qemu/target/i386/kvm/xen-emu.c
Michael Tokarev bad5cfcd60 i386: spelling fixes
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
2023-09-20 07:54:34 +03:00

1921 lines
53 KiB
C

/*
* Xen HVM emulation support in KVM
*
* Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
* Copyright © 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/error-report.h"
#include "hw/xen/xen.h"
#include "sysemu/kvm_int.h"
#include "sysemu/kvm_xen.h"
#include "kvm/kvm_i386.h"
#include "exec/address-spaces.h"
#include "xen-emu.h"
#include "trace.h"
#include "sysemu/runstate.h"
#include "hw/pci/msi.h"
#include "hw/i386/apic-msidef.h"
#include "hw/i386/e820_memory_layout.h"
#include "hw/i386/kvm/xen_overlay.h"
#include "hw/i386/kvm/xen_evtchn.h"
#include "hw/i386/kvm/xen_gnttab.h"
#include "hw/i386/kvm/xen_xenstore.h"
#include "hw/xen/interface/version.h"
#include "hw/xen/interface/sched.h"
#include "hw/xen/interface/memory.h"
#include "hw/xen/interface/hvm/hvm_op.h"
#include "hw/xen/interface/hvm/params.h"
#include "hw/xen/interface/vcpu.h"
#include "hw/xen/interface/event_channel.h"
#include "hw/xen/interface/grant_table.h"
#include "xen-compat.h"
static void xen_vcpu_singleshot_timer_event(void *opaque);
static void xen_vcpu_periodic_timer_event(void *opaque);
static int vcpuop_stop_singleshot_timer(CPUState *cs);
#ifdef TARGET_X86_64
#define hypercall_compat32(longmode) (!(longmode))
#else
#define hypercall_compat32(longmode) (false)
#endif
static bool kvm_gva_to_gpa(CPUState *cs, uint64_t gva, uint64_t *gpa,
size_t *len, bool is_write)
{
struct kvm_translation tr = {
.linear_address = gva,
};
if (len) {
*len = TARGET_PAGE_SIZE - (gva & ~TARGET_PAGE_MASK);
}
if (kvm_vcpu_ioctl(cs, KVM_TRANSLATE, &tr) || !tr.valid ||
(is_write && !tr.writeable)) {
return false;
}
*gpa = tr.physical_address;
return true;
}
static int kvm_gva_rw(CPUState *cs, uint64_t gva, void *_buf, size_t sz,
bool is_write)
{
uint8_t *buf = (uint8_t *)_buf;
uint64_t gpa;
size_t len;
while (sz) {
if (!kvm_gva_to_gpa(cs, gva, &gpa, &len, is_write)) {
return -EFAULT;
}
if (len > sz) {
len = sz;
}
cpu_physical_memory_rw(gpa, buf, len, is_write);
buf += len;
sz -= len;
gva += len;
}
return 0;
}
static inline int kvm_copy_from_gva(CPUState *cs, uint64_t gva, void *buf,
size_t sz)
{
return kvm_gva_rw(cs, gva, buf, sz, false);
}
static inline int kvm_copy_to_gva(CPUState *cs, uint64_t gva, void *buf,
size_t sz)
{
return kvm_gva_rw(cs, gva, buf, sz, true);
}
int kvm_xen_init(KVMState *s, uint32_t hypercall_msr)
{
const int required_caps = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | KVM_XEN_HVM_CONFIG_SHARED_INFO;
struct kvm_xen_hvm_config cfg = {
.msr = hypercall_msr,
.flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL,
};
int xen_caps, ret;
xen_caps = kvm_check_extension(s, KVM_CAP_XEN_HVM);
if (required_caps & ~xen_caps) {
error_report("kvm: Xen HVM guest support not present or insufficient");
return -ENOSYS;
}
if (xen_caps & KVM_XEN_HVM_CONFIG_EVTCHN_SEND) {
struct kvm_xen_hvm_attr ha = {
.type = KVM_XEN_ATTR_TYPE_XEN_VERSION,
.u.xen_version = s->xen_version,
};
(void)kvm_vm_ioctl(s, KVM_XEN_HVM_SET_ATTR, &ha);
cfg.flags |= KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
}
ret = kvm_vm_ioctl(s, KVM_XEN_HVM_CONFIG, &cfg);
if (ret < 0) {
error_report("kvm: Failed to enable Xen HVM support: %s",
strerror(-ret));
return ret;
}
/* If called a second time, don't repeat the rest of the setup. */
if (s->xen_caps) {
return 0;
}
/*
* Event channel delivery via GSI/PCI_INTX needs to poll the vcpu_info
* of vCPU0 to deassert the IRQ when ->evtchn_upcall_pending is cleared.
*
* In the kernel, there's a notifier hook on the PIC/IOAPIC which allows
* such things to be polled at precisely the right time. We *could* do
* it nicely in the kernel: check vcpu_info[0]->evtchn_upcall_pending at
* the moment the IRQ is acked, and see if it should be reasserted.
*
* But the in-kernel irqchip is deprecated, so we're unlikely to add
* that support in the kernel. Insist on using the split irqchip mode
* instead.
*
* This leaves us polling for the level going low in QEMU, which lacks
* the appropriate hooks in its PIC/IOAPIC code. Even VFIO is sending a
* spurious 'ack' to an INTX IRQ every time there's any MMIO access to
* the device (for which it has to unmap the device and trap access, for
* some period after an IRQ!!). In the Xen case, we do it on exit from
* KVM_RUN, if the flag is set to say that the GSI is currently asserted.
* Which is kind of icky, but less so than the VFIO one. I may fix them
* both later...
*/
if (!kvm_kernel_irqchip_split()) {
error_report("kvm: Xen support requires kernel-irqchip=split");
return -EINVAL;
}
s->xen_caps = xen_caps;
/* Tell fw_cfg to notify the BIOS to reserve the range. */
ret = e820_add_entry(XEN_SPECIAL_AREA_ADDR, XEN_SPECIAL_AREA_SIZE,
E820_RESERVED);
if (ret < 0) {
fprintf(stderr, "e820_add_entry() table is full\n");
return ret;
}
/* The page couldn't be overlaid until KVM was initialized */
xen_xenstore_reset();
return 0;
}
int kvm_xen_init_vcpu(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
int err;
/*
* The kernel needs to know the Xen/ACPI vCPU ID because that's
* what the guest uses in hypercalls such as timers. It doesn't
* match the APIC ID which is generally used for talking to the
* kernel about vCPUs. And if vCPU threads race with creating
* their KVM vCPUs out of order, it doesn't necessarily match
* with the kernel's internal vCPU indices either.
