qemu/target-ppc/op_helper.c
aurel32 26d6736245 target-ppc: convert logical instructions to TCG
Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5506 c046a42c-6fe2-441c-8c8c-71466251a162
2008-10-21 11:31:27 +00:00

3030 lines
76 KiB
C

/*
* PowerPC emulation helpers for qemu.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
#include "host-utils.h"
#include "helper_regs.h"
#include "op_helper.h"
#define MEMSUFFIX _raw
#include "op_helper.h"
#include "op_helper_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_helper.h"
#include "op_helper_mem.h"
#define MEMSUFFIX _kernel
#include "op_helper.h"
#include "op_helper_mem.h"
#define MEMSUFFIX _hypv
#include "op_helper.h"
#include "op_helper_mem.h"
#endif
//#define DEBUG_OP
//#define DEBUG_EXCEPTIONS
//#define DEBUG_SOFTWARE_TLB
/*****************************************************************************/
/* Exceptions processing helpers */
void do_raise_exception_err (uint32_t exception, int error_code)
{
#if 0
printf("Raise exception %3x code : %d\n", exception, error_code);
#endif
env->exception_index = exception;
env->error_code = error_code;
cpu_loop_exit();
}
void do_raise_exception (uint32_t exception)
{
do_raise_exception_err(exception, 0);
}
/*****************************************************************************/
/* Registers load and stores */
uint32_t helper_load_cr (void)
{
return (env->crf[0] << 28) |
(env->crf[1] << 24) |
(env->crf[2] << 20) |
(env->crf[3] << 16) |
(env->crf[4] << 12) |
(env->crf[5] << 8) |
(env->crf[6] << 4) |
(env->crf[7] << 0);
}
void helper_store_cr (target_ulong val, uint32_t mask)
{
int i, sh;
for (i = 0, sh = 7; i < 8; i++, sh--) {
if (mask & (1 << sh))
env->crf[i] = (val >> (sh * 4)) & 0xFUL;
}
}
#if defined(TARGET_PPC64)
void do_store_pri (int prio)
{
env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
}
#endif
target_ulong ppc_load_dump_spr (int sprn)
{
if (loglevel != 0) {
fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
sprn, sprn, env->spr[sprn]);
}
return env->spr[sprn];
}
void ppc_store_dump_spr (int sprn, target_ulong val)
{
if (loglevel != 0) {
fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
sprn, sprn, env->spr[sprn], val);
}
env->spr[sprn] = val;
}
/*****************************************************************************/
/* Fixed point operations helpers */
void do_adde (void)
{
T2 = T0;
T0 += T1 + xer_ca;
if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
(xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
env->xer &= ~(1 << XER_CA);
} else {
env->xer |= (1 << XER_CA);
}
}
#if defined(TARGET_PPC64)
void do_adde_64 (void)
{
T2 = T0;
T0 += T1 + xer_ca;
if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
(xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
env->xer &= ~(1 << XER_CA);
} else {
env->xer |= (1 << XER_CA);
}
}
#endif
void do_addmeo (void)
{
int ov;
T1 = T0;
T0 += xer_ca + (-1);
ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
if (ov) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
if (likely((uint32_t)T1 != 0))
env->xer |= (1 << XER_CA);
}
#if defined(TARGET_PPC64)
void do_addmeo_64 (void)
{
int ov;
T1 = T0;
T0 += xer_ca + (-1);
ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
if (ov) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
if (likely((uint64_t)T1 != 0))
env->xer |= (1 << XER_CA);
}
#endif
void do_divwo (void)
{
if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
(int32_t)T1 == 0))) {
env->xer &= ~(1 << XER_OV);
T0 = (int32_t)T0 / (int32_t)T1;
} else {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
}
}
#if defined(TARGET_PPC64)
void do_divdo (void)
{
if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
(int64_t)T1 == 0))) {
env->xer &= ~(1 << XER_OV);
T0 = (int64_t)T0 / (int64_t)T1;
} else {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
}
}
#endif
void do_divwuo (void)
{
if (likely((uint32_t)T1 != 0)) {
env->xer &= ~(1 << XER_OV);
T0 = (uint32_t)T0 / (uint32_t)T1;
} else {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
T0 = 0;
}
}
#if defined(TARGET_PPC64)
void do_divduo (void)
{
if (likely((uint64_t)T1 != 0)) {
env->xer &= ~(1 << XER_OV);
T0 = (uint64_t)T0 / (uint64_t)T1;
} else {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
T0 = 0;
}
}
#endif
void do_mullwo (void)
{
int64_t res = (int64_t)(int32_t)T0 * (int64_t)(int32_t)T1;
if (likely((int32_t)res == res)) {
env->xer &= ~(1 << XER_OV);
} else {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
}
T0 = (int32_t)res;
}
#if defined(TARGET_PPC64)
void do_mulldo (void)
{
int64_t th;
uint64_t tl;
muls64(&tl, (uint64_t *)&th, T0, T1);
T0 = (int64_t)tl;
/* If th != 0 && th != -1, then we had an overflow */
if (likely((uint64_t)(th + 1) <= 1)) {
env->xer &= ~(1 << XER_OV);
} else {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
}
}
#endif
void do_nego (void)
{
if (likely((int32_t)T0 != INT32_MIN)) {
env->xer &= ~(1 << XER_OV);
T0 = -(int32_t)T0;
} else {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
}
}
#if defined(TARGET_PPC64)
void do_nego_64 (void)
{
if (likely((int64_t)T0 != INT64_MIN)) {
env->xer &= ~(1 << XER_OV);
T0 = -(int64_t)T0;
} else {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
}
}
#endif
void do_subfe (void)
{
T0 = T1 + ~T0 + xer_ca;
if (likely((uint32_t)T0 >= (uint32_t)T1 &&
(xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
env->xer &= ~(1 << XER_CA);
} else {
env->xer |= (1 << XER_CA);
}
}
#if defined(TARGET_PPC64)
void do_subfe_64 (void)
{
T0 = T1 + ~T0 + xer_ca;
if (likely((uint64_t)T0 >= (uint64_t)T1 &&
(xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
env->xer &= ~(1 << XER_CA);
} else {
env->xer |= (1 << XER_CA);
}
}
#endif
void do_subfmeo (void)
{
int ov;
T1 = T0;
T0 = ~T0 + xer_ca - 1;
ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
if (ov) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
if (likely((uint32_t)T1 != UINT32_MAX))
env->xer |= (1 << XER_CA);
}
#if defined(TARGET_PPC64)
void do_subfmeo_64 (void)
{
int ov;
T1 = T0;
T0 = ~T0 + xer_ca - 1;
ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
if (ov) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
if (likely((uint64_t)T1 != UINT64_MAX))
env->xer |= (1 << XER_CA);
}
#endif
void do_subfzeo (void)
{
int ov;
T1 = T0;
T0 = ~T0 + xer_ca;
ov = (((uint32_t)~T1 ^ UINT32_MAX) &
((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
if (ov) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
env->xer &= ~(1 << XER_CA);
} else {
env->xer |= (1 << XER_CA);
}
}
#if defined(TARGET_PPC64)
void do_subfzeo_64 (void)
{
int ov;
T1 = T0;
T0 = ~T0 + xer_ca;
ov = (((uint64_t)~T1 ^ UINT64_MAX) &
((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
if (ov) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
env->xer &= ~(1 << XER_CA);
} else {
env->xer |= (1 << XER_CA);
}
}
#endif
target_ulong helper_cntlzw (target_ulong t)
{
return clz32(t);
}
#if defined(TARGET_PPC64)
target_ulong helper_cntlzd (target_ulong t)
{
return clz64(t);
}
#endif
/* shift right arithmetic helper */
