_bits = 2;
} else {
stop_bits = 1;
}
data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7;
frame_size += data_bits + stop_bits;
speed = 3686400 / 16 / (s->brd + 1);
ssp.speed = speed;
ssp.parity = parity;
ssp.data_bits = data_bits;
ssp.stop_bits = stop_bits;
s->char_transmit_time = (NANOSECONDS_PER_SECOND / speed) * frame_size;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
trace_strongarm_uart_update_parameters((s->chr.chr ?
s->chr.chr->label : "NULL") ?:
"NULL",
speed,
parity,
data_bits,
stop_bits);
}
static void strongarm_uart_rx_to(void *opaque)
{
StrongARMUARTState *s = opaque;
if (s->rx_len) {
s->utsr0 |= UTSR0_RID;
strongarm_uart_update_int_status(s);
}
}
static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c)
{
if ((s->utcr3 & UTCR3_RXE) == 0) {
/* rx disabled */
return;
}
if (s->wait_break_end) {
s->utsr0 |= UTSR0_REB;
s->wait_break_end = false;
}
if (s->rx_len < 12) {
s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c;
s->rx_len++;
} else
s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR;
}
static int strongarm_uart_can_receive(void *opaque)
{
StrongARMUARTState *s = opaque;
if (s->rx_len == 12) {
return 0;
}
/* It's best not to get more than 2/3 of RX FIFO, so advertise that much */
if (s->rx_len < 8) {
return 8 - s->rx_len;
}
return 1;
}
static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size)
{
StrongARMUARTState *s = opaque;
int i;
for (i = 0; i < size; i++) {
strongarm_uart_rx_push(s, buf[i]);
}
/* call the timeout receive callback in 3 char transmit time */
timer_mod(s->rx_timeout_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
}
static void strongarm_uart_event(void *opaque, QEMUChrEvent event)
{
StrongARMUARTState *s = opaque;
if (event == CHR_EVENT_BREAK) {
s->utsr0 |= UTSR0_RBB;
strongarm_uart_rx_push(s, RX_FIFO_FRE);
s->wait_break_end = true;
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
}
}
static void strongarm_uart_tx(void *opaque)
{
StrongARMUARTState *s = opaque;
uint64_t new_xmit_ts = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
if (s->utcr3 & UTCR3_LBM) /* loopback */ {
strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1);
} else if (qemu_chr_fe_backend_connected(&s->chr)) {
/* XXX this blocks entire thread. Rewrite to use
* qemu_chr_fe_write and background I/O callbacks */
qemu_chr_fe_write_all(&s->chr, &s->tx_fifo[s->tx_start], 1);
}
s->tx_start = (s->tx_start + 1) % 8;
s->tx_len--;
if (s->tx_len) {
timer_mod(s->tx_timer, new_xmit_ts + s->char_transmit_time);
}
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
}
static uint64_t strongarm_uart_read(void *opaque, hwaddr addr,
unsigned size)
{
StrongARMUARTState *s = opaque;
uint16_t ret;
switch (addr) {
case UTCR0:
return s->utcr0;
case UTCR1:
return s->brd >> 8;
case UTCR2:
return s->brd & 0xff;
case UTCR3:
return s->utcr3;
case UTDR:
if (s->rx_len != 0) {
ret = s->rx_fifo[s->rx_start];
s->rx_start = (s->rx_start + 1) % 12;
s->rx_len--;
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
return ret;
}
return 0;
case UTSR0:
return s->utsr0;
case UTSR1:
return s->utsr1;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad uart register read 0x"HWADDR_FMT_plx"\n",
__func__, addr);
return 0;
}
}
static void strongarm_uart_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
StrongARMUARTState *s = opaque;
switch (addr) {
case UTCR0:
s->utcr0 = value & 0x7f;
strongarm_uart_update_parameters(s);
break;
case UTCR1:
s->brd = (s->brd & 0xff) | ((value & 0xf) << 8);
strongarm_uart_update_parameters(s);
break;
case UTCR2:
s->brd = (s->brd & 0xf00) | (value & 0xff);