*/
if (kvm_xen_has_cap(EVTCHN_SEND)) {
struct kvm_xen_vcpu_attr va = {
.type = KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID,
.u.vcpu_id = cs->cpu_index,
};
err = kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &va);
if (err) {
error_report("kvm: Failed to set Xen vCPU ID attribute: %s",
strerror(-err));
return err;
}
}
env->xen_vcpu_info_gpa = INVALID_GPA;
env->xen_vcpu_info_default_gpa = INVALID_GPA;
env->xen_vcpu_time_info_gpa = INVALID_GPA;
env->xen_vcpu_runstate_gpa = INVALID_GPA;
qemu_mutex_init(&env->xen_timers_lock);
env->xen_singleshot_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
xen_vcpu_singleshot_timer_event,
cpu);
if (!env->xen_singleshot_timer) {
return -ENOMEM;
}
env->xen_singleshot_timer->opaque = cs;
env->xen_periodic_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
xen_vcpu_periodic_timer_event,
cpu);
if (!env->xen_periodic_timer) {
return -ENOMEM;
}
env->xen_periodic_timer->opaque = cs;
return 0;
}
uint32_t kvm_xen_get_caps(void)
{
return kvm_state->xen_caps;
}
static bool kvm_xen_hcall_xen_version(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
int err = 0;
switch (cmd) {
case XENVER_get_features: {
struct xen_feature_info fi;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(fi) == 8);
err = kvm_copy_from_gva(CPU(cpu), arg, &fi, sizeof(fi));
if (err) {
break;
}
fi.submap = 0;
if (fi.submap_idx == 0) {
fi.submap |= 1 << XENFEAT_writable_page_tables |
1 << XENFEAT_writable_descriptor_tables |
1 << XENFEAT_auto_translated_physmap |
1 << XENFEAT_supervisor_mode_kernel |
1 << XENFEAT_hvm_callback_vector |
1 << XENFEAT_hvm_safe_pvclock |
1 << XENFEAT_hvm_pirqs;
}
err = kvm_copy_to_gva(CPU(cpu), arg, &fi, sizeof(fi));
break;
}
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
static int kvm_xen_set_vcpu_attr(CPUState *cs, uint16_t type, uint64_t gpa)
{
struct kvm_xen_vcpu_attr xhsi;
xhsi.type = type;
xhsi.u.gpa = gpa;
trace_kvm_xen_set_vcpu_attr(cs->cpu_index, type, gpa);
return kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &xhsi);
}
static int kvm_xen_set_vcpu_callback_vector(CPUState *cs)
{
uint8_t vector = X86_CPU(cs)->env.xen_vcpu_callback_vector;
struct kvm_xen_vcpu_attr xva;
xva.type = KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR;
xva.u.vector = vector;
trace_kvm_xen_set_vcpu_callback(cs->cpu_index, vector);
return kvm_vcpu_ioctl(cs, KVM_XEN_HVM_SET_ATTR, &xva);
}
static void do_set_vcpu_callback_vector(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_callback_vector = data.host_int;
if (kvm_xen_has_cap(EVTCHN_SEND)) {
kvm_xen_set_vcpu_callback_vector(cs);
}
}
static int set_vcpu_info(CPUState *cs, uint64_t gpa)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
MemoryRegionSection mrs = { .mr = NULL };
void *vcpu_info_hva = NULL;
int ret;
ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO, gpa);
if (ret || gpa == INVALID_GPA) {
goto out;
}
mrs = memory_region_find(get_system_memory(), gpa,
sizeof(struct vcpu_info));
if (mrs.mr && mrs.mr->ram_block &&
!int128_lt(mrs.size, int128_make64(sizeof(struct vcpu_info)))) {
vcpu_info_hva = qemu_map_ram_ptr(mrs.mr->ram_block,
mrs.offset_within_region);
}
if (!vcpu_info_hva) {
if (mrs.mr) {
memory_region_unref(mrs.mr);
mrs.mr = NULL;
}
ret = -EINVAL;
}
out:
if (env->xen_vcpu_info_mr) {
memory_region_unref(env->xen_vcpu_info_mr);
}
env->xen_vcpu_info_hva = vcpu_info_hva;
env->xen_vcpu_info_mr = mrs.mr;
return ret;
}
static void do_set_vcpu_info_default_gpa(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_info_default_gpa = data.host_ulong;
/* Changing the default does nothing if a vcpu_info was explicitly set. */
if (env->xen_vcpu_info_gpa == INVALID_GPA) {
set_vcpu_info(cs, env->xen_vcpu_info_default_gpa);
}
}
static void do_set_vcpu_info_gpa(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_info_gpa = data.host_ulong;
set_vcpu_info(cs, env->xen_vcpu_info_gpa);
}
void *kvm_xen_get_vcpu_info_hva(uint32_t vcpu_id)
{
CPUState *cs = qemu_get_cpu(vcpu_id);
if (!cs) {
return NULL;
}
return X86_CPU(cs)->env.xen_vcpu_info_hva;
}
void kvm_xen_maybe_deassert_callback(CPUState *cs)
{
CPUX86State *env = &X86_CPU(cs)->env;
struct vcpu_info *vi = env->xen_vcpu_info_hva;
if (!vi) {
return;
}
/* If the evtchn_upcall_pending flag is cleared, turn the GSI off. */
if (!vi->evtchn_upcall_pending) {
qemu_mutex_lock_iothread();
/*
* Check again now we have the lock, because it may have been
* asserted in the interim. And we don't want to take the lock
* every time because this is a fast path.
*/
if (!vi->evtchn_upcall_pending) {
X86_CPU(cs)->env.xen_callback_asserted = false;
xen_evtchn_set_callback_level(0);
}
qemu_mutex_unlock_iothread();
}
}
void kvm_xen_set_callback_asserted(void)
{
CPUState *cs = qemu_get_cpu(0);
if (cs) {
X86_CPU(cs)->env.xen_callback_asserted = true;
}
}
void kvm_xen_inject_vcpu_callback_vector(uint32_t vcpu_id, int type)
{
CPUState *cs = qemu_get_cpu(vcpu_id);
uint8_t vector;
if (!cs) {
return;
}
vector = X86_CPU(cs)->env.xen_vcpu_callback_vector;
if (vector) {
/*
* The per-vCPU callback vector injected via lapic. Just
* deliver it as an MSI.
*/
MSIMessage msg = {
.address = APIC_DEFAULT_ADDRESS | X86_CPU(cs)->apic_id,
.data = vector | (1UL << MSI_DATA_LEVEL_SHIFT),
};
kvm_irqchip_send_msi(kvm_state, msg);
return;
}
switch (type) {
case HVM_PARAM_CALLBACK_TYPE_VECTOR:
/*
* If the evtchn_upcall_pending field in the vcpu_info is set, then
* KVM will automatically deliver the vector on entering the vCPU
* so all we have to do is kick it out.
