qemu/target/arm/arm-powerctl.c
Alex Bennée 062ba099e0 target-arm/powerctl: defer cpu reset work to CPU context
When switching a new vCPU on we want to complete a bunch of the setup
work before we start scheduling the vCPU thread. To do this cleanly we
defer vCPU setup to async work which will run the vCPUs execution
context as the thread is woken up. The scheduling of the work will kick
the vCPU awake.

This avoids potential races in MTTCG system emulation.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
2017-02-24 10:32:46 +00:00

301 lines
8.9 KiB
C

/*
* QEMU support -- ARM Power Control specific functions.
*
* Copyright (c) 2016 Jean-Christophe Dubois
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "cpu-qom.h"
#include "internals.h"
#include "arm-powerctl.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "exec/exec-all.h"
#ifndef DEBUG_ARM_POWERCTL
#define DEBUG_ARM_POWERCTL 0
#endif
#define DPRINTF(fmt, args...) \
do { \
if (DEBUG_ARM_POWERCTL) { \
fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
} \
} while (0)
CPUState *arm_get_cpu_by_id(uint64_t id)
{
CPUState *cpu;
DPRINTF("cpu %" PRId64 "\n", id);
CPU_FOREACH(cpu) {
ARMCPU *armcpu = ARM_CPU(cpu);
if (armcpu->mp_affinity == id) {
return cpu;
}
}
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
__func__, id);
return NULL;
}
struct CpuOnInfo {
uint64_t entry;
uint64_t context_id;
uint32_t target_el;
bool target_aa64;
};
static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
run_on_cpu_data data)
{
ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
/* Initialize the cpu we are turning on */
cpu_reset(target_cpu_state);
target_cpu_state->halted = 0;
if (info->target_aa64) {
if ((info->target_el < 3) && arm_feature(&target_cpu->env,
ARM_FEATURE_EL3)) {
/*
* As target mode is AArch64, we need to set lower
* exception level (the requested level 2) to AArch64
*/
target_cpu->env.cp15.scr_el3 |= SCR_RW;
}
if ((info->target_el < 2) && arm_feature(&target_cpu->env,
ARM_FEATURE_EL2)) {
/*
* As target mode is AArch64, we need to set lower
* exception level (the requested level 1) to AArch64
*/
target_cpu->env.cp15.hcr_el2 |= HCR_RW;
}
target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
} else {
/* We are requested to boot in AArch32 mode */
static const uint32_t mode_for_el[] = { 0,
ARM_CPU_MODE_SVC,
ARM_CPU_MODE_HYP,
ARM_CPU_MODE_SVC };
cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
CPSRWriteRaw);
}
if (info->target_el == 3) {
/* Processor is in secure mode */
target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
} else {
/* Processor is not in secure mode */
target_cpu->env.cp15.scr_el3 |= SCR_NS;
}
/* We check if the started CPU is now at the correct level */
assert(info->target_el == arm_current_el(&target_cpu->env));
if (info->target_aa64) {
target_cpu->env.xregs[0] = info->context_id;
target_cpu->env.thumb = false;
} else {
target_cpu->env.regs[0] = info->context_id;
target_cpu->env.thumb = info->entry & 1;
info->entry &= 0xfffffffe;
}
/* Start the new CPU at the requested address */
cpu_set_pc(target_cpu_state, info->entry);
g_free(info);
/* Finally set the power status */
assert(qemu_mutex_iothread_locked());
target_cpu->power_state = PSCI_ON;
}
int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
uint32_t target_el, bool target_aa64)
{
CPUState *target_cpu_state;
ARMCPU *target_cpu;
struct CpuOnInfo *info;
assert(qemu_mutex_iothread_locked());
DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
"\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
context_id);
/* requested EL level need to be in the 1 to 3 range */
assert((target_el > 0) && (target_el < 4));
if (target_aa64 && (entry & 3)) {
/*
* if we are booting in AArch64 mode then "entry" needs to be 4 bytes