strongarm_uart_update_parameters(s);
break;
case UTCR3:
s->utcr3 = value & 0x3f;
if ((s->utcr3 & UTCR3_RXE) == 0) {
s->rx_len = 0;
}
if ((s->utcr3 & UTCR3_TXE) == 0) {
s->tx_len = 0;
}
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
break;
case UTDR:
if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) {
s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value;
s->tx_len++;
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
if (s->tx_len == 1) {
strongarm_uart_tx(s);
}
}
break;
case UTSR0:
s->utsr0 = s->utsr0 & ~(value &
(UTSR0_REB | UTSR0_RBB | UTSR0_RID));
strongarm_uart_update_int_status(s);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad uart register write 0x"HWADDR_FMT_plx"\n",
__func__, addr);
}
}
static const MemoryRegionOps strongarm_uart_ops = {
.read = strongarm_uart_read,
.write = strongarm_uart_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void strongarm_uart_init(Object *obj)
{
StrongARMUARTState *s = STRONGARM_UART(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
memory_region_init_io(&s->iomem, obj, &strongarm_uart_ops, s,
"uart", 0x10000);
sysbus_init_mmio(dev, &s->iomem);
sysbus_init_irq(dev, &s->irq);
}
static void strongarm_uart_realize(DeviceState *dev, Error **errp)
{
StrongARMUARTState *s = STRONGARM_UART(dev);
s->rx_timeout_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
strongarm_uart_rx_to,
s);
s->tx_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, strongarm_uart_tx, s);
qemu_chr_fe_set_handlers(&s->chr,
strongarm_uart_can_receive,
strongarm_uart_receive,
strongarm_uart_event,
NULL, s, NULL, true);
}
static void strongarm_uart_reset(DeviceState *dev)
{
StrongARMUARTState *s = STRONGARM_UART(dev);
s->utcr0 = UTCR0_DSS; /* 8 data, no parity */
s->brd = 23; /* 9600 */
/* enable send & recv - this actually violates spec */
s->utcr3 = UTCR3_TXE | UTCR3_RXE;
s->rx_len = s->tx_len = 0;
strongarm_uart_update_parameters(s);
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
}
static int strongarm_uart_post_load(void *opaque, int version_id)
{
StrongARMUARTState *s = opaque;
strongarm_uart_update_parameters(s);
strongarm_uart_update_status(s);
strongarm_uart_update_int_status(s);
/* tx and restart timer */
if (s->tx_len) {
strongarm_uart_tx(s);
}
/* restart rx timeout timer */
if (s->rx_len) {
timer_mod(s->rx_timeout_timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->char_transmit_time * 3);
}
return 0;
}
static const VMStateDescription vmstate_strongarm_uart_regs = {
.name = "strongarm-uart",
.version_id = 0,
.minimum_version_id = 0,
.post_load = strongarm_uart_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(utcr0, StrongARMUARTState),
VMSTATE_UINT16(brd, StrongARMUARTState),
VMSTATE_UINT8(utcr3, StrongARMUARTState),
VMSTATE_UINT8(utsr0, StrongARMUARTState),
VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8),
VMSTATE_UINT8(tx_start, StrongARMUARTState),
VMSTATE_UINT8(tx_len, StrongARMUARTState),
VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12),
VMSTATE_UINT8(rx_start, StrongARMUARTState),
VMSTATE_UINT8(rx_len, StrongARMUARTState),
VMSTATE_BOOL(wait_break_end, StrongARMUARTState),
VMSTATE_END_OF_LIST(),
},
};
static Property strongarm_uart_properties[] = {
DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr),
DEFINE_PROP_END_OF_LIST(),
};
static void strongarm_uart_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "StrongARM UART controller";
dc->reset = strongarm_uart_reset;
dc->vmsd = &vmstate_strongarm_uart_regs;
device_class_set_props(dc, strongarm_uart_properties);