*/
qemu_cpu_kick(cs);
break;
case HVM_PARAM_CALLBACK_TYPE_GSI:
case HVM_PARAM_CALLBACK_TYPE_PCI_INTX:
if (vcpu_id == 0) {
xen_evtchn_set_callback_level(1);
}
break;
}
}
/* Must always be called with xen_timers_lock held */
static int kvm_xen_set_vcpu_timer(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
struct kvm_xen_vcpu_attr va = {
.type = KVM_XEN_VCPU_ATTR_TYPE_TIMER,
.u.timer.port = env->xen_virq[VIRQ_TIMER],
.u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL,
.u.timer.expires_ns = env->xen_singleshot_timer_ns,
};
return kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_SET_ATTR, &va);
}
static void do_set_vcpu_timer_virq(CPUState *cs, run_on_cpu_data data)
{
QEMU_LOCK_GUARD(&X86_CPU(cs)->env.xen_timers_lock);
kvm_xen_set_vcpu_timer(cs);
}
int kvm_xen_set_vcpu_virq(uint32_t vcpu_id, uint16_t virq, uint16_t port)
{
CPUState *cs = qemu_get_cpu(vcpu_id);
if (!cs) {
return -ENOENT;
}
/* cpu.h doesn't include the actual Xen header. */
qemu_build_assert(NR_VIRQS == XEN_NR_VIRQS);
if (virq >= NR_VIRQS) {
return -EINVAL;
}
if (port && X86_CPU(cs)->env.xen_virq[virq]) {
return -EEXIST;
}
X86_CPU(cs)->env.xen_virq[virq] = port;
if (virq == VIRQ_TIMER && kvm_xen_has_cap(EVTCHN_SEND)) {
async_run_on_cpu(cs, do_set_vcpu_timer_virq,
RUN_ON_CPU_HOST_INT(port));
}
return 0;
}
static void do_set_vcpu_time_info_gpa(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_time_info_gpa = data.host_ulong;
kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
env->xen_vcpu_time_info_gpa);
}
static void do_set_vcpu_runstate_gpa(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_runstate_gpa = data.host_ulong;
kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
env->xen_vcpu_runstate_gpa);
}
static void do_vcpu_soft_reset(CPUState *cs, run_on_cpu_data data)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
env->xen_vcpu_info_gpa = INVALID_GPA;
env->xen_vcpu_info_default_gpa = INVALID_GPA;
env->xen_vcpu_time_info_gpa = INVALID_GPA;
env->xen_vcpu_runstate_gpa = INVALID_GPA;
env->xen_vcpu_callback_vector = 0;
memset(env->xen_virq, 0, sizeof(env->xen_virq));
set_vcpu_info(cs, INVALID_GPA);
kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
INVALID_GPA);
kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
INVALID_GPA);
if (kvm_xen_has_cap(EVTCHN_SEND)) {
kvm_xen_set_vcpu_callback_vector(cs);
QEMU_LOCK_GUARD(&X86_CPU(cs)->env.xen_timers_lock);
env->xen_singleshot_timer_ns = 0;
kvm_xen_set_vcpu_timer(cs);
} else {
vcpuop_stop_singleshot_timer(cs);
};
}
static int xen_set_shared_info(uint64_t gfn)
{
uint64_t gpa = gfn << TARGET_PAGE_BITS;
int i, err;
QEMU_IOTHREAD_LOCK_GUARD();
/*
* The xen_overlay device tells KVM about it too, since it had to
* do that on migration load anyway (unless we're going to jump
* through lots of hoops to maintain the fiction that this isn't
* KVM-specific.
*/
err = xen_overlay_map_shinfo_page(gpa);
if (err) {
return err;
}
trace_kvm_xen_set_shared_info(gfn);
for (i = 0; i < XEN_LEGACY_MAX_VCPUS; i++) {
CPUState *cpu = qemu_get_cpu(i);
if (cpu) {
async_run_on_cpu(cpu, do_set_vcpu_info_default_gpa,
RUN_ON_CPU_HOST_ULONG(gpa));
}
gpa += sizeof(vcpu_info_t);
}
return err;
}
static int add_to_physmap_one(uint32_t space, uint64_t idx, uint64_t gfn)
{
switch (space) {
case XENMAPSPACE_shared_info:
if (idx > 0) {
return -EINVAL;
}
return xen_set_shared_info(gfn);
case XENMAPSPACE_grant_table:
return xen_gnttab_map_page(idx, gfn);
case XENMAPSPACE_gmfn:
case XENMAPSPACE_gmfn_range:
return -ENOTSUP;
case XENMAPSPACE_gmfn_foreign:
case XENMAPSPACE_dev_mmio:
return -EPERM;
default:
return -EINVAL;
}
}
static int do_add_to_physmap(struct kvm_xen_exit *exit, X86CPU *cpu,
uint64_t arg)
{
struct xen_add_to_physmap xatp;
CPUState *cs = CPU(cpu);
if (hypercall_compat32(exit->u.hcall.longmode)) {
struct compat_xen_add_to_physmap xatp32;
qemu_build_assert(sizeof(struct compat_xen_add_to_physmap) == 16);
if (kvm_copy_from_gva(cs, arg, &xatp32, sizeof(xatp32))) {
return -EFAULT;
}
xatp.domid = xatp32.domid;
xatp.size = xatp32.size;
xatp.space = xatp32.space;
xatp.idx = xatp32.idx;
xatp.gpfn = xatp32.gpfn;
} else {
if (kvm_copy_from_gva(cs, arg, &xatp, sizeof(xatp))) {
return -EFAULT;
}
}
if (xatp.domid != DOMID_SELF && xatp.domid != xen_domid) {
return -ESRCH;
}
return add_to_physmap_one(xatp.space, xatp.idx, xatp.gpfn);
}
static int do_add_to_physmap_batch(struct kvm_xen_exit *exit, X86CPU *cpu,
uint64_t arg)
{
struct xen_add_to_physmap_batch xatpb;
unsigned long idxs_gva, gpfns_gva, errs_gva;
CPUState *cs = CPU(cpu);
size_t op_sz;
if (hypercall_compat32(exit->u.hcall.longmode)) {
struct compat_xen_add_to_physmap_batch xatpb32;
qemu_build_assert(sizeof(struct compat_xen_add_to_physmap_batch) == 20);
if (kvm_copy_from_gva(cs, arg, &xatpb32, sizeof(xatpb32))) {
return -EFAULT;
}
xatpb.domid = xatpb32.domid;
xatpb.space = xatpb32.space;
xatpb.size = xatpb32.size;
idxs_gva = xatpb32.idxs.c;
gpfns_gva = xatpb32.gpfns.c;
errs_gva = xatpb32.errs.c;
