qemu/tests/tcg/hexagon/fpstuff.c
Taylor Simpson d76dd816bf Hexagon (target/hexagon) properly handle NaN in dfmin/dfmax/sfmin/sfmax
The float??_minnum implementation differs from Hexagon for SNaN,
it returns NaN, but Hexagon returns the other input.  So, we use
float??_minimum_number.

Test cases added to tests/tcg/hexagon/fpstuff.c

Signed-off-by: Taylor Simpson <tsimpson@quicinc.com>
Message-Id: <20220308190410.22355-1-tsimpson@quicinc.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2022-03-12 09:14:22 -08:00

696 lines
19 KiB
C

/*
* Copyright(c) 2020-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This test checks various FP operations performed on Hexagon
*/
#include <stdio.h>
const int FPINVF_BIT = 1; /* Invalid */
const int FPINVF = 1 << FPINVF_BIT;
const int FPDBZF_BIT = 2; /* Divide by zero */
const int FPDBZF = 1 << FPDBZF_BIT;
const int FPOVFF_BIT = 3; /* Overflow */
const int FPOVFF = 1 << FPOVFF_BIT;
const int FPUNFF_BIT = 4; /* Underflow */
const int FPUNFF = 1 << FPUNFF_BIT;
const int FPINPF_BIT = 5; /* Inexact */
const int FPINPF = 1 << FPINPF_BIT;
const int SF_ZERO = 0x00000000;
const int SF_NaN = 0x7fc00000;
const int SF_NaN_special = 0x7f800001;
const int SF_ANY = 0x3f800000;
const int SF_HEX_NAN = 0xffffffff;
const int SF_small_neg = 0xab98fba8;
const int SF_denorm = 0x00000001;
const int SF_random = 0x346001d6;
const long long DF_QNaN = 0x7ff8000000000000ULL;
const long long DF_SNaN = 0x7ff7000000000000ULL;
const long long DF_ANY = 0x3f80000000000000ULL;
const long long DF_HEX_NAN = 0xffffffffffffffffULL;
const long long DF_small_neg = 0xbd731f7500000000ULL;
int err;
#define CLEAR_FPSTATUS \
"r2 = usr\n\t" \
"r2 = clrbit(r2, #1)\n\t" \
"r2 = clrbit(r2, #2)\n\t" \
"r2 = clrbit(r2, #3)\n\t" \
"r2 = clrbit(r2, #4)\n\t" \
"r2 = clrbit(r2, #5)\n\t" \
"usr = r2\n\t"
static void check_fpstatus_bit(int usr, int expect, int flag, const char *n)
{
int bit = 1 << flag;
if ((usr & bit) != (expect & bit)) {
printf("ERROR %s: usr = %d, expect = %d\n", n,
(usr >> flag) & 1, (expect >> flag) & 1);
err++;
}
}
static void check_fpstatus(int usr, int expect)
{
check_fpstatus_bit(usr, expect, FPINVF_BIT, "Invalid");
check_fpstatus_bit(usr, expect, FPDBZF_BIT, "Div by zero");
check_fpstatus_bit(usr, expect, FPOVFF_BIT, "Overflow");
check_fpstatus_bit(usr, expect, FPUNFF_BIT, "Underflow");
check_fpstatus_bit(usr, expect, FPINPF_BIT, "Inexact");
}
static void check32(int val, int expect)
{
if (val != expect) {
printf("ERROR: 0x%x != 0x%x\n", val, expect);
err++;
}
}
static void check64(unsigned long long val, unsigned long long expect)
{
if (val != expect) {
printf("ERROR: 0x%llx != 0x%llx\n", val, expect);
err++;
}
}
static void check_compare_exception(void)
{
int cmp;
int usr;
/* Check that FP compares are quiet (don't raise any execptions) */
asm (CLEAR_FPSTATUS
"p0 = sfcmp.eq(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = sfcmp.gt(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = sfcmp.ge(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.eq(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.gt(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.ge(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
}
static void check_sfminmax(void)
{
int minmax;
int usr;
/*
* Execute sfmin/sfmax instructions with one operand as NaN
* Check that
* Result is the other operand
* Invalid bit in USR is not set
*/
asm (CLEAR_FPSTATUS
"%0 = sfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check64(minmax, SF_ANY);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = sfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check64(minmax, SF_ANY);
check_fpstatus(usr, 0);
/*
* Execute sfmin/sfmax instructions with both operands NaN
* Check that
* Result is SF_HEX_NAN
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = sfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_NaN)
: "r2", "usr");
check64(minmax, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = sfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_NaN), "r"(SF_NaN)
: "r2", "usr");
check64(minmax, SF_HEX_NAN);
check_fpstatus(usr, 0);
}
static void check_dfminmax(void)
{