target_ulong helper_sraw (target_ulong value, target_ulong shift)
{
int32_t ret;
if (likely(!(shift & 0x20))) {
if (likely((uint32_t)shift != 0)) {
shift &= 0x1f;
ret = (int32_t)value >> shift;
if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
env->xer &= ~(1 << XER_CA);
} else {
env->xer |= (1 << XER_CA);
}
} else {
ret = (int32_t)value;
env->xer &= ~(1 << XER_CA);
}
} else {
ret = (int32_t)value >> 31;
if (ret) {
env->xer |= (1 << XER_CA);
} else {
env->xer &= ~(1 << XER_CA);
}
}
return (target_long)ret;
}
#if defined(TARGET_PPC64)
target_ulong helper_srad (target_ulong value, target_ulong shift)
{
int64_t ret;
if (likely(!(shift & 0x40))) {
if (likely((uint64_t)shift != 0)) {
shift &= 0x3f;
ret = (int64_t)value >> shift;
if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
env->xer &= ~(1 << XER_CA);
} else {
env->xer |= (1 << XER_CA);
}
} else {
ret = (int64_t)value;
env->xer &= ~(1 << XER_CA);
}
} else {
ret = (int64_t)value >> 63;
if (ret) {
env->xer |= (1 << XER_CA);
} else {
env->xer &= ~(1 << XER_CA);
}
}
return ret;
}
#endif
target_ulong helper_popcntb (target_ulong val)
{
uint32_t ret;
int i;
ret = 0;
for (i = 0; i < 32; i += 8)
ret |= ctpop8((val >> i) & 0xFF) << i;
return ret;
}
#if defined(TARGET_PPC64)
target_ulong helper_popcntb_64 (target_ulong val)
{
uint64_t ret;
int i;
ret = 0;
for (i = 0; i < 64; i += 8)
ret |= ctpop8((val >> i) & 0xFF) << i;
return ret;
}
#endif
/*****************************************************************************/
/* Floating point operations helpers */
static always_inline int fpisneg (float64 d)
{
CPU_DoubleU u;
u.d = d;
return u.ll >> 63 != 0;
}
static always_inline int isden (float64 d)
{
CPU_DoubleU u;
u.d = d;
return ((u.ll >> 52) & 0x7FF) == 0;
}
static always_inline int iszero (float64 d)
{
CPU_DoubleU u;
u.d = d;
return (u.ll & ~0x8000000000000000ULL) == 0;
}
static always_inline int isinfinity (float64 d)
{
CPU_DoubleU u;
u.d = d;
return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
(u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
}
#ifdef CONFIG_SOFTFLOAT
static always_inline int isfinite (float64 d)
{
CPU_DoubleU u;
u.d = d;
return (((u.ll >> 52) & 0x7FF) != 0x7FF);
}
static always_inline int isnormal (float64 d)
{
CPU_DoubleU u;
u.d = d;
uint32_t exp = (u.ll >> 52) & 0x7FF;
return ((0 < exp) && (exp < 0x7FF));
}
#endif
void do_compute_fprf (int set_fprf)
{
int isneg;
isneg = fpisneg(FT0);
if (unlikely(float64_is_nan(FT0))) {
if (float64_is_signaling_nan(FT0)) {
/* Signaling NaN: flags are undefined */
T0 = 0x00;
} else {
/* Quiet NaN */
T0 = 0x11;
}
} else if (unlikely(isinfinity(FT0))) {
/* +/- infinity */
if (isneg)
T0 = 0x09;
else
T0 = 0x05;
} else {
if (iszero(FT0)) {
/* +/- zero */
if (isneg)
T0 = 0x12;
else
T0 = 0x02;
} else {
if (isden(FT0)) {
/* Denormalized numbers */
T0 = 0x10;
} else {
/* Normalized numbers */
T0 = 0x00;
}
if (isneg) {
T0 |= 0x08;
} else {
T0 |= 0x04;
}
}
}
if (set_fprf) {
/* We update FPSCR_FPRF */
env->fpscr &= ~(0x1F << FPSCR_FPRF);
env->fpscr |= T0 << FPSCR_FPRF;
}
/* We just need fpcc to update Rc1 */
T0 &= 0xF;
}
/* Floating-point invalid operations exception */
static always_inline void fload_invalid_op_excp (int op)
{
int ve;
ve = fpscr_ve;
if (op & POWERPC_EXCP_FP_VXSNAN) {
/* Operation on signaling NaN */
env->fpscr |= 1 << FPSCR_VXSNAN;
}
if (op & POWERPC_EXCP_FP_VXSOFT) {
/* Software-defined condition */
env->fpscr |= 1 << FPSCR_VXSOFT;
}
switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
case POWERPC_EXCP_FP_VXISI:
/* Magnitude subtraction of infinities */
env->fpscr |= 1 << FPSCR_VXISI;
goto update_arith;
case POWERPC_EXCP_FP_VXIDI:
/* Division of infinity by infinity */
env->fpscr |= 1 << FPSCR_VXIDI;
goto update_arith;
case POWERPC_EXCP_FP_VXZDZ:
/* Division of zero by zero */
env->fpscr |= 1 << FPSCR_VXZDZ;
goto update_arith;
case POWERPC_EXCP_FP_VXIMZ:
/* Multiplication of zero by infinity */
env->fpscr |= 1 << FPSCR_VXIMZ;
goto update_arith;
case POWERPC_EXCP_FP_VXVC:
/* Ordered comparison of NaN */
env->fpscr |= 1 << FPSCR_VXVC;
env->fpscr &= ~(0xF << FPSCR_FPCC);
env->fpscr |= 0x11 << FPSCR_FPCC;
/* We must update the target FPR before raising the exception */
if (ve != 0) {
env->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* Exception is differed */
ve = 0;
}
break;
case POWERPC_EXCP_FP_VXSQRT:
/* Square root of a negative number */
env->fpscr |= 1 << FPSCR_VXSQRT;
update_arith:
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
if (ve == 0) {
/* Set the result to quiet NaN */
FT0 = UINT64_MAX;
env->fpscr &= ~(0xF << FPSCR_FPCC);
env->fpscr |= 0x11 << FPSCR_FPCC;
}
break;
case POWERPC_EXCP_FP_VXCVI:
/* Invalid conversion */
env->fpscr |= 1 << FPSCR_VXCVI;
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
if (ve == 0) {
/* Set the result to quiet NaN */
FT0 = UINT64_MAX;
env->fpscr &= ~(0xF << FPSCR_FPCC);
env->fpscr |= 0x11 << FPSCR_FPCC;
}
break;
}
/* Update the floating-point invalid operation summary */
env->fpscr |= 1 << FPSCR_VX;
/* Update the floating-point exception summary */
env->fpscr |= 1 << FPSCR_FX;
if (ve != 0) {
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
if (msr_fe0 != 0 || msr_fe1 != 0)
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
}
}
static always_inline void float_zero_divide_excp (void)
{
CPU_DoubleU u0, u1;
env->fpscr |= 1 << FPSCR_ZX;
env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
/* Update the floating-point exception summary */
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_ze != 0) {
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
if (msr_fe0 != 0 || msr_fe1 != 0) {
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
}
} else {
/* Set the result to infinity */
u0.d = FT0;
u1.d = FT1;
u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL);
u0.ll |= 0x7FFULL << 52;
FT0 = u0.d;
}
}
static always_inline void float_overflow_excp (void)
{
env->fpscr |= 1 << FPSCR_OX;
/* Update the floating-point exception summary */
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_oe != 0) {
/* XXX: should adjust the result */
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* We must update the target FPR before raising the exception */
env->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
} else {
env->fpscr |= 1 << FPSCR_XX;
env->fpscr |= 1 << FPSCR_FI;
}
}
static always_inline void float_underflow_excp (void)
{
env->fpscr |= 1 << FPSCR_UX;
/* Update the floating-point exception summary */
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_ue != 0) {
/* XXX: should adjust the result */
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* We must update the target FPR before raising the exception */
env->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
}
}
static always_inline void float_inexact_excp (void)
{
env->fpscr |= 1 << FPSCR_XX;
/* Update the floating-point exception summary */
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_xe != 0) {
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* We must update the target FPR before raising the exception */