op_sz = sizeof(uint32_t);
} else {
if (kvm_copy_from_gva(cs, arg, &xatpb, sizeof(xatpb))) {
return -EFAULT;
}
op_sz = sizeof(unsigned long);
idxs_gva = (unsigned long)xatpb.idxs.p;
gpfns_gva = (unsigned long)xatpb.gpfns.p;
errs_gva = (unsigned long)xatpb.errs.p;
}
if (xatpb.domid != DOMID_SELF && xatpb.domid != xen_domid) {
return -ESRCH;
}
/* Explicitly invalid for the batch op. Not that we implement it anyway. */
if (xatpb.space == XENMAPSPACE_gmfn_range) {
return -EINVAL;
}
while (xatpb.size--) {
unsigned long idx = 0;
unsigned long gpfn = 0;
int err;
/* For 32-bit compat this only copies the low 32 bits of each */
if (kvm_copy_from_gva(cs, idxs_gva, &idx, op_sz) ||
kvm_copy_from_gva(cs, gpfns_gva, &gpfn, op_sz)) {
return -EFAULT;
}
idxs_gva += op_sz;
gpfns_gva += op_sz;
err = add_to_physmap_one(xatpb.space, idx, gpfn);
if (kvm_copy_to_gva(cs, errs_gva, &err, sizeof(err))) {
return -EFAULT;
}
errs_gva += sizeof(err);
}
return 0;
}
static bool kvm_xen_hcall_memory_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
int err;
switch (cmd) {
case XENMEM_add_to_physmap:
err = do_add_to_physmap(exit, cpu, arg);
break;
case XENMEM_add_to_physmap_batch:
err = do_add_to_physmap_batch(exit, cpu, arg);
break;
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
static bool handle_set_param(struct kvm_xen_exit *exit, X86CPU *cpu,
uint64_t arg)
{
CPUState *cs = CPU(cpu);
struct xen_hvm_param hp;
int err = 0;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(hp) == 16);
if (kvm_copy_from_gva(cs, arg, &hp, sizeof(hp))) {
err = -EFAULT;
goto out;
}
if (hp.domid != DOMID_SELF && hp.domid != xen_domid) {
err = -ESRCH;
goto out;
}
switch (hp.index) {
case HVM_PARAM_CALLBACK_IRQ:
qemu_mutex_lock_iothread();
err = xen_evtchn_set_callback_param(hp.value);
qemu_mutex_unlock_iothread();
xen_set_long_mode(exit->u.hcall.longmode);
break;
default:
return false;
}
out:
exit->u.hcall.result = err;
return true;
}
static bool handle_get_param(struct kvm_xen_exit *exit, X86CPU *cpu,
uint64_t arg)
{
CPUState *cs = CPU(cpu);
struct xen_hvm_param hp;
int err = 0;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(hp) == 16);
if (kvm_copy_from_gva(cs, arg, &hp, sizeof(hp))) {
err = -EFAULT;
goto out;
}
if (hp.domid != DOMID_SELF && hp.domid != xen_domid) {
err = -ESRCH;
goto out;
}
switch (hp.index) {
case HVM_PARAM_STORE_PFN:
hp.value = XEN_SPECIAL_PFN(XENSTORE);
break;
case HVM_PARAM_STORE_EVTCHN:
hp.value = xen_xenstore_get_port();
break;
default:
return false;
}
if (kvm_copy_to_gva(cs, arg, &hp, sizeof(hp))) {
err = -EFAULT;
}
out:
exit->u.hcall.result = err;
return true;
}
static int kvm_xen_hcall_evtchn_upcall_vector(struct kvm_xen_exit *exit,
X86CPU *cpu, uint64_t arg)
{
struct xen_hvm_evtchn_upcall_vector up;
CPUState *target_cs;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(up) == 8);
if (kvm_copy_from_gva(CPU(cpu), arg, &up, sizeof(up))) {
return -EFAULT;
}
if (up.vector < 0x10) {
return -EINVAL;
}
target_cs = qemu_get_cpu(up.vcpu);
if (!target_cs) {
return -EINVAL;
}
async_run_on_cpu(target_cs, do_set_vcpu_callback_vector,
RUN_ON_CPU_HOST_INT(up.vector));
return 0;
}
static bool kvm_xen_hcall_hvm_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
int ret = -ENOSYS;
switch (cmd) {
case HVMOP_set_evtchn_upcall_vector:
ret = kvm_xen_hcall_evtchn_upcall_vector(exit, cpu,
exit->u.hcall.params[0]);
break;
case HVMOP_pagetable_dying:
ret = -ENOSYS;
break;
case HVMOP_set_param:
return handle_set_param(exit, cpu, arg);
case HVMOP_get_param:
return handle_get_param(exit, cpu, arg);
default:
return false;
}
exit->u.hcall.result = ret;
return true;
}
static int vcpuop_register_vcpu_info(CPUState *cs, CPUState *target,
uint64_t arg)
{
struct vcpu_register_vcpu_info rvi;
uint64_t gpa;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(rvi) == 16);
qemu_build_assert(sizeof(struct vcpu_info) == 64);
if (!target) {
return -ENOENT;
}
if (kvm_copy_from_gva(cs, arg, &rvi, sizeof(rvi))) {
return -EFAULT;
}
if (rvi.offset > TARGET_PAGE_SIZE - sizeof(struct vcpu_info)) {
return -EINVAL;
}
gpa = ((rvi.mfn << TARGET_PAGE_BITS) + rvi.offset);
async_run_on_cpu(target, do_set_vcpu_info_gpa, RUN_ON_CPU_HOST_ULONG(gpa));
return 0;
}
static int vcpuop_register_vcpu_time_info(CPUState *cs, CPUState *target,
uint64_t arg)
{
struct vcpu_register_time_memory_area tma;
uint64_t gpa;
size_t len;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(tma) == 8);
qemu_build_assert(sizeof(struct vcpu_time_info) == 32);
if (!target) {
return -ENOENT;
}
if (kvm_copy_from_gva(cs, arg, &tma, sizeof(tma))) {
return -EFAULT;
}
/*
* Xen actually uses the GVA and does the translation through the guest
* page tables each time. But Linux/KVM uses the GPA, on the assumption
* that guests only ever use *global* addresses (kernel virtual addresses)
* for it. If Linux is changed to redo the GVA→GPA translation each time,
* it will offer a new vCPU attribute for that, and we'll use it instead.