dc->realize = strongarm_uart_realize;
}
static const TypeInfo strongarm_uart_info = {
.name = TYPE_STRONGARM_UART,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMUARTState),
.instance_init = strongarm_uart_init,
.class_init = strongarm_uart_class_init,
};
/* Synchronous Serial Ports */
#define TYPE_STRONGARM_SSP "strongarm-ssp"
OBJECT_DECLARE_SIMPLE_TYPE(StrongARMSSPState, STRONGARM_SSP)
struct StrongARMSSPState {
SysBusDevice parent_obj;
MemoryRegion iomem;
qemu_irq irq;
SSIBus *bus;
uint16_t sscr[2];
uint16_t sssr;
uint16_t rx_fifo[8];
uint8_t rx_level;
uint8_t rx_start;
};
#define SSCR0 0x60 /* SSP Control register 0 */
#define SSCR1 0x64 /* SSP Control register 1 */
#define SSDR 0x6c /* SSP Data register */
#define SSSR 0x74 /* SSP Status register */
/* Bitfields for above registers */
#define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
#define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
#define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
#define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
#define SSCR0_SSE (1 << 7)
#define SSCR0_DSS(x) (((x) & 0xf) + 1)
#define SSCR1_RIE (1 << 0)
#define SSCR1_TIE (1 << 1)
#define SSCR1_LBM (1 << 2)
#define SSSR_TNF (1 << 2)
#define SSSR_RNE (1 << 3)
#define SSSR_TFS (1 << 5)
#define SSSR_RFS (1 << 6)
#define SSSR_ROR (1 << 7)
#define SSSR_RW 0x0080
static void strongarm_ssp_int_update(StrongARMSSPState *s)
{
int level = 0;
level |= (s->sssr & SSSR_ROR);
level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
qemu_set_irq(s->irq, level);
}
static void strongarm_ssp_fifo_update(StrongARMSSPState *s)
{
s->sssr &= ~SSSR_TFS;
s->sssr &= ~SSSR_TNF;
if (s->sscr[0] & SSCR0_SSE) {
if (s->rx_level >= 4) {
s->sssr |= SSSR_RFS;
} else {
s->sssr &= ~SSSR_RFS;
}
if (s->rx_level) {
s->sssr |= SSSR_RNE;
} else {
s->sssr &= ~SSSR_RNE;
}
/* TX FIFO is never filled, so it is always in underrun
condition if SSP is enabled */
s->sssr |= SSSR_TFS;
s->sssr |= SSSR_TNF;
}
strongarm_ssp_int_update(s);
}
static uint64_t strongarm_ssp_read(void *opaque, hwaddr addr,
unsigned size)
{
StrongARMSSPState *s = opaque;
uint32_t retval;
switch (addr) {
case SSCR0:
return s->sscr[0];
case SSCR1:
return s->sscr[1];
case SSSR:
return s->sssr;
case SSDR:
if (~s->sscr[0] & SSCR0_SSE) {
return 0xffffffff;
}
if (s->rx_level < 1) {
trace_strongarm_ssp_read_underrun();
return 0xffffffff;
}
s->rx_level--;
retval = s->rx_fifo[s->rx_start++];
s->rx_start &= 0x7;
strongarm_ssp_fifo_update(s);
return retval;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad ssp register read 0x"HWADDR_FMT_plx"\n",
__func__, addr);
break;
}
return 0;
}
static void strongarm_ssp_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
StrongARMSSPState *s = opaque;
switch (addr) {
case SSCR0:
s->sscr[0] = value & 0xffbf;
if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Wrong data size: %i bits\n",
__func__, (int)SSCR0_DSS(value));
}
if (!(value & SSCR0_SSE)) {
s->sssr = 0;
s->rx_level = 0;
}
strongarm_ssp_fifo_update(s);
break;
case SSCR1:
s->sscr[1] = value & 0x2f;
if (value & SSCR1_LBM) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Attempt to use SSP LBM mode\n",
__func__);
}
strongarm_ssp_fifo_update(s);
break;
case SSSR:
s->sssr &= ~(value & SSSR_RW);
strongarm_ssp_int_update(s);
break;
case SSDR:
if (SSCR0_UWIRE(s->sscr[0])) {
value &= 0xff;
} else
/* Note how 32bits overflow does no harm here */
value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
/* Data goes from here to the Tx FIFO and is shifted out from
* there directly to the slave, no need to buffer it.