env->exception_index = POWERPC_EXCP_PROGRAM;
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
}
}
static always_inline void fpscr_set_rounding_mode (void)
{
int rnd_type;
/* Set rounding mode */
switch (fpscr_rn) {
case 0:
/* Best approximation (round to nearest) */
rnd_type = float_round_nearest_even;
break;
case 1:
/* Smaller magnitude (round toward zero) */
rnd_type = float_round_to_zero;
break;
case 2:
/* Round toward +infinite */
rnd_type = float_round_up;
break;
default:
case 3:
/* Round toward -infinite */
rnd_type = float_round_down;
break;
}
set_float_rounding_mode(rnd_type, &env->fp_status);
}
void do_fpscr_setbit (int bit)
{
int prev;
prev = (env->fpscr >> bit) & 1;
env->fpscr |= 1 << bit;
if (prev == 0) {
switch (bit) {
case FPSCR_VX:
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_ve)
goto raise_ve;
case FPSCR_OX:
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_oe)
goto raise_oe;
break;
case FPSCR_UX:
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_ue)
goto raise_ue;
break;
case FPSCR_ZX:
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_ze)
goto raise_ze;
break;
case FPSCR_XX:
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_xe)
goto raise_xe;
break;
case FPSCR_VXSNAN:
case FPSCR_VXISI:
case FPSCR_VXIDI:
case FPSCR_VXZDZ:
case FPSCR_VXIMZ:
case FPSCR_VXVC:
case FPSCR_VXSOFT:
case FPSCR_VXSQRT:
case FPSCR_VXCVI:
env->fpscr |= 1 << FPSCR_VX;
env->fpscr |= 1 << FPSCR_FX;
if (fpscr_ve != 0)
goto raise_ve;
break;
case FPSCR_VE:
if (fpscr_vx != 0) {
raise_ve:
env->error_code = POWERPC_EXCP_FP;
if (fpscr_vxsnan)
env->error_code |= POWERPC_EXCP_FP_VXSNAN;
if (fpscr_vxisi)
env->error_code |= POWERPC_EXCP_FP_VXISI;
if (fpscr_vxidi)
env->error_code |= POWERPC_EXCP_FP_VXIDI;
if (fpscr_vxzdz)
env->error_code |= POWERPC_EXCP_FP_VXZDZ;
if (fpscr_vximz)
env->error_code |= POWERPC_EXCP_FP_VXIMZ;
if (fpscr_vxvc)
env->error_code |= POWERPC_EXCP_FP_VXVC;
if (fpscr_vxsoft)
env->error_code |= POWERPC_EXCP_FP_VXSOFT;
if (fpscr_vxsqrt)
env->error_code |= POWERPC_EXCP_FP_VXSQRT;
if (fpscr_vxcvi)
env->error_code |= POWERPC_EXCP_FP_VXCVI;
goto raise_excp;
}
break;
case FPSCR_OE:
if (fpscr_ox != 0) {
raise_oe:
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
goto raise_excp;
}
break;
case FPSCR_UE:
if (fpscr_ux != 0) {
raise_ue:
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
goto raise_excp;
}
break;
case FPSCR_ZE:
if (fpscr_zx != 0) {
raise_ze:
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
goto raise_excp;
}
break;
case FPSCR_XE:
if (fpscr_xx != 0) {
raise_xe:
env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
goto raise_excp;
}
break;
case FPSCR_RN1:
case FPSCR_RN:
fpscr_set_rounding_mode();
break;
default:
break;
raise_excp:
/* Update the floating-point enabled exception summary */
env->fpscr |= 1 << FPSCR_FEX;
/* We have to update Rc1 before raising the exception */
env->exception_index = POWERPC_EXCP_PROGRAM;
break;
}
}
}
#if defined(WORDS_BIGENDIAN)
#define WORD0 0
#define WORD1 1
#else
#define WORD0 1
#define WORD1 0
#endif
void do_store_fpscr (uint32_t mask)
{
/*
* We use only the 32 LSB of the incoming fpr
*/
CPU_DoubleU u;
uint32_t prev, new;
int i;
u.d = FT0;
prev = env->fpscr;
new = u.l.lower;
new &= ~0x90000000;
new |= prev & 0x90000000;
for (i = 0; i < 7; i++) {
if (mask & (1 << i)) {
env->fpscr &= ~(0xF << (4 * i));
env->fpscr |= new & (0xF << (4 * i));
}
}
/* Update VX and FEX */
if (fpscr_ix != 0)
env->fpscr |= 1 << FPSCR_VX;
else
env->fpscr &= ~(1 << FPSCR_VX);
if ((fpscr_ex & fpscr_eex) != 0) {
env->fpscr |= 1 << FPSCR_FEX;
env->exception_index = POWERPC_EXCP_PROGRAM;
/* XXX: we should compute it properly */
env->error_code = POWERPC_EXCP_FP;
}
else
env->fpscr &= ~(1 << FPSCR_FEX);
fpscr_set_rounding_mode();
}
#undef WORD0
#undef WORD1
#ifdef CONFIG_SOFTFLOAT
void do_float_check_status (void)
{
if (env->exception_index == POWERPC_EXCP_PROGRAM &&
(env->error_code & POWERPC_EXCP_FP)) {
/* Differred floating-point exception after target FPR update */
if (msr_fe0 != 0 || msr_fe1 != 0)
do_raise_exception_err(env->exception_index, env->error_code);
} else if (env->fp_status.float_exception_flags & float_flag_overflow) {
float_overflow_excp();
} else if (env->fp_status.float_exception_flags & float_flag_underflow) {
float_underflow_excp();
} else if (env->fp_status.float_exception_flags & float_flag_inexact) {
float_inexact_excp();
}
}
#endif
#if USE_PRECISE_EMULATION
void do_fadd (void)
{
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1))) {
/* sNaN addition */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else if (likely(isfinite(FT0) || isfinite(FT1) ||
fpisneg(FT0) == fpisneg(FT1))) {
FT0 = float64_add(FT0, FT1, &env->fp_status);
} else {
/* Magnitude subtraction of infinities */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
}
}
void do_fsub (void)
{
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1))) {
/* sNaN subtraction */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else if (likely(isfinite(FT0) || isfinite(FT1) ||
fpisneg(FT0) != fpisneg(FT1))) {
FT0 = float64_sub(FT0, FT1, &env->fp_status);
} else {
/* Magnitude subtraction of infinities */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
}
}
void do_fmul (void)
{
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1))) {
/* sNaN multiplication */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
(iszero(FT0) && isinfinity(FT1)))) {
/* Multiplication of zero by infinity */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
} else {
FT0 = float64_mul(FT0, FT1, &env->fp_status);
}
}
void do_fdiv (void)
{
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1))) {
/* sNaN division */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
/* Division of infinity by infinity */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
} else if (unlikely(iszero(FT1))) {
if (iszero(FT0)) {
/* Division of zero by zero */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
} else {
/* Division by zero */
float_zero_divide_excp();
}
} else {
FT0 = float64_div(FT0, FT1, &env->fp_status);
}
}
#endif /* USE_PRECISE_EMULATION */
void do_fctiw (void)
{
CPU_DoubleU p;
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN conversion */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
/* qNan / infinity conversion */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
} else {
p.ll = float64_to_int32(FT0, &env->fp_status);
#if USE_PRECISE_EMULATION
/* XXX: higher bits are not supposed to be significant.
* to make tests easier, return the same as a real PowerPC 750
*/
p.ll |= 0xFFF80000ULL << 32;
#endif
FT0 = p.d;
}
}
void do_fctiwz (void)
{
CPU_DoubleU p;
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN conversion */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
/* qNan / infinity conversion */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
} else {
p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status);
#if USE_PRECISE_EMULATION
/* XXX: higher bits are not supposed to be significant.