*/
if (!kvm_gva_to_gpa(cs, tma.addr.p, &gpa, &len, false) ||
len < sizeof(struct vcpu_time_info)) {
return -EFAULT;
}
async_run_on_cpu(target, do_set_vcpu_time_info_gpa,
RUN_ON_CPU_HOST_ULONG(gpa));
return 0;
}
static int vcpuop_register_runstate_info(CPUState *cs, CPUState *target,
uint64_t arg)
{
struct vcpu_register_runstate_memory_area rma;
uint64_t gpa;
size_t len;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(rma) == 8);
/* The runstate area actually does change size, but Linux copes. */
if (!target) {
return -ENOENT;
}
if (kvm_copy_from_gva(cs, arg, &rma, sizeof(rma))) {
return -EFAULT;
}
/* As with vcpu_time_info, Xen actually uses the GVA but KVM doesn't. */
if (!kvm_gva_to_gpa(cs, rma.addr.p, &gpa, &len, false)) {
return -EFAULT;
}
async_run_on_cpu(target, do_set_vcpu_runstate_gpa,
RUN_ON_CPU_HOST_ULONG(gpa));
return 0;
}
static uint64_t kvm_get_current_ns(void)
{
struct kvm_clock_data data;
int ret;
ret = kvm_vm_ioctl(kvm_state, KVM_GET_CLOCK, &data);
if (ret < 0) {
fprintf(stderr, "KVM_GET_CLOCK failed: %s\n", strerror(ret));
abort();
}
return data.clock;
}
static void xen_vcpu_singleshot_timer_event(void *opaque)
{
CPUState *cpu = opaque;
CPUX86State *env = &X86_CPU(cpu)->env;
uint16_t port = env->xen_virq[VIRQ_TIMER];
if (likely(port)) {
xen_evtchn_set_port(port);
}
qemu_mutex_lock(&env->xen_timers_lock);
env->xen_singleshot_timer_ns = 0;
qemu_mutex_unlock(&env->xen_timers_lock);
}
static void xen_vcpu_periodic_timer_event(void *opaque)
{
CPUState *cpu = opaque;
CPUX86State *env = &X86_CPU(cpu)->env;
uint16_t port = env->xen_virq[VIRQ_TIMER];
int64_t qemu_now;
if (likely(port)) {
xen_evtchn_set_port(port);
}
qemu_mutex_lock(&env->xen_timers_lock);
qemu_now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
timer_mod_ns(env->xen_periodic_timer,
qemu_now + env->xen_periodic_timer_period);
qemu_mutex_unlock(&env->xen_timers_lock);
}
static int do_set_periodic_timer(CPUState *target, uint64_t period_ns)
{
CPUX86State *tenv = &X86_CPU(target)->env;
int64_t qemu_now;
timer_del(tenv->xen_periodic_timer);
qemu_mutex_lock(&tenv->xen_timers_lock);
qemu_now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
timer_mod_ns(tenv->xen_periodic_timer, qemu_now + period_ns);
tenv->xen_periodic_timer_period = period_ns;
qemu_mutex_unlock(&tenv->xen_timers_lock);
return 0;
}
#define MILLISECS(_ms) ((int64_t)((_ms) * 1000000ULL))
#define MICROSECS(_us) ((int64_t)((_us) * 1000ULL))
#define STIME_MAX ((time_t)((int64_t)~0ull >> 1))
/* Chosen so (NOW() + delta) won't overflow without an uptime of 200 years */
#define STIME_DELTA_MAX ((int64_t)((uint64_t)~0ull >> 2))
static int vcpuop_set_periodic_timer(CPUState *cs, CPUState *target,
uint64_t arg)
{
struct vcpu_set_periodic_timer spt;
qemu_build_assert(sizeof(spt) == 8);
if (kvm_copy_from_gva(cs, arg, &spt, sizeof(spt))) {
return -EFAULT;
}
if (spt.period_ns < MILLISECS(1) || spt.period_ns > STIME_DELTA_MAX) {
return -EINVAL;
}
return do_set_periodic_timer(target, spt.period_ns);
}
static int vcpuop_stop_periodic_timer(CPUState *target)
{
CPUX86State *tenv = &X86_CPU(target)->env;
qemu_mutex_lock(&tenv->xen_timers_lock);
timer_del(tenv->xen_periodic_timer);
tenv->xen_periodic_timer_period = 0;
qemu_mutex_unlock(&tenv->xen_timers_lock);
return 0;
}
/*
* Userspace handling of timer, for older kernels.
* Must always be called with xen_timers_lock held.
*/
static int do_set_singleshot_timer(CPUState *cs, uint64_t timeout_abs,
bool future, bool linux_wa)
{
CPUX86State *env = &X86_CPU(cs)->env;
int64_t now = kvm_get_current_ns();
int64_t qemu_now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int64_t delta = timeout_abs - now;
if (future && timeout_abs < now) {
return -ETIME;
}
if (linux_wa && unlikely((int64_t)timeout_abs < 0 ||
(delta > 0 && (uint32_t)(delta >> 50) != 0))) {
/*
* Xen has a 'Linux workaround' in do_set_timer_op() which checks
* for negative absolute timeout values (caused by integer
* overflow), and for values about 13 days in the future (2^50ns)
* which would be caused by jiffies overflow. For those cases, it
* sets the timeout 100ms in the future (not *too* soon, since if
* a guest really did set a long timeout on purpose we don't want
* to keep churning CPU time by waking it up).
*/
delta = (100 * SCALE_MS);
timeout_abs = now + delta;
}
timer_mod_ns(env->xen_singleshot_timer, qemu_now + delta);
env->xen_singleshot_timer_ns = now + delta;
return 0;
}
static int vcpuop_set_singleshot_timer(CPUState *cs, uint64_t arg)
{
struct vcpu_set_singleshot_timer sst = { 0 };
/*
* The struct is a uint64_t followed by a uint32_t. On 32-bit that
* makes it 12 bytes. On 64-bit it gets padded to 16. The parts
* that get used are identical, and there's four bytes of padding
* unused at the end. For true Xen compatibility we should attempt
* to copy the full 16 bytes from 64-bit guests, and return -EFAULT
* if we can't get the padding too. But that's daft. Just copy what
* we need.