unsigned long long minmax;
int usr;
/*
* Execute dfmin/dfmax instructions with one operand as SNaN
* Check that
* Result is the other operand
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_ANY)
: "r2", "usr");
check64(minmax, DF_ANY);
check_fpstatus(usr, FPINVF);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_ANY)
: "r2", "usr");
check64(minmax, DF_ANY);
check_fpstatus(usr, FPINVF);
/*
* Execute dfmin/dfmax instructions with one operand as QNaN
* Check that
* Result is the other operand
* No bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY)
: "r2", "usr");
check64(minmax, DF_ANY);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY)
: "r2", "usr");
check64(minmax, DF_ANY);
check_fpstatus(usr, 0);
/*
* Execute dfmin/dfmax instructions with both operands SNaN
* Check that
* Result is DF_HEX_NAN
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_SNaN)
: "r2", "usr");
check64(minmax, DF_HEX_NAN);
check_fpstatus(usr, FPINVF);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_SNaN)
: "r2", "usr");
check64(minmax, DF_HEX_NAN);
check_fpstatus(usr, FPINVF);
/*
* Execute dfmin/dfmax instructions with both operands QNaN
* Check that
* Result is DF_HEX_NAN
* No bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_QNaN)
: "r2", "usr");
check64(minmax, DF_HEX_NAN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_QNaN)
: "r2", "usr");
check64(minmax, DF_HEX_NAN);
check_fpstatus(usr, 0);
}
static void check_sfrecipa(void)
{
int result;
int usr;
int pred;
/*
* Check that sfrecipa doesn't set status bits when
* a NaN with bit 22 non-zero is passed
*/
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "p0", "usr");
check32(result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_ANY), "r"(SF_NaN)
: "r2", "p0", "usr");
check32(result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %2)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_NaN)
: "r2", "p0", "usr");
check32(result, SF_HEX_NAN);
check_fpstatus(usr, 0);
/*
* Check that sfrecipa doesn't set status bits when
* a NaN with bit 22 zero is passed
*/
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_NaN_special), "r"(SF_ANY)
: "r2", "p0", "usr");
check32(result, SF_HEX_NAN);
check_fpstatus(usr, FPINVF);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_ANY), "r"(SF_NaN_special)
: "r2", "p0", "usr");
check32(result, SF_HEX_NAN);
check_fpstatus(usr, FPINVF);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %2)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_NaN_special)
: "r2", "p0", "usr");
check32(result, SF_HEX_NAN);
check_fpstatus(usr, FPINVF);
/*
* Check that sfrecipa properly sets divid-by-zero
*/
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(0x885dc960), "r"(0x80000000)
: "r2", "p0", "usr");
check32(result, 0x3f800000);
check_fpstatus(usr, FPDBZF);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(0x7f800000), "r"(SF_ZERO)
: "r2", "p0", "usr");
check32(result, 0x3f800000);
check_fpstatus(usr, 0);
/*
* Check that sfrecipa properly handles denorm
*/
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = p0\n\t"
: "=r"(result), "=r"(pred) : "r"(SF_denorm), "r"(SF_random)
: "p0", "usr");
check32(result, 0x6a920001);
check32(pred, 0x80);
}
static void check_canonical_NaN(void)
{
int sf_result;
unsigned long long df_result;
int usr;
/* Check that each FP instruction properly returns SF_HEX_NAN/DF_HEX_NAN */
asm(CLEAR_FPSTATUS
"%0 = sfadd(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = sfsub(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"%0 += sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"p0 = !cmp.eq(r0, r0)\n\t"
"%0 += sfmpy(%2, %3, p0):scale\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr", "p0");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"%0 -= sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"%0 += sfmpy(%2, %3):lib\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
sf_result = SF_ZERO;
asm(CLEAR_FPSTATUS
"%0 -= sfmpy(%2, %3):lib\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_NaN), "r"(SF_ANY)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = convert_df2sf(%2)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check32(sf_result, SF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = dfadd(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY)