* to make tests easier, return the same as a real PowerPC 750
*/
p.ll |= 0xFFF80000ULL << 32;
#endif
FT0 = p.d;
}
}
#if defined(TARGET_PPC64)
void do_fcfid (void)
{
CPU_DoubleU p;
p.d = FT0;
FT0 = int64_to_float64(p.ll, &env->fp_status);
}
void do_fctid (void)
{
CPU_DoubleU p;
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN conversion */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
/* qNan / infinity conversion */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
} else {
p.ll = float64_to_int64(FT0, &env->fp_status);
FT0 = p.d;
}
}
void do_fctidz (void)
{
CPU_DoubleU p;
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN conversion */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
/* qNan / infinity conversion */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
} else {
p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status);
FT0 = p.d;
}
}
#endif
static always_inline void do_fri (int rounding_mode)
{
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN round */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
} else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
/* qNan / infinity round */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
} else {
set_float_rounding_mode(rounding_mode, &env->fp_status);
FT0 = float64_round_to_int(FT0, &env->fp_status);
/* Restore rounding mode from FPSCR */
fpscr_set_rounding_mode();
}
}
void do_frin (void)
{
do_fri(float_round_nearest_even);
}
void do_friz (void)
{
do_fri(float_round_to_zero);
}
void do_frip (void)
{
do_fri(float_round_up);
}
void do_frim (void)
{
do_fri(float_round_down);
}
#if USE_PRECISE_EMULATION
void do_fmadd (void)
{
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1) ||
float64_is_signaling_nan(FT2))) {
/* sNaN operation */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else {
#ifdef FLOAT128
/* This is the way the PowerPC specification defines it */
float128 ft0_128, ft1_128;
ft0_128 = float64_to_float128(FT0, &env->fp_status);
ft1_128 = float64_to_float128(FT1, &env->fp_status);
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
ft1_128 = float64_to_float128(FT2, &env->fp_status);
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
FT0 = float128_to_float64(ft0_128, &env->fp_status);
#else
/* This is OK on x86 hosts */
FT0 = (FT0 * FT1) + FT2;
#endif
}
}
void do_fmsub (void)
{
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1) ||
float64_is_signaling_nan(FT2))) {
/* sNaN operation */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else {
#ifdef FLOAT128
/* This is the way the PowerPC specification defines it */
float128 ft0_128, ft1_128;
ft0_128 = float64_to_float128(FT0, &env->fp_status);
ft1_128 = float64_to_float128(FT1, &env->fp_status);
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
ft1_128 = float64_to_float128(FT2, &env->fp_status);
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
FT0 = float128_to_float64(ft0_128, &env->fp_status);
#else
/* This is OK on x86 hosts */
FT0 = (FT0 * FT1) - FT2;
#endif
}
}
#endif /* USE_PRECISE_EMULATION */
void do_fnmadd (void)
{
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1) ||
float64_is_signaling_nan(FT2))) {
/* sNaN operation */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else {
#if USE_PRECISE_EMULATION
#ifdef FLOAT128
/* This is the way the PowerPC specification defines it */
float128 ft0_128, ft1_128;
ft0_128 = float64_to_float128(FT0, &env->fp_status);
ft1_128 = float64_to_float128(FT1, &env->fp_status);
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
ft1_128 = float64_to_float128(FT2, &env->fp_status);
ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
FT0 = float128_to_float64(ft0_128, &env->fp_status);
#else
/* This is OK on x86 hosts */
FT0 = (FT0 * FT1) + FT2;
#endif
#else
FT0 = float64_mul(FT0, FT1, &env->fp_status);
FT0 = float64_add(FT0, FT2, &env->fp_status);
#endif
if (likely(!isnan(FT0)))
FT0 = float64_chs(FT0);
}
}
void do_fnmsub (void)
{
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1) ||
float64_is_signaling_nan(FT2))) {
/* sNaN operation */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else {
#if USE_PRECISE_EMULATION
#ifdef FLOAT128
/* This is the way the PowerPC specification defines it */
float128 ft0_128, ft1_128;
ft0_128 = float64_to_float128(FT0, &env->fp_status);
ft1_128 = float64_to_float128(FT1, &env->fp_status);
ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
ft1_128 = float64_to_float128(FT2, &env->fp_status);
ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
FT0 = float128_to_float64(ft0_128, &env->fp_status);
#else
/* This is OK on x86 hosts */
FT0 = (FT0 * FT1) - FT2;
#endif
#else
FT0 = float64_mul(FT0, FT1, &env->fp_status);
FT0 = float64_sub(FT0, FT2, &env->fp_status);
#endif
if (likely(!isnan(FT0)))
FT0 = float64_chs(FT0);
}
}
#if USE_PRECISE_EMULATION
void do_frsp (void)
{
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN square root */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else {
FT0 = float64_to_float32(FT0, &env->fp_status);
}
}
#endif /* USE_PRECISE_EMULATION */
void do_fsqrt (void)
{
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN square root */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
/* Square root of a negative nonzero number */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
} else {
FT0 = float64_sqrt(FT0, &env->fp_status);
}
}
void do_fre (void)
{
CPU_DoubleU p;
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN reciprocal */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else if (unlikely(iszero(FT0))) {
/* Zero reciprocal */
float_zero_divide_excp();
} else if (likely(isnormal(FT0))) {
FT0 = float64_div(1.0, FT0, &env->fp_status);
} else {
p.d = FT0;
if (p.ll == 0x8000000000000000ULL) {
p.ll = 0xFFF0000000000000ULL;
} else if (p.ll == 0x0000000000000000ULL) {
p.ll = 0x7FF0000000000000ULL;
} else if (isnan(FT0)) {
p.ll = 0x7FF8000000000000ULL;
} else if (fpisneg(FT0)) {
p.ll = 0x8000000000000000ULL;
} else {
p.ll = 0x0000000000000000ULL;
}
FT0 = p.d;
}
}
void do_fres (void)
{
CPU_DoubleU p;
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN reciprocal */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else if (unlikely(iszero(FT0))) {
/* Zero reciprocal */
float_zero_divide_excp();
} else if (likely(isnormal(FT0))) {
#if USE_PRECISE_EMULATION
FT0 = float64_div(1.0, FT0, &env->fp_status);
FT0 = float64_to_float32(FT0, &env->fp_status);
#else
FT0 = float32_div(1.0, FT0, &env->fp_status);
#endif
} else {
p.d = FT0;
if (p.ll == 0x8000000000000000ULL) {
p.ll = 0xFFF0000000000000ULL;
} else if (p.ll == 0x0000000000000000ULL) {
p.ll = 0x7FF0000000000000ULL;
} else if (isnan(FT0)) {
p.ll = 0x7FF8000000000000ULL;
} else if (fpisneg(FT0)) {
p.ll = 0x8000000000000000ULL;
} else {
p.ll = 0x0000000000000000ULL;
}
FT0 = p.d;
}
}
void do_frsqrte (void)
{
CPU_DoubleU p;
if (unlikely(float64_is_signaling_nan(FT0))) {
/* sNaN reciprocal square root */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
/* Reciprocal square root of a negative nonzero number */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
} else if (likely(isnormal(FT0))) {
FT0 = float64_sqrt(FT0, &env->fp_status);
FT0 = float32_div(1.0, FT0, &env->fp_status);
} else {
p.d = FT0;
if (p.ll == 0x8000000000000000ULL) {
p.ll = 0xFFF0000000000000ULL;
} else if (p.ll == 0x0000000000000000ULL) {
p.ll = 0x7FF0000000000000ULL;
} else if (isnan(FT0)) {
p.ll |= 0x000FFFFFFFFFFFFFULL;
} else if (fpisneg(FT0)) {
p.ll = 0x7FF8000000000000ULL;
} else {
p.ll = 0x0000000000000000ULL;
}
FT0 = p.d;
}
}
void do_fsel (void)
{
if (!fpisneg(FT0) || iszero(FT0))
FT0 = FT1;
else
FT0 = FT2;
}
uint32_t helper_fcmpu (void)
{
uint32_t ret = 0;
if (unlikely(float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1))) {
/* sNaN comparison */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
} else {
if (float64_lt(FT0, FT1, &env->fp_status)) {
ret = 0x08UL;
} else if (!float64_le(FT0, FT1, &env->fp_status)) {
ret = 0x04UL;
} else {
ret = 0x02UL;
}
}
env->fpscr &= ~(0x0F << FPSCR_FPRF);
env->fpscr |= ret << FPSCR_FPRF;
return ret;
}
uint32_t helper_fcmpo (void)
{
uint32_t ret = 0;
if (unlikely(float64_is_nan(FT0) ||
float64_is_nan(FT1))) {
if (float64_is_signaling_nan(FT0) ||
float64_is_signaling_nan(FT1)) {
/* sNaN comparison */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
POWERPC_EXCP_FP_VXVC);
} else {
/* qNaN comparison */
fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
}
} else {
if (float64_lt(FT0, FT1, &env->fp_status)) {
ret = 0x08UL;
} else if (!float64_le(FT0, FT1, &env->fp_status)) {
ret = 0x04UL;
} else {
ret = 0x02UL;
}
}
env->fpscr &= ~(0x0F << FPSCR_FPRF);
env->fpscr |= ret << FPSCR_FPRF;
return ret;
}
#if !defined (CONFIG_USER_ONLY)
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
void do_store_msr (void)
{
T0 = hreg_store_msr(env, T0, 0);
if (T0 != 0) {
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
do_raise_exception(T0);
}
}
static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
target_ulong msrm, int keep_msrh)
{
#if defined(TARGET_PPC64)
if (msr & (1ULL << MSR_SF)) {
nip = (uint64_t)nip;
msr &= (uint64_t)msrm;
} else {
nip = (uint32_t)nip;
msr = (uint32_t)(msr & msrm);
if (keep_msrh)
msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
}
#else
nip = (uint32_t)nip;
msr &= (uint32_t)msrm;
#endif
/* XXX: beware: this is false if VLE is supported */
env->nip = nip & ~((target_ulong)0x00000003);
hreg_store_msr(env, msr, 1);
#if defined (DEBUG_OP)
cpu_dump_rfi(env->nip, env->msr);
#endif
/* No need to raise an exception here,
* as rfi is always the last insn of a TB
*/
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
}
void do_rfi (void)
{
__do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
~((target_ulong)0xFFFF0000), 1);
}
#if defined(TARGET_PPC64)
void do_rfid (void)
{
__do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
~((target_ulong)0xFFFF0000), 0);
}
void do_hrfid (void)
{
__do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
~((target_ulong)0xFFFF0000), 0);
}
#endif
#endif
void do_tw (int flags)
{
if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
}
}
#if defined(TARGET_PPC64)
void do_td (int flags)
{
if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
}
#endif
/*****************************************************************************/
/* PowerPC 601 specific instructions (POWER bridge) */
void do_POWER_abso (void)
{
if ((int32_t)T0 == INT32_MIN) {
T0 = INT32_MAX;
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else if ((int32_t)T0 < 0) {
T0 = -T0;
env->xer &= ~(1 << XER_OV);
} else {
env->xer &= ~(1 << XER_OV);
}
}
void do_POWER_clcs (void)
{
switch (T0) {
case 0x0CUL:
/* Instruction cache line size */
T0 = env->icache_line_size;
break;
case 0x0DUL:
/* Data cache line size */
T0 = env->dcache_line_size;
break;
case 0x0EUL:
/* Minimum cache line size */
T0 = env->icache_line_size < env->dcache_line_size ?