*/
qemu_build_assert(offsetof(struct vcpu_set_singleshot_timer, flags) == 8);
qemu_build_assert(sizeof(sst) >= 12);
if (kvm_copy_from_gva(cs, arg, &sst, 12)) {
return -EFAULT;
}
QEMU_LOCK_GUARD(&X86_CPU(cs)->env.xen_timers_lock);
return do_set_singleshot_timer(cs, sst.timeout_abs_ns,
!!(sst.flags & VCPU_SSHOTTMR_future),
false);
}
static int vcpuop_stop_singleshot_timer(CPUState *cs)
{
CPUX86State *env = &X86_CPU(cs)->env;
qemu_mutex_lock(&env->xen_timers_lock);
timer_del(env->xen_singleshot_timer);
env->xen_singleshot_timer_ns = 0;
qemu_mutex_unlock(&env->xen_timers_lock);
return 0;
}
static bool kvm_xen_hcall_set_timer_op(struct kvm_xen_exit *exit, X86CPU *cpu,
uint64_t timeout)
{
int err;
if (unlikely(timeout == 0)) {
err = vcpuop_stop_singleshot_timer(CPU(cpu));
} else {
QEMU_LOCK_GUARD(&X86_CPU(cpu)->env.xen_timers_lock);
err = do_set_singleshot_timer(CPU(cpu), timeout, false, true);
}
exit->u.hcall.result = err;
return true;
}
static bool kvm_xen_hcall_vcpu_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, int vcpu_id, uint64_t arg)
{
CPUState *cs = CPU(cpu);
CPUState *dest = cs->cpu_index == vcpu_id ? cs : qemu_get_cpu(vcpu_id);
int err;
if (!dest) {
err = -ENOENT;
goto out;
}
switch (cmd) {
case VCPUOP_register_runstate_memory_area:
err = vcpuop_register_runstate_info(cs, dest, arg);
break;
case VCPUOP_register_vcpu_time_memory_area:
err = vcpuop_register_vcpu_time_info(cs, dest, arg);
break;
case VCPUOP_register_vcpu_info:
err = vcpuop_register_vcpu_info(cs, dest, arg);
break;
case VCPUOP_set_singleshot_timer: {
if (cs->cpu_index == vcpu_id) {
err = vcpuop_set_singleshot_timer(dest, arg);
} else {
err = -EINVAL;
}
break;
}
case VCPUOP_stop_singleshot_timer:
if (cs->cpu_index == vcpu_id) {
err = vcpuop_stop_singleshot_timer(dest);
} else {
err = -EINVAL;
}
break;
case VCPUOP_set_periodic_timer: {
err = vcpuop_set_periodic_timer(cs, dest, arg);
break;
}
case VCPUOP_stop_periodic_timer:
err = vcpuop_stop_periodic_timer(dest);
break;
default:
return false;
}
out:
exit->u.hcall.result = err;
return true;
}
static bool kvm_xen_hcall_evtchn_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
CPUState *cs = CPU(cpu);
int err = -ENOSYS;
switch (cmd) {
case EVTCHNOP_init_control:
case EVTCHNOP_expand_array:
case EVTCHNOP_set_priority:
/* We do not support FIFO channels at this point */
err = -ENOSYS;
break;
case EVTCHNOP_status: {
struct evtchn_status status;
qemu_build_assert(sizeof(status) == 24);
if (kvm_copy_from_gva(cs, arg, &status, sizeof(status))) {
err = -EFAULT;
break;
}
err = xen_evtchn_status_op(&status);
if (!err && kvm_copy_to_gva(cs, arg, &status, sizeof(status))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_close: {
struct evtchn_close close;
qemu_build_assert(sizeof(close) == 4);
if (kvm_copy_from_gva(cs, arg, &close, sizeof(close))) {
err = -EFAULT;
break;
}
err = xen_evtchn_close_op(&close);
break;
}
case EVTCHNOP_unmask: {
struct evtchn_unmask unmask;
qemu_build_assert(sizeof(unmask) == 4);
if (kvm_copy_from_gva(cs, arg, &unmask, sizeof(unmask))) {
err = -EFAULT;
break;
}
err = xen_evtchn_unmask_op(&unmask);
break;
}
case EVTCHNOP_bind_virq: {
struct evtchn_bind_virq virq;
qemu_build_assert(sizeof(virq) == 12);
if (kvm_copy_from_gva(cs, arg, &virq, sizeof(virq))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_virq_op(&virq);
if (!err && kvm_copy_to_gva(cs, arg, &virq, sizeof(virq))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_bind_pirq: {
struct evtchn_bind_pirq pirq;
qemu_build_assert(sizeof(pirq) == 12);
if (kvm_copy_from_gva(cs, arg, &pirq, sizeof(pirq))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_pirq_op(&pirq);
if (!err && kvm_copy_to_gva(cs, arg, &pirq, sizeof(pirq))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_bind_ipi: {
struct evtchn_bind_ipi ipi;
qemu_build_assert(sizeof(ipi) == 8);
if (kvm_copy_from_gva(cs, arg, &ipi, sizeof(ipi))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_ipi_op(&ipi);
if (!err && kvm_copy_to_gva(cs, arg, &ipi, sizeof(ipi))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_send: {
struct evtchn_send send;
qemu_build_assert(sizeof(send) == 4);
if (kvm_copy_from_gva(cs, arg, &send, sizeof(send))) {
err = -EFAULT;
break;
}
err = xen_evtchn_send_op(&send);
break;
}
case EVTCHNOP_alloc_unbound: {
struct evtchn_alloc_unbound alloc;
qemu_build_assert(sizeof(alloc) == 8);
if (kvm_copy_from_gva(cs, arg, &alloc, sizeof(alloc))) {
err = -EFAULT;
break;
}
err = xen_evtchn_alloc_unbound_op(&alloc);
if (!err && kvm_copy_to_gva(cs, arg, &alloc, sizeof(alloc))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_bind_interdomain: {
struct evtchn_bind_interdomain interdomain;
qemu_build_assert(sizeof(interdomain) == 12);
if (kvm_copy_from_gva(cs, arg, &interdomain, sizeof(interdomain))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_interdomain_op(&interdomain);
if (!err &&
kvm_copy_to_gva(cs, arg, &interdomain, sizeof(interdomain))) {
err = -EFAULT;
}
break;
}
case EVTCHNOP_bind_vcpu: {
struct evtchn_bind_vcpu vcpu;
qemu_build_assert(sizeof(vcpu) == 8);
if (kvm_copy_from_gva(cs, arg, &vcpu, sizeof(vcpu))) {
err = -EFAULT;
break;
}
err = xen_evtchn_bind_vcpu_op(&vcpu);
break;
}
case EVTCHNOP_reset: {
struct evtchn_reset reset;
qemu_build_assert(sizeof(reset) == 2);
if (kvm_copy_from_gva(cs, arg, &reset, sizeof(reset))) {
err = -EFAULT;
break;
}
err = xen_evtchn_reset_op(&reset);
break;
}
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
int kvm_xen_soft_reset(void)
{
CPUState *cpu;
int err;
assert(qemu_mutex_iothread_locked());
trace_kvm_xen_soft_reset();
err = xen_evtchn_soft_reset();
if (err) {
return err;
}
/*
* Zero is the reset/startup state for HVM_PARAM_CALLBACK_IRQ. Strictly,
* it maps to HVM_PARAM_CALLBACK_TYPE_GSI with GSI#0, but Xen refuses to
* to deliver to the timer interrupt and treats that as 'disabled'.