* aligned.
*/
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
/* Retrieve the cpu we are powering up */
target_cpu_state = arm_get_cpu_by_id(cpuid);
if (!target_cpu_state) {
/* The cpu was not found */
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
target_cpu = ARM_CPU(target_cpu_state);
if (target_cpu->power_state == PSCI_ON) {
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: CPU %" PRId64 " is already on\n",
__func__, cpuid);
return QEMU_ARM_POWERCTL_ALREADY_ON;
}
/*
* The newly brought CPU is requested to enter the exception level
* "target_el" and be in the requested mode (AArch64 or AArch32).
*/
if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
/*
* The CPU does not support requested level
*/
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
/*
* For now we don't support booting an AArch64 CPU in AArch32 mode
* TODO: We should add this support later
*/
qemu_log_mask(LOG_UNIMP,
"[ARM]%s: Starting AArch64 CPU %" PRId64
" in AArch32 mode is not supported yet\n",
__func__, cpuid);
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
/*
* If another CPU has powered the target on we are in the state
* ON_PENDING and additional attempts to power on the CPU should
* fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
* spec)
*/
if (target_cpu->power_state == PSCI_ON_PENDING) {
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: CPU %" PRId64 " is already powering on\n",
__func__, cpuid);
return QEMU_ARM_POWERCTL_ON_PENDING;
}
/* To avoid racing with a CPU we are just kicking off we do the
* final bit of preparation for the work in the target CPUs
* context.
*/
info = g_new(struct CpuOnInfo, 1);
info->entry = entry;
info->context_id = context_id;
info->target_el = target_el;
info->target_aa64 = target_aa64;
async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
RUN_ON_CPU_HOST_PTR(info));
/* We are good to go */
return QEMU_ARM_POWERCTL_RET_SUCCESS;
}
static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
run_on_cpu_data data)
{
ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
assert(qemu_mutex_iothread_locked());
target_cpu->power_state = PSCI_OFF;
target_cpu_state->halted = 1;
target_cpu_state->exception_index = EXCP_HLT;
}
int arm_set_cpu_off(uint64_t cpuid)
{
CPUState *target_cpu_state;
ARMCPU *target_cpu;
assert(qemu_mutex_iothread_locked());
DPRINTF("cpu %" PRId64 "\n", cpuid);
/* change to the cpu we are powering up */
target_cpu_state = arm_get_cpu_by_id(cpuid);
if (!target_cpu_state) {
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
target_cpu = ARM_CPU(target_cpu_state);
if (target_cpu->power_state == PSCI_OFF) {
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: CPU %" PRId64 " is already off\n",
__func__, cpuid);
return QEMU_ARM_POWERCTL_IS_OFF;
}
/* Queue work to run under the target vCPUs context */
async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
RUN_ON_CPU_NULL);
return QEMU_ARM_POWERCTL_RET_SUCCESS;
}
static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
run_on_cpu_data data)
{
/* Reset the cpu */
cpu_reset(target_cpu_state);
}
int arm_reset_cpu(uint64_t cpuid)
{
CPUState *target_cpu_state;
ARMCPU *target_cpu;
assert(qemu_mutex_iothread_locked());
DPRINTF("cpu %" PRId64 "\n", cpuid);
/* change to the cpu we are resetting */
target_cpu_state = arm_get_cpu_by_id(cpuid);
if (!target_cpu_state) {
return QEMU_ARM_POWERCTL_INVALID_PARAM;
}
target_cpu = ARM_CPU(target_cpu_state);
if (target_cpu->power_state == PSCI_OFF) {
qemu_log_mask(LOG_GUEST_ERROR,
"[ARM]%s: CPU %" PRId64 " is off\n",
__func__, cpuid);
return QEMU_ARM_POWERCTL_IS_OFF;
}
/* Queue work to run under the target vCPUs context */
async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
RUN_ON_CPU_NULL);
return QEMU_ARM_POWERCTL_RET_SUCCESS;
}