env->icache_line_size : env->dcache_line_size;
break;
case 0x0FUL:
/* Maximum cache line size */
T0 = env->icache_line_size > env->dcache_line_size ?
env->icache_line_size : env->dcache_line_size;
break;
default:
/* Undefined */
break;
}
}
void do_POWER_div (void)
{
uint64_t tmp;
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
(int32_t)T1 == 0) {
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
env->spr[SPR_MQ] = 0;
} else {
tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
env->spr[SPR_MQ] = tmp % T1;
T0 = tmp / (int32_t)T1;
}
}
void do_POWER_divo (void)
{
int64_t tmp;
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
(int32_t)T1 == 0) {
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
env->spr[SPR_MQ] = 0;
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
env->spr[SPR_MQ] = tmp % T1;
tmp /= (int32_t)T1;
if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
T0 = tmp;
}
}
void do_POWER_divs (void)
{
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
(int32_t)T1 == 0) {
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
env->spr[SPR_MQ] = 0;
} else {
env->spr[SPR_MQ] = T0 % T1;
T0 = (int32_t)T0 / (int32_t)T1;
}
}
void do_POWER_divso (void)
{
if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
(int32_t)T1 == 0) {
T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
env->spr[SPR_MQ] = 0;
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
T0 = (int32_t)T0 / (int32_t)T1;
env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
env->xer &= ~(1 << XER_OV);
}
}
void do_POWER_dozo (void)
{
if ((int32_t)T1 > (int32_t)T0) {
T2 = T0;
T0 = T1 - T0;
if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
} else {
T0 = 0;
env->xer &= ~(1 << XER_OV);
}
}
void do_POWER_maskg (void)
{
uint32_t ret;
if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
ret = UINT32_MAX;
} else {
ret = (UINT32_MAX >> ((uint32_t)T0)) ^
((UINT32_MAX >> ((uint32_t)T1)) >> 1);
if ((uint32_t)T0 > (uint32_t)T1)
ret = ~ret;
}
T0 = ret;
}
void do_POWER_mulo (void)
{
uint64_t tmp;
tmp = (uint64_t)T0 * (uint64_t)T1;
env->spr[SPR_MQ] = tmp >> 32;
T0 = tmp;
if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
env->xer |= (1 << XER_OV) | (1 << XER_SO);
} else {
env->xer &= ~(1 << XER_OV);
}
}
#if !defined (CONFIG_USER_ONLY)
void do_POWER_rac (void)
{
mmu_ctx_t ctx;
int nb_BATs;
/* We don't have to generate many instances of this instruction,
* as rac is supervisor only.
*/
/* XXX: FIX THIS: Pretend we have no BAT */
nb_BATs = env->nb_BATs;
env->nb_BATs = 0;
if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
T0 = ctx.raddr;
env->nb_BATs = nb_BATs;
}
void do_POWER_rfsvc (void)
{
__do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
}
void do_store_hid0_601 (void)
{
uint32_t hid0;
hid0 = env->spr[SPR_HID0];
if ((T0 ^ hid0) & 0x00000008) {
/* Change current endianness */
env->hflags &= ~(1 << MSR_LE);
env->hflags_nmsr &= ~(1 << MSR_LE);
env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
env->hflags |= env->hflags_nmsr;
if (loglevel != 0) {
fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
__func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
}
}
env->spr[SPR_HID0] = T0;
}
#endif
/*****************************************************************************/
/* 602 specific instructions */
/* mfrom is the most crazy instruction ever seen, imho ! */
/* Real implementation uses a ROM table. Do the same */
#define USE_MFROM_ROM_TABLE
void do_op_602_mfrom (void)
{
if (likely(T0 < 602)) {
#if defined(USE_MFROM_ROM_TABLE)
#include "mfrom_table.c"
T0 = mfrom_ROM_table[T0];
#else
double d;
/* Extremly decomposed:
* -T0 / 256
* T0 = 256 * log10(10 + 1.0) + 0.5
*/
d = T0;
d = float64_div(d, 256, &env->fp_status);
d = float64_chs(d);
d = exp10(d); // XXX: use float emulation function
d = float64_add(d, 1.0, &env->fp_status);
d = log10(d); // XXX: use float emulation function
d = float64_mul(d, 256, &env->fp_status);
d = float64_add(d, 0.5, &env->fp_status);
T0 = float64_round_to_int(d, &env->fp_status);
#endif
} else {
T0 = 0;
}
}
/*****************************************************************************/
/* Embedded PowerPC specific helpers */
void do_405_check_sat (void)
{
if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
!(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
/* Saturate result */
if (T2 >> 31) {
T0 = INT32_MIN;
} else {
T0 = INT32_MAX;
}
}
}
/* XXX: to be improved to check access rights when in user-mode */
void do_load_dcr (void)
{
target_ulong val;
if (unlikely(env->dcr_env == NULL)) {
if (loglevel != 0) {
fprintf(logfile, "No DCR environment\n");
}
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
} else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
if (loglevel != 0) {
fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
}
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
} else {
T0 = val;
}
}
void do_store_dcr (void)
{
if (unlikely(env->dcr_env == NULL)) {
if (loglevel != 0) {
fprintf(logfile, "No DCR environment\n");
}
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
} else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
if (loglevel != 0) {
fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
}
do_raise_exception_err(POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
}
}
#if !defined(CONFIG_USER_ONLY)
void do_40x_rfci (void)
{
__do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
~((target_ulong)0xFFFF0000), 0);
}
void do_rfci (void)
{
__do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
~((target_ulong)0x3FFF0000), 0);
}
void do_rfdi (void)
{
__do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
~((target_ulong)0x3FFF0000), 0);
}
void do_rfmci (void)
{
__do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
~((target_ulong)0x3FFF0000), 0);
}
void do_load_403_pb (int num)
{
T0 = env->pb[num];
}
void do_store_403_pb (int num)
{
if (likely(env->pb[num] != T0)) {
env->pb[num] = T0;
/* Should be optimized */
tlb_flush(env, 1);
}
}
#endif
/* 440 specific */
void do_440_dlmzb (void)
{
target_ulong mask;
int i;
i = 1;
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
if ((T0 & mask) == 0)
goto done;
i++;
}
for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
if ((T1 & mask) == 0)
break;
i++;
}
done:
T0 = i;
}
/* SPE extension helpers */
/* Use a table to make this quicker */
static uint8_t hbrev[16] = {
0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
};
static always_inline uint8_t byte_reverse (uint8_t val)
{
return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
}
static always_inline uint32_t word_reverse (uint32_t val)
{
return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
(byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
}
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
void do_brinc (void)
{
uint32_t a, b, d, mask;
mask = UINT32_MAX >> (32 - MASKBITS);
a = T0 & mask;