*/
err = xen_evtchn_set_callback_param(0);
if (err) {
return err;
}
CPU_FOREACH(cpu) {
async_run_on_cpu(cpu, do_vcpu_soft_reset, RUN_ON_CPU_NULL);
}
err = xen_overlay_map_shinfo_page(INVALID_GFN);
if (err) {
return err;
}
err = xen_gnttab_reset();
if (err) {
return err;
}
err = xen_xenstore_reset();
if (err) {
return err;
}
return 0;
}
static int schedop_shutdown(CPUState *cs, uint64_t arg)
{
struct sched_shutdown shutdown;
int ret = 0;
/* No need for 32/64 compat handling */
qemu_build_assert(sizeof(shutdown) == 4);
if (kvm_copy_from_gva(cs, arg, &shutdown, sizeof(shutdown))) {
return -EFAULT;
}
switch (shutdown.reason) {
case SHUTDOWN_crash:
cpu_dump_state(cs, stderr, CPU_DUMP_CODE);
qemu_system_guest_panicked(NULL);
break;
case SHUTDOWN_reboot:
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
break;
case SHUTDOWN_poweroff:
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
break;
case SHUTDOWN_soft_reset:
qemu_mutex_lock_iothread();
ret = kvm_xen_soft_reset();
qemu_mutex_unlock_iothread();
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static bool kvm_xen_hcall_sched_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
CPUState *cs = CPU(cpu);
int err = -ENOSYS;
switch (cmd) {
case SCHEDOP_shutdown:
err = schedop_shutdown(cs, arg);
break;
case SCHEDOP_poll:
/*
* Linux will panic if this doesn't work. Just yield; it's not
* worth overthinking it because with event channel handling
* in KVM, the kernel will intercept this and it will never
* reach QEMU anyway. The semantics of the hypercall explicltly
* permit spurious wakeups.
*/
case SCHEDOP_yield:
sched_yield();
err = 0;
break;
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
static bool kvm_xen_hcall_gnttab_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg, int count)
{
CPUState *cs = CPU(cpu);
int err;
switch (cmd) {
case GNTTABOP_set_version: {
struct gnttab_set_version set;
qemu_build_assert(sizeof(set) == 4);
if (kvm_copy_from_gva(cs, arg, &set, sizeof(set))) {
err = -EFAULT;
break;
}
err = xen_gnttab_set_version_op(&set);
if (!err && kvm_copy_to_gva(cs, arg, &set, sizeof(set))) {
err = -EFAULT;
}
break;
}
case GNTTABOP_get_version: {
struct gnttab_get_version get;
qemu_build_assert(sizeof(get) == 8);
if (kvm_copy_from_gva(cs, arg, &get, sizeof(get))) {
err = -EFAULT;
break;
}
err = xen_gnttab_get_version_op(&get);
if (!err && kvm_copy_to_gva(cs, arg, &get, sizeof(get))) {
err = -EFAULT;
}
break;
}
case GNTTABOP_query_size: {
struct gnttab_query_size size;
qemu_build_assert(sizeof(size) == 16);
if (kvm_copy_from_gva(cs, arg, &size, sizeof(size))) {
err = -EFAULT;
break;
}
err = xen_gnttab_query_size_op(&size);
if (!err && kvm_copy_to_gva(cs, arg, &size, sizeof(size))) {
err = -EFAULT;
}
break;
}
case GNTTABOP_setup_table:
case GNTTABOP_copy:
case GNTTABOP_map_grant_ref:
case GNTTABOP_unmap_grant_ref:
case GNTTABOP_swap_grant_ref:
return false;
default:
/* Xen explicitly returns -ENOSYS to HVM guests for all others */
err = -ENOSYS;
break;
}
exit->u.hcall.result = err;
return true;
}
static bool kvm_xen_hcall_physdev_op(struct kvm_xen_exit *exit, X86CPU *cpu,
int cmd, uint64_t arg)
{
CPUState *cs = CPU(cpu);
int err;
switch (cmd) {
case PHYSDEVOP_map_pirq: {
struct physdev_map_pirq map;
if (hypercall_compat32(exit->u.hcall.longmode)) {
struct compat_physdev_map_pirq *map32 = (void *)&map;
if (kvm_copy_from_gva(cs, arg, map32, sizeof(*map32))) {
return -EFAULT;
}
/*
* The only thing that's different is the alignment of the
* uint64_t table_base at the end, which gets padding to make
* it 64-bit aligned in the 64-bit version.
*/
qemu_build_assert(sizeof(*map32) == 36);
qemu_build_assert(offsetof(struct physdev_map_pirq, entry_nr) ==
offsetof(struct compat_physdev_map_pirq, entry_nr));
memmove(&map.table_base, &map32->table_base, sizeof(map.table_base));
} else {
if (kvm_copy_from_gva(cs, arg, &map, sizeof(map))) {
err = -EFAULT;
break;
}
}
err = xen_physdev_map_pirq(&map);
/*
* Since table_base is an IN parameter and won't be changed, just
* copy the size of the compat structure back to the guest.
*/
if (!err && kvm_copy_to_gva(cs, arg, &map,
sizeof(struct compat_physdev_map_pirq))) {
err = -EFAULT;
}
break;
}
case PHYSDEVOP_unmap_pirq: {
struct physdev_unmap_pirq unmap;
qemu_build_assert(sizeof(unmap) == 8);
if (kvm_copy_from_gva(cs, arg, &unmap, sizeof(unmap))) {
err = -EFAULT;
break;
}
err = xen_physdev_unmap_pirq(&unmap);
if (!err && kvm_copy_to_gva(cs, arg, &unmap, sizeof(unmap))) {
err = -EFAULT;
}
break;
}
case PHYSDEVOP_eoi: {
struct physdev_eoi eoi;
qemu_build_assert(sizeof(eoi) == 4);
if (kvm_copy_from_gva(cs, arg, &eoi, sizeof(eoi))) {
err = -EFAULT;
break;
}
err = xen_physdev_eoi_pirq(&eoi);
if (!err && kvm_copy_to_gva(cs, arg, &eoi, sizeof(eoi))) {
err = -EFAULT;
}
break;
}
case PHYSDEVOP_irq_status_query: {
struct physdev_irq_status_query query;
qemu_build_assert(sizeof(query) == 8);
if (kvm_copy_from_gva(cs, arg, &query, sizeof(query))) {
err = -EFAULT;
break;
}
err = xen_physdev_query_pirq(&query);
if (!err && kvm_copy_to_gva(cs, arg, &query, sizeof(query))) {
err = -EFAULT;
}
break;
}
case PHYSDEVOP_get_free_pirq: {
struct physdev_get_free_pirq get;
qemu_build_assert(sizeof(get) == 8);
if (kvm_copy_from_gva(cs, arg, &get, sizeof(get))) {
err = -EFAULT;
break;
}
err = xen_physdev_get_free_pirq(&get);
if (!err && kvm_copy_to_gva(cs, arg, &get, sizeof(get))) {
err = -EFAULT;
}
break;
}
case PHYSDEVOP_pirq_eoi_gmfn_v2: /* FreeBSD 13 makes this hypercall */
err = -ENOSYS;
break;
default:
return false;
}
exit->u.hcall.result = err;
return true;
}
static bool do_kvm_xen_handle_exit(X86CPU *cpu, struct kvm_xen_exit *exit)
{
uint16_t code = exit->u.hcall.input;
if (exit->u.hcall.cpl > 0) {
exit->u.hcall.result = -EPERM;
return true;
}
switch (code) {
case __HYPERVISOR_set_timer_op:
if (exit->u.hcall.longmode) {
return kvm_xen_hcall_set_timer_op(exit, cpu,
exit->u.hcall.params[0]);
} else {
/* In 32-bit mode, the 64-bit timer value is in two args. */
uint64_t val = ((uint64_t)exit->u.hcall.params[1]) << 32 |
(uint32_t)exit->u.hcall.params[0];
return kvm_xen_hcall_set_timer_op(exit, cpu, val);
}
case __HYPERVISOR_grant_table_op:
return kvm_xen_hcall_gnttab_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1],
exit->u.hcall.params[2]);
case __HYPERVISOR_sched_op:
return kvm_xen_hcall_sched_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_event_channel_op:
return kvm_xen_hcall_evtchn_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_vcpu_op:
return kvm_xen_hcall_vcpu_op(exit, cpu,
exit->u.hcall.params[0],
exit->u.hcall.params[1],
exit->u.hcall.params[2]);
case __HYPERVISOR_hvm_op:
return kvm_xen_hcall_hvm_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_memory_op:
return kvm_xen_hcall_memory_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_physdev_op:
return kvm_xen_hcall_physdev_op(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
case __HYPERVISOR_xen_version:
return kvm_xen_hcall_xen_version(exit, cpu, exit->u.hcall.params[0],
exit->u.hcall.params[1]);
default:
return false;
}
}
int kvm_xen_handle_exit(X86CPU *cpu, struct kvm_xen_exit *exit)
{
if (exit->type != KVM_EXIT_XEN_HCALL) {
return -1;
}
/*
* The kernel latches the guest 32/64 mode when the MSR is used to fill
* the hypercall page. So if we see a hypercall in a mode that doesn't
* match our own idea of the guest mode, fetch the kernel's idea of the
* "long mode" to remain in sync.