: "r2", "usr");
check64(df_result, DF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = dfsub(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(DF_QNaN), "r"(DF_ANY)
: "r2", "usr");
check64(df_result, DF_HEX_NAN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2df(%2)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(SF_NaN)
: "r2", "usr");
check64(df_result, DF_HEX_NAN);
check_fpstatus(usr, 0);
}
static void check_invsqrta(void)
{
int result;
int predval;
asm volatile("%0,p0 = sfinvsqrta(%2)\n\t"
"%1 = p0\n\t"
: "+r"(result), "=r"(predval)
: "r"(0x7f800000)
: "p0");
check32(result, 0xff800000);
check32(predval, 0x0);
}
static void check_sffixupn(void)
{
int result;
/* Check that sffixupn properly deals with denorm */
asm volatile("%0 = sffixupn(%1, %2)\n\t"
: "=r"(result)
: "r"(SF_random), "r"(SF_denorm));
check32(result, 0x246001d6);
}
static void check_sffixupd(void)
{
int result;
/* Check that sffixupd properly deals with denorm */
asm volatile("%0 = sffixupd(%1, %2)\n\t"
: "=r"(result)
: "r"(SF_denorm), "r"(SF_random));
check32(result, 0x146001d6);
}
static void check_float2int_convs()
{
int res32;
long long res64;
int usr;
/*
* Check that the various forms of float-to-unsigned
* check sign before rounding
*/
asm(CLEAR_FPSTATUS
"%0 = convert_sf2uw(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(SF_small_neg)
: "r2", "usr");
check32(res32, 0);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2uw(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(SF_small_neg)
: "r2", "usr");
check32(res32, 0);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2ud(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(SF_small_neg)
: "r2", "usr");
check64(res64, 0);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2ud(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(SF_small_neg)
: "r2", "usr");
check64(res64, 0);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2uw(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(DF_small_neg)
: "r2", "usr");
check32(res32, 0);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2uw(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(DF_small_neg)
: "r2", "usr");
check32(res32, 0);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2ud(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(DF_small_neg)
: "r2", "usr");
check64(res64, 0);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2ud(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(DF_small_neg)
: "r2", "usr");
check64(res64, 0);
check_fpstatus(usr, FPINVF);
/*
* Check that the various forms of float-to-signed return -1 for NaN
*/
asm(CLEAR_FPSTATUS
"%0 = convert_sf2w(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(SF_NaN)
: "r2", "usr");
check32(res32, -1);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2w(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(SF_NaN)
: "r2", "usr");
check32(res32, -1);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2d(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(SF_NaN)
: "r2", "usr");
check64(res64, -1);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2d(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(SF_NaN)
: "r2", "usr");
check64(res64, -1);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2w(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check32(res32, -1);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2w(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check32(res32, -1);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2d(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check64(res64, -1);
check_fpstatus(usr, FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2d(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check64(res64, -1);
check_fpstatus(usr, FPINVF);
}
int main()
{
check_compare_exception();
check_sfminmax();
check_dfminmax();
check_sfrecipa();
check_canonical_NaN();
check_invsqrta();
check_sffixupn();
check_sffixupd();
check_float2int_convs();
puts(err ? "FAIL" : "PASS");
return err ? 1 : 0;
}