b = T1 & mask;
d = word_reverse(1 + word_reverse(a | ~b));
T0 = (T0 & ~mask) | (d & b);
}
#define DO_SPE_OP2(name) \
void do_ev##name (void) \
{ \
T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) | \
(uint64_t)_do_e##name(T0_64, T1_64); \
}
#define DO_SPE_OP1(name) \
void do_ev##name (void) \
{ \
T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) | \
(uint64_t)_do_e##name(T0_64); \
}
/* Fixed-point vector arithmetic */
static always_inline uint32_t _do_eabs (uint32_t val)
{
if ((val & 0x80000000) && val != 0x80000000)
val -= val;
return val;
}
static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
{
return op1 + op2;
}
static always_inline int _do_ecntlsw (uint32_t val)
{
if (val & 0x80000000)
return clz32(~val);
else
return clz32(val);
}
static always_inline int _do_ecntlzw (uint32_t val)
{
return clz32(val);
}
static always_inline uint32_t _do_eneg (uint32_t val)
{
if (val != 0x80000000)
val -= val;
return val;
}
static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
{
return rotl32(op1, op2);
}
static always_inline uint32_t _do_erndw (uint32_t val)
{
return (val + 0x000080000000) & 0xFFFF0000;
}
static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
{
/* No error here: 6 bits are used */
return op1 << (op2 & 0x3F);
}
static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
{
/* No error here: 6 bits are used */
return op1 >> (op2 & 0x3F);
}
static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
{
/* No error here: 6 bits are used */
return op1 >> (op2 & 0x3F);
}
static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
{
return op2 - op1;
}
/* evabs */
DO_SPE_OP1(abs);
/* evaddw */
DO_SPE_OP2(addw);
/* evcntlsw */
DO_SPE_OP1(cntlsw);
/* evcntlzw */
DO_SPE_OP1(cntlzw);
/* evneg */
DO_SPE_OP1(neg);
/* evrlw */
DO_SPE_OP2(rlw);
/* evrnd */
DO_SPE_OP1(rndw);
/* evslw */
DO_SPE_OP2(slw);
/* evsrws */
DO_SPE_OP2(srws);
/* evsrwu */
DO_SPE_OP2(srwu);
/* evsubfw */
DO_SPE_OP2(subfw);
/* evsel is a little bit more complicated... */
static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
{
if (n)
return op1;
else
return op2;
}
void do_evsel (void)
{
T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
(uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
}
/* Fixed-point vector comparisons */
#define DO_SPE_CMP(name) \
void do_ev##name (void) \
{ \
T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32, \
T1_64 >> 32) << 32, \
_do_e##name(T0_64, T1_64)); \
}
static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
{
return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
}
static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
{
return op1 == op2 ? 1 : 0;
}
static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
{
return op1 > op2 ? 1 : 0;
}
static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
{
return op1 > op2 ? 1 : 0;
}
static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
{
return op1 < op2 ? 1 : 0;
}
static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
{
return op1 < op2 ? 1 : 0;
}
/* evcmpeq */
DO_SPE_CMP(cmpeq);
/* evcmpgts */
DO_SPE_CMP(cmpgts);
/* evcmpgtu */
DO_SPE_CMP(cmpgtu);
/* evcmplts */
DO_SPE_CMP(cmplts);
/* evcmpltu */
DO_SPE_CMP(cmpltu);
/* Single precision floating-point conversions from/to integer */
static always_inline uint32_t _do_efscfsi (int32_t val)
{
CPU_FloatU u;
u.f = int32_to_float32(val, &env->spe_status);
return u.l;
}
static always_inline uint32_t _do_efscfui (uint32_t val)
{
CPU_FloatU u;
u.f = uint32_to_float32(val, &env->spe_status);
return u.l;
}
static always_inline int32_t _do_efsctsi (uint32_t val)
{
CPU_FloatU u;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.f)))
return 0;
return float32_to_int32(u.f, &env->spe_status);
}
static always_inline uint32_t _do_efsctui (uint32_t val)
{
CPU_FloatU u;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.f)))
return 0;
return float32_to_uint32(u.f, &env->spe_status);
}
static always_inline int32_t _do_efsctsiz (uint32_t val)
{
CPU_FloatU u;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.f)))
return 0;
return float32_to_int32_round_to_zero(u.f, &env->spe_status);
}
static always_inline uint32_t _do_efsctuiz (uint32_t val)
{
CPU_FloatU u;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.f)))
return 0;
return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
}
void do_efscfsi (void)
{
T0_64 = _do_efscfsi(T0_64);
}
void do_efscfui (void)
{
T0_64 = _do_efscfui(T0_64);
}
void do_efsctsi (void)
{
T0_64 = _do_efsctsi(T0_64);
}
void do_efsctui (void)
{
T0_64 = _do_efsctui(T0_64);
}
void do_efsctsiz (void)
{
T0_64 = _do_efsctsiz(T0_64);
}
void do_efsctuiz (void)
{
T0_64 = _do_efsctuiz(T0_64);
}
/* Single precision floating-point conversion to/from fractional */
static always_inline uint32_t _do_efscfsf (uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.f = int32_to_float32(val, &env->spe_status);
tmp = int64_to_float32(1ULL << 32, &env->spe_status);
u.f = float32_div(u.f, tmp, &env->spe_status);
return u.l;
}
static always_inline uint32_t _do_efscfuf (uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.f = uint32_to_float32(val, &env->spe_status);
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
u.f = float32_div(u.f, tmp, &env->spe_status);
return u.l;
}
static always_inline int32_t _do_efsctsf (uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.f)))
return 0;
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
u.f = float32_mul(u.f, tmp, &env->spe_status);
return float32_to_int32(u.f, &env->spe_status);
}
static always_inline uint32_t _do_efsctuf (uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.f)))
return 0;
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
u.f = float32_mul(u.f, tmp, &env->spe_status);
return float32_to_uint32(u.f, &env->spe_status);
}
static always_inline int32_t _do_efsctsfz (uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.f)))
return 0;
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
u.f = float32_mul(u.f, tmp, &env->spe_status);
return float32_to_int32_round_to_zero(u.f, &env->spe_status);
}
static always_inline uint32_t _do_efsctufz (uint32_t val)
{
CPU_FloatU u;
float32 tmp;
u.l = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.f)))
return 0;
tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
u.f = float32_mul(u.f, tmp, &env->spe_status);
return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
}
void do_efscfsf (void)
{
T0_64 = _do_efscfsf(T0_64);
}
void do_efscfuf (void)
{
T0_64 = _do_efscfuf(T0_64);
}
void do_efsctsf (void)
{
T0_64 = _do_efsctsf(T0_64);
}
void do_efsctuf (void)
{
T0_64 = _do_efsctuf(T0_64);
}
void do_efsctsfz (void)
{
T0_64 = _do_efsctsfz(T0_64);
}
void do_efsctufz (void)
{
T0_64 = _do_efsctufz(T0_64);
}
/* Double precision floating point helpers */
static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return _do_efdtstlt(op1, op2);
}