*/
if (exit->u.hcall.longmode != xen_is_long_mode()) {
xen_sync_long_mode();
}
if (!do_kvm_xen_handle_exit(cpu, exit)) {
/*
* Some hypercalls will be deliberately "implemented" by returning
* -ENOSYS. This case is for hypercalls which are unexpected.
*/
exit->u.hcall.result = -ENOSYS;
qemu_log_mask(LOG_UNIMP, "Unimplemented Xen hypercall %"
PRId64 " (0x%" PRIx64 " 0x%" PRIx64 " 0x%" PRIx64 ")\n",
(uint64_t)exit->u.hcall.input,
(uint64_t)exit->u.hcall.params[0],
(uint64_t)exit->u.hcall.params[1],
(uint64_t)exit->u.hcall.params[2]);
}
trace_kvm_xen_hypercall(CPU(cpu)->cpu_index, exit->u.hcall.cpl,
exit->u.hcall.input, exit->u.hcall.params[0],
exit->u.hcall.params[1], exit->u.hcall.params[2],
exit->u.hcall.result);
return 0;
}
uint16_t kvm_xen_get_gnttab_max_frames(void)
{
KVMState *s = KVM_STATE(current_accel());
return s->xen_gnttab_max_frames;
}
uint16_t kvm_xen_get_evtchn_max_pirq(void)
{
KVMState *s = KVM_STATE(current_accel());
return s->xen_evtchn_max_pirq;
}
int kvm_put_xen_state(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
uint64_t gpa;
int ret;
gpa = env->xen_vcpu_info_gpa;
if (gpa == INVALID_GPA) {
gpa = env->xen_vcpu_info_default_gpa;
}
if (gpa != INVALID_GPA) {
ret = set_vcpu_info(cs, gpa);
if (ret < 0) {
return ret;
}
}
gpa = env->xen_vcpu_time_info_gpa;
if (gpa != INVALID_GPA) {
ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO,
gpa);
if (ret < 0) {
return ret;
}
}
gpa = env->xen_vcpu_runstate_gpa;
if (gpa != INVALID_GPA) {
ret = kvm_xen_set_vcpu_attr(cs, KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR,
gpa);
if (ret < 0) {
return ret;
}
}
if (env->xen_periodic_timer_period) {
ret = do_set_periodic_timer(cs, env->xen_periodic_timer_period);
if (ret < 0) {
return ret;
}
}
if (!kvm_xen_has_cap(EVTCHN_SEND)) {
/*
* If the kernel has EVTCHN_SEND support then it handles timers too,
* so the timer will be restored by kvm_xen_set_vcpu_timer() below.
*/
QEMU_LOCK_GUARD(&env->xen_timers_lock);
if (env->xen_singleshot_timer_ns) {
ret = do_set_singleshot_timer(cs, env->xen_singleshot_timer_ns,
false, false);
if (ret < 0) {
return ret;
}
}
return 0;
}
if (env->xen_vcpu_callback_vector) {
ret = kvm_xen_set_vcpu_callback_vector(cs);
if (ret < 0) {
return ret;
}
}
if (env->xen_virq[VIRQ_TIMER]) {
do_set_vcpu_timer_virq(cs,
RUN_ON_CPU_HOST_INT(env->xen_virq[VIRQ_TIMER]));
}
return 0;
}
int kvm_get_xen_state(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
uint64_t gpa;
int ret;
/*
* The kernel does not mark vcpu_info as dirty when it delivers interrupts
* to it. It's up to userspace to *assume* that any page shared thus is
* always considered dirty. The shared_info page is different since it's
* an overlay and migrated separately anyway.
*/
gpa = env->xen_vcpu_info_gpa;
if (gpa == INVALID_GPA) {
gpa = env->xen_vcpu_info_default_gpa;
}
if (gpa != INVALID_GPA) {
MemoryRegionSection mrs = memory_region_find(get_system_memory(),
gpa,
sizeof(struct vcpu_info));
if (mrs.mr &&
!int128_lt(mrs.size, int128_make64(sizeof(struct vcpu_info)))) {
memory_region_set_dirty(mrs.mr, mrs.offset_within_region,
sizeof(struct vcpu_info));
}
}
if (!kvm_xen_has_cap(EVTCHN_SEND)) {
return 0;
}
/*
* If the kernel is accelerating timers, read out the current value of the
* singleshot timer deadline.
*/
if (env->xen_virq[VIRQ_TIMER]) {
struct kvm_xen_vcpu_attr va = {
.type = KVM_XEN_VCPU_ATTR_TYPE_TIMER,
};
ret = kvm_vcpu_ioctl(cs, KVM_XEN_VCPU_GET_ATTR, &va);
if (ret < 0) {
return ret;
}
/*
* This locking is fairly pointless, and is here to appease Coverity.
* There is an unavoidable race condition if a different vCPU sets a
* timer for this vCPU after the value has been read out. But that's
* OK in practice because *all* the vCPUs need to be stopped before
* we set about migrating their state.
*/
QEMU_LOCK_GUARD(&X86_CPU(cs)->env.xen_timers_lock);
env->xen_singleshot_timer_ns = va.u.timer.expires_ns;
}
return 0;
}