*/
if (s->sscr[0] & SSCR0_SSE) {
uint32_t readval;
if (s->sscr[1] & SSCR1_LBM) {
readval = value;
} else {
readval = ssi_transfer(s->bus, value);
}
if (s->rx_level < 0x08) {
s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval;
} else {
s->sssr |= SSSR_ROR;
}
}
strongarm_ssp_fifo_update(s);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad ssp register write 0x"HWADDR_FMT_plx"\n",
__func__, addr);
break;
}
}
static const MemoryRegionOps strongarm_ssp_ops = {
.read = strongarm_ssp_read,
.write = strongarm_ssp_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int strongarm_ssp_post_load(void *opaque, int version_id)
{
StrongARMSSPState *s = opaque;
strongarm_ssp_fifo_update(s);
return 0;
}
static void strongarm_ssp_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
DeviceState *dev = DEVICE(sbd);
StrongARMSSPState *s = STRONGARM_SSP(dev);
sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, obj, &strongarm_ssp_ops, s,
"ssp", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
s->bus = ssi_create_bus(dev, "ssi");
}
static void strongarm_ssp_reset(DeviceState *dev)
{
StrongARMSSPState *s = STRONGARM_SSP(dev);
s->sssr = 0x03; /* 3 bit data, SPI, disabled */
s->rx_start = 0;
s->rx_level = 0;
}
static const VMStateDescription vmstate_strongarm_ssp_regs = {
.name = "strongarm-ssp",
.version_id = 0,
.minimum_version_id = 0,
.post_load = strongarm_ssp_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2),
VMSTATE_UINT16(sssr, StrongARMSSPState),
VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8),
VMSTATE_UINT8(rx_start, StrongARMSSPState),
VMSTATE_UINT8(rx_level, StrongARMSSPState),
VMSTATE_END_OF_LIST(),
},
};
static void strongarm_ssp_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "StrongARM SSP controller";
dc->reset = strongarm_ssp_reset;
dc->vmsd = &vmstate_strongarm_ssp_regs;
}
static const TypeInfo strongarm_ssp_info = {
.name = TYPE_STRONGARM_SSP,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StrongARMSSPState),
.instance_init = strongarm_ssp_init,
.class_init = strongarm_ssp_class_init,
};
/* Main CPU functions */
StrongARMState *sa1110_init(const char *cpu_type)
{
StrongARMState *s;
int i;
s = g_new0(StrongARMState, 1);
if (strncmp(cpu_type, "sa1110", 6)) {
error_report("Machine requires a SA1110 processor.");
exit(1);
}
s->cpu = ARM_CPU(cpu_create(cpu_type));
s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000,
qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ),
qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_FIQ),
NULL);
sysbus_create_varargs("pxa25x-timer", 0x90000000,
qdev_get_gpio_in(s->pic, SA_PIC_OSTC0),
qdev_get_gpio_in(s->pic, SA_PIC_OSTC1),
qdev_get_gpio_in(s->pic, SA_PIC_OSTC2),
qdev_get_gpio_in(s->pic, SA_PIC_OSTC3),
NULL);
sysbus_create_simple(TYPE_STRONGARM_RTC, 0x90010000,
qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM));
s->gpio = strongarm_gpio_init(0x90040000, s->pic);
s->ppc = sysbus_create_varargs(TYPE_STRONGARM_PPC, 0x90060000, NULL);
for (i = 0; sa_serial[i].io_base; i++) {
DeviceState *dev = qdev_new(TYPE_STRONGARM_UART);
qdev_prop_set_chr(dev, "chardev", serial_hd(i));
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0,
sa_serial[i].io_base);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
qdev_get_gpio_in(s->pic, sa_serial[i].irq));
}
s->ssp = sysbus_create_varargs(TYPE_STRONGARM_SSP, 0x80070000,
qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL);
s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi");
return s;
}
static void strongarm_register_types(void)
{
type_register_static(&strongarm_pic_info);
type_register_static(&strongarm_rtc_sysbus_info);
type_register_static(&strongarm_gpio_info);
type_register_static(&strongarm_ppc_info);
type_register_static(&strongarm_uart_info);
type_register_static(&strongarm_ssp_info);
}
type_init(strongarm_register_types)