static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return _do_efdtstgt(op1, op2);
}
static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return _do_efdtsteq(op1, op2);
}
void do_efdcmplt (void)
{
T0 = _do_efdcmplt(T0_64, T1_64);
}
void do_efdcmpgt (void)
{
T0 = _do_efdcmpgt(T0_64, T1_64);
}
void do_efdcmpeq (void)
{
T0 = _do_efdcmpeq(T0_64, T1_64);
}
/* Double precision floating-point conversion to/from integer */
static always_inline uint64_t _do_efdcfsi (int64_t val)
{
CPU_DoubleU u;
u.d = int64_to_float64(val, &env->spe_status);
return u.ll;
}
static always_inline uint64_t _do_efdcfui (uint64_t val)
{
CPU_DoubleU u;
u.d = uint64_to_float64(val, &env->spe_status);
return u.ll;
}
static always_inline int64_t _do_efdctsi (uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.d)))
return 0;
return float64_to_int64(u.d, &env->spe_status);
}
static always_inline uint64_t _do_efdctui (uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.d)))
return 0;
return float64_to_uint64(u.d, &env->spe_status);
}
static always_inline int64_t _do_efdctsiz (uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.d)))
return 0;
return float64_to_int64_round_to_zero(u.d, &env->spe_status);
}
static always_inline uint64_t _do_efdctuiz (uint64_t val)
{
CPU_DoubleU u;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.d)))
return 0;
return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
}
void do_efdcfsi (void)
{
T0_64 = _do_efdcfsi(T0_64);
}
void do_efdcfui (void)
{
T0_64 = _do_efdcfui(T0_64);
}
void do_efdctsi (void)
{
T0_64 = _do_efdctsi(T0_64);
}
void do_efdctui (void)
{
T0_64 = _do_efdctui(T0_64);
}
void do_efdctsiz (void)
{
T0_64 = _do_efdctsiz(T0_64);
}
void do_efdctuiz (void)
{
T0_64 = _do_efdctuiz(T0_64);
}
/* Double precision floating-point conversion to/from fractional */
static always_inline uint64_t _do_efdcfsf (int64_t val)
{
CPU_DoubleU u;
float64 tmp;
u.d = int32_to_float64(val, &env->spe_status);
tmp = int64_to_float64(1ULL << 32, &env->spe_status);
u.d = float64_div(u.d, tmp, &env->spe_status);
return u.ll;
}
static always_inline uint64_t _do_efdcfuf (uint64_t val)
{
CPU_DoubleU u;
float64 tmp;
u.d = uint32_to_float64(val, &env->spe_status);
tmp = int64_to_float64(1ULL << 32, &env->spe_status);
u.d = float64_div(u.d, tmp, &env->spe_status);
return u.ll;
}
static always_inline int64_t _do_efdctsf (uint64_t val)
{
CPU_DoubleU u;
float64 tmp;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.d)))
return 0;
tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
u.d = float64_mul(u.d, tmp, &env->spe_status);
return float64_to_int32(u.d, &env->spe_status);
}
static always_inline uint64_t _do_efdctuf (uint64_t val)
{
CPU_DoubleU u;
float64 tmp;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.d)))
return 0;
tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
u.d = float64_mul(u.d, tmp, &env->spe_status);
return float64_to_uint32(u.d, &env->spe_status);
}
static always_inline int64_t _do_efdctsfz (uint64_t val)
{
CPU_DoubleU u;
float64 tmp;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.d)))
return 0;
tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
u.d = float64_mul(u.d, tmp, &env->spe_status);
return float64_to_int32_round_to_zero(u.d, &env->spe_status);
}
static always_inline uint64_t _do_efdctufz (uint64_t val)
{
CPU_DoubleU u;
float64 tmp;
u.ll = val;
/* NaN are not treated the same way IEEE 754 does */
if (unlikely(isnan(u.d)))
return 0;
tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
u.d = float64_mul(u.d, tmp, &env->spe_status);
return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
}
void do_efdcfsf (void)
{
T0_64 = _do_efdcfsf(T0_64);
}
void do_efdcfuf (void)
{
T0_64 = _do_efdcfuf(T0_64);
}
void do_efdctsf (void)
{
T0_64 = _do_efdctsf(T0_64);
}
void do_efdctuf (void)
{
T0_64 = _do_efdctuf(T0_64);
}
void do_efdctsfz (void)
{
T0_64 = _do_efdctsfz(T0_64);
}
void do_efdctufz (void)
{
T0_64 = _do_efdctufz(T0_64);
}
/* Floating point conversion between single and double precision */
static always_inline uint32_t _do_efscfd (uint64_t val)
{
CPU_DoubleU u1;
CPU_FloatU u2;
u1.ll = val;
u2.f = float64_to_float32(u1.d, &env->spe_status);
return u2.l;
}
static always_inline uint64_t _do_efdcfs (uint32_t val)
{
CPU_DoubleU u2;
CPU_FloatU u1;
u1.l = val;
u2.d = float32_to_float64(u1.f, &env->spe_status);
return u2.ll;
}
void do_efscfd (void)
{
T0_64 = _do_efscfd(T0_64);
}
void do_efdcfs (void)
{
T0_64 = _do_efdcfs(T0_64);
}
/* Single precision fixed-point vector arithmetic */
/* evfsabs */
DO_SPE_OP1(fsabs);
/* evfsnabs */
DO_SPE_OP1(fsnabs);
/* evfsneg */
DO_SPE_OP1(fsneg);
/* evfsadd */
DO_SPE_OP2(fsadd);
/* evfssub */
DO_SPE_OP2(fssub);
/* evfsmul */
DO_SPE_OP2(fsmul);
/* evfsdiv */
DO_SPE_OP2(fsdiv);
/* Single-precision floating-point comparisons */
static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return _do_efststlt(op1, op2);
}
static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return _do_efststgt(op1, op2);
}
static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
{
/* XXX: TODO: test special values (NaN, infinites, ...) */
return _do_efststeq(op1, op2);
}
void do_efscmplt (void)
{
T0 = _do_efscmplt(T0_64, T1_64);
}
void do_efscmpgt (void)
{
T0 = _do_efscmpgt(T0_64, T1_64);
}
void do_efscmpeq (void)
{
T0 = _do_efscmpeq(T0_64, T1_64);
}
/* Single-precision floating-point vector comparisons */
/* evfscmplt */
DO_SPE_CMP(fscmplt);
/* evfscmpgt */
DO_SPE_CMP(fscmpgt);
/* evfscmpeq */
DO_SPE_CMP(fscmpeq);
/* evfststlt */
DO_SPE_CMP(fststlt);
/* evfststgt */
DO_SPE_CMP(fststgt);
/* evfststeq */
DO_SPE_CMP(fststeq);
/* Single-precision floating-point vector conversions */
/* evfscfsi */
DO_SPE_OP1(fscfsi);
/* evfscfui */
DO_SPE_OP1(fscfui);
/* evfscfuf */
DO_SPE_OP1(fscfuf);
/* evfscfsf */
DO_SPE_OP1(fscfsf);
/* evfsctsi */
DO_SPE_OP1(fsctsi);
/* evfsctui */
DO_SPE_OP1(fsctui);
/* evfsctsiz */
DO_SPE_OP1(fsctsiz);
/* evfsctuiz */
DO_SPE_OP1(fsctuiz);
/* evfsctsf */
DO_SPE_OP1(fsctsf);
/* evfsctuf */
DO_SPE_OP1(fsctuf);
/*****************************************************************************/
/* Softmmu support */
#if !defined (CONFIG_USER_ONLY)
#define MMUSUFFIX _mmu
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
TranslationBlock *tb;
CPUState *saved_env;
unsigned long pc;
int ret;
/* XXX: hack to restore env in all cases, even if not called from
generated code */
saved_env = env;
env = cpu_single_env;
ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (unlikely(ret != 0)) {
if (likely(retaddr)) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (likely(tb)) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc, NULL);
}
}
do_raise_exception_err(env->exception_index, env->error_code);
}
env = saved_env;
}
/* Software driven TLBs management */
/* PowerPC 602/603 software TLB load instructions helpers */
void do_load_6xx_tlb (int is_code)
{
target_ulong RPN, CMP, EPN;
int way;
RPN = env->spr[SPR_RPA];
if (is_code) {
CMP = env->spr[SPR_ICMP];
EPN = env->spr[SPR_IMISS];
} else {
CMP = env->spr[SPR_DCMP];
EPN = env->spr[SPR_DMISS];
}
way = (env->spr[SPR_SRR1] >> 17) & 1;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
" PTE1 " ADDRX " way %d\n",
__func__, T0, EPN, CMP, RPN, way);
}
#endif
/* Store this TLB */
ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
way, is_code, CMP, RPN);
}
void do_load_74xx_tlb (int is_code)
{
target_ulong RPN, CMP, EPN;
int way;
RPN = env->spr[SPR_PTELO];
CMP = env->spr[SPR_PTEHI];
EPN = env->spr[SPR_TLBMISS] & ~0x3;
way = env->spr[SPR_TLBMISS] & 0x3;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
" PTE1 " ADDRX " way %d\n",
__func__, T0, EPN, CMP, RPN, way);
}
#endif
/* Store this TLB */
ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
way, is_code, CMP, RPN);
}
static always_inline target_ulong booke_tlb_to_page_size (int size)
{
return 1024 << (2 * size);
}
static always_inline int booke_page_size_to_tlb (target_ulong page_size)
{
int size;
switch (page_size) {
case 0x00000400UL:
size = 0x0;
break;
case 0x00001000UL:
size = 0x1;
break;
case 0x00004000UL:
size = 0x2;
break;
case 0x00010000UL:
size = 0x3;
break;
case 0x00040000UL:
size = 0x4;
break;
case 0x00100000UL:
size = 0x5;
break;
case 0x00400000UL:
size = 0x6;
break;
case 0x01000000UL:
size = 0x7;
break;
case 0x04000000UL:
size = 0x8;
break;
case 0x10000000UL:
size = 0x9;
break;
case 0x40000000UL:
size = 0xA;
break;
#if defined (TARGET_PPC64)
case 0x000100000000ULL:
size = 0xB;
break;
case 0x000400000000ULL:
size = 0xC;
break;
case 0x001000000000ULL:
size = 0xD;
break;
case 0x004000000000ULL:
size = 0xE;
break;
case 0x010000000000ULL:
size = 0xF;
break;
#endif
default:
size = -1;
break;
}
return size;
}
/* Helpers for 4xx TLB management */
void do_4xx_tlbre_lo (void)
{
ppcemb_tlb_t *tlb;
int size;
T0 &= 0x3F;
tlb = &env->tlb[T0].tlbe;
T0 = tlb->EPN;
if (tlb->prot & PAGE_VALID)
T0 |= 0x400;
size = booke_page_size_to_tlb(tlb->size);
if (size < 0 || size > 0x7)
size = 1;
T0 |= size << 7;
env->spr[SPR_40x_PID] = tlb->PID;
}
void do_4xx_tlbre_hi (void)
{
ppcemb_tlb_t *tlb;
T0 &= 0x3F;
tlb = &env->tlb[T0].tlbe;
T0 = tlb->RPN;
if (tlb->prot & PAGE_EXEC)
T0 |= 0x200;
if (tlb->prot & PAGE_WRITE)
T0 |= 0x100;
}
void do_4xx_tlbwe_hi (void)
{
ppcemb_tlb_t *tlb;
target_ulong page, end;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
}
#endif
T0 &= 0x3F;
tlb = &env->tlb[T0].tlbe;
/* Invalidate previous TLB (if it's valid) */
if (tlb->prot & PAGE_VALID) {
end = tlb->EPN + tlb->size;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
" end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
}
#endif
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
tlb_flush_page(env, page);
}
tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
/* We cannot handle TLB size < TARGET_PAGE_SIZE.
* If this ever occurs, one should use the ppcemb target instead
* of the ppc or ppc64 one
*/
if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
"are not supported (%d)\n",
tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
}
tlb->EPN = T1 & ~(tlb->size - 1);
if (T1 & 0x40)
tlb->prot |= PAGE_VALID;
else
tlb->prot &= ~PAGE_VALID;
if (T1 & 0x20) {
/* XXX: TO BE FIXED */
cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
}
tlb->PID = env->spr[SPR_40x_PID]; /* PID */
tlb->attr = T1 & 0xFF;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
" size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
(int)T0, tlb->RPN, tlb->EPN, tlb->size,
tlb->prot & PAGE_READ ? 'r' : '-',
tlb->prot & PAGE_WRITE ? 'w' : '-',
tlb->prot & PAGE_EXEC ? 'x' : '-',
tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
}
#endif
/* Invalidate new TLB (if valid) */
if (tlb->prot & PAGE_VALID) {
end = tlb->EPN + tlb->size;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
" end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
}
#endif
for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
tlb_flush_page(env, page);
}
}
void do_4xx_tlbwe_lo (void)
{
ppcemb_tlb_t *tlb;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
}
#endif
T0 &= 0x3F;
tlb = &env->tlb[T0].tlbe;
tlb->RPN = T1 & 0xFFFFFC00;
tlb->prot = PAGE_READ;
if (T1 & 0x200)
tlb->prot |= PAGE_EXEC;
if (T1 & 0x100)
tlb->prot |= PAGE_WRITE;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
" size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
(int)T0, tlb->RPN, tlb->EPN, tlb->size,
tlb->prot & PAGE_READ ? 'r' : '-',
tlb->prot & PAGE_WRITE ? 'w' : '-',
tlb->prot & PAGE_EXEC ? 'x' : '-',
tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
}
#endif
}
/* PowerPC 440 TLB management */
void do_440_tlbwe (int word)
{
ppcemb_tlb_t *tlb;
target_ulong EPN, RPN, size;
int do_flush_tlbs;
#if defined (DEBUG_SOFTWARE_TLB)
if (loglevel != 0) {
fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n",
__func__, word, T0, T1);
}
#endif
do_flush_tlbs = 0;
T0 &= 0x3F;
tlb = &env->tlb[T0].tlbe;
switch (word) {
default:
/* Just here to please gcc */
case 0:
EPN = T1 & 0xFFFFFC00;
if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
do_flush_tlbs = 1;
tlb->EPN = EPN;
size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
if ((tlb->prot & PAGE_VALID) && tlb->size < size)
do_flush_tlbs = 1;
tlb->size = size;
tlb->attr &= ~0x1;
tlb->attr |= (T1 >> 8) & 1;
if (T1 & 0x200) {
tlb->prot |= PAGE_VALID;
} else {
if (tlb->prot & PAGE_VALID) {
tlb->prot &= ~PAGE_VALID;
do_flush_tlbs = 1;
}
}
tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
if (do_flush_tlbs)
tlb_flush(env, 1);
break;
case 1:
RPN = T1 & 0xFFFFFC0F;
if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
tlb_flush(env, 1);
tlb->RPN = RPN;
break;
case 2:
tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
tlb->prot = tlb->prot & PAGE_VALID;
if (T1 & 0x1)
tlb->prot |= PAGE_READ << 4;
if (T1 & 0x2)
tlb->prot |= PAGE_WRITE << 4;
if (T1 & 0x4)
tlb->prot |= PAGE_EXEC << 4;
if (T1 & 0x8)
tlb->prot |= PAGE_READ;
if (T1 & 0x10)
tlb->prot |= PAGE_WRITE;
if (T1 & 0x20)
tlb->prot |= PAGE_EXEC;
break;
}
}
void do_440_tlbre (int word)
{
ppcemb_tlb_t *tlb;
int size;
T0 &= 0x3F;
tlb = &env->tlb[T0].tlbe;
switch (word) {
default:
/* Just here to please gcc */
case 0:
T0 = tlb->EPN;
size = booke_page_size_to_tlb(tlb->size);
if (size < 0 || size > 0xF)
size = 1;
T0 |= size << 4;
if (tlb->attr & 0x1)
T0 |= 0x100;
if (tlb->prot & PAGE_VALID)
T0 |= 0x200;
env->spr[SPR_440_MMUCR] &= ~0x000000FF;
env->spr[SPR_440_MMUCR] |= tlb->PID;
break;
case 1:
T0 = tlb->RPN;
break;
case 2:
T0 = tlb->attr & ~0x1;
if (tlb->prot & (PAGE_READ << 4))
T0 |= 0x1;
if (tlb->prot & (PAGE_WRITE << 4))
T0 |= 0x2;
if (tlb->prot & (PAGE_EXEC << 4))
T0 |= 0x4;
if (tlb->prot & PAGE_READ)
T0 |= 0x8;
if (tlb->prot & PAGE_WRITE)
T0 |= 0x10;
if (tlb->prot & PAGE_EXEC)
T0 |= 0x20;
break;
}
}
#endif /* !CONFIG_USER_ONLY */