qemu/hw/ppc/e500.c
Bernhard Beschow 7e6b5497ea hw/char: Extract serial-mm
hw/char/serial currently contains the implementation of both TYPE_SERIAL and
TYPE_SERIAL_MM. According to serial_class_init(), TYPE_SERIAL is an internal
class while TYPE_SERIAL_MM is used by numerous machine types directly. Let's
move the latter into its own module which makes the dependencies more obvious
and the code more tidy.

The includes and the dependencies have been converted mechanically except in the
hw/char directories which were updated manually. The result was compile-tested.
Now, only hw/char makes direct use of TYPE_SERIAL:

  # grep -r -e "select SERIAL" | grep -v SERIAL_
  hw/char/Kconfig:    select SERIAL
  hw/char/Kconfig:    select SERIAL
  hw/char/Kconfig:    select SERIAL
  hw/char/Kconfig:    select SERIAL
  hw/char/Kconfig:    select SERIAL

  # grep -r -e "/serial\\.h"
  include/hw/char/serial-mm.h:#include "hw/char/serial.h"
  hw/char/serial-pci-multi.c:#include "hw/char/serial.h"
  hw/char/serial.c:#include "hw/char/serial.h"
  hw/char/serial-isa.c:#include "hw/char/serial.h"
  hw/char/serial-pci.c:#include "hw/char/serial.h"

Tested-by: Andrew Jeffery <andrew@codeconstruct.com.au>
Reviewed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: Bernhard Beschow <shentey@gmail.com>
Link: https://lore.kernel.org/r/20240905073832.16222-4-shentey@gmail.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-10-03 19:33:23 +02:00

1311 lines
44 KiB
C

/*
* QEMU PowerPC e500-based platforms
*
* Copyright (C) 2009 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, <yu.liu@freescale.com>
*
* This file is derived from hw/ppc440_bamboo.c,
* the copyright for that material belongs to the original owners.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qemu/units.h"
#include "qemu/guest-random.h"
#include "qapi/error.h"
#include "e500.h"
#include "e500-ccsr.h"
#include "net/net.h"
#include "qemu/config-file.h"
#include "hw/block/flash.h"
#include "hw/char/serial-mm.h"
#include "hw/pci/pci.h"
#include "sysemu/block-backend-io.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "kvm_ppc.h"
#include "sysemu/device_tree.h"
#include "hw/ppc/openpic.h"
#include "hw/ppc/openpic_kvm.h"
#include "hw/ppc/ppc.h"
#include "hw/qdev-properties.h"
#include "hw/loader.h"
#include "elf.h"
#include "hw/sysbus.h"
#include "qemu/host-utils.h"
#include "qemu/option.h"
#include "hw/pci-host/ppce500.h"
#include "qemu/error-report.h"
#include "hw/platform-bus.h"
#include "hw/net/fsl_etsec/etsec.h"
#include "hw/i2c/i2c.h"
#include "hw/irq.h"
#include "hw/sd/sdhci.h"
#include "hw/misc/unimp.h"
#define EPAPR_MAGIC (0x45504150)
#define DTC_LOAD_PAD 0x1800000
#define DTC_PAD_MASK 0xFFFFF
#define DTB_MAX_SIZE (8 * MiB)
#define INITRD_LOAD_PAD 0x2000000
#define INITRD_PAD_MASK 0xFFFFFF
#define RAM_SIZES_ALIGN (64 * MiB)
/* TODO: parameterize */
#define MPC8544_CCSRBAR_SIZE 0x00100000ULL
#define MPC8544_MPIC_REGS_OFFSET 0x40000ULL
#define MPC8544_MSI_REGS_OFFSET 0x41600ULL
#define MPC8544_SERIAL0_REGS_OFFSET 0x4500ULL
#define MPC8544_SERIAL1_REGS_OFFSET 0x4600ULL
#define MPC8544_PCI_REGS_OFFSET 0x8000ULL
#define MPC8544_PCI_REGS_SIZE 0x1000ULL
#define MPC85XX_ESDHC_REGS_OFFSET 0x2e000ULL
#define MPC85XX_ESDHC_REGS_SIZE 0x1000ULL
#define MPC8544_UTIL_OFFSET 0xe0000ULL
#define MPC8XXX_GPIO_OFFSET 0x000FF000ULL
#define MPC8544_I2C_REGS_OFFSET 0x3000ULL
#define MPC8XXX_GPIO_IRQ 47
#define MPC8544_I2C_IRQ 43
#define MPC85XX_ESDHC_IRQ 72
#define RTC_REGS_OFFSET 0x68
#define PLATFORM_CLK_FREQ_HZ (400 * 1000 * 1000)
struct boot_info
{
uint32_t dt_base;
uint32_t dt_size;
uint32_t entry;
};
static uint32_t *pci_map_create(void *fdt, uint32_t mpic, int first_slot,
int nr_slots, int *len)
{
int i = 0;
int slot;
int pci_irq;
int host_irq;
int last_slot = first_slot + nr_slots;
uint32_t *pci_map;
*len = nr_slots * 4 * 7 * sizeof(uint32_t);
pci_map = g_malloc(*len);
for (slot = first_slot; slot < last_slot; slot++) {
for (pci_irq = 0; pci_irq < 4; pci_irq++) {
pci_map[i++] = cpu_to_be32(slot << 11);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(pci_irq + 1);
pci_map[i++] = cpu_to_be32(mpic);
host_irq = ppce500_pci_map_irq_slot(slot, pci_irq);
pci_map[i++] = cpu_to_be32(host_irq + 1);
pci_map[i++] = cpu_to_be32(0x1);
}
}
assert((i * sizeof(uint32_t)) == *len);
return pci_map;
}
static void dt_serial_create(void *fdt, unsigned long long offset,
const char *soc, const char *mpic,
const char *alias, int idx, bool defcon)
{
char *ser;
ser = g_strdup_printf("%s/serial@%llx", soc, offset);
qemu_fdt_add_subnode(fdt, ser);
qemu_fdt_setprop_string(fdt, ser, "device_type", "serial");
qemu_fdt_setprop_string(fdt, ser, "compatible", "ns16550");
qemu_fdt_setprop_cells(fdt, ser, "reg", offset, 0x100);
qemu_fdt_setprop_cell(fdt, ser, "cell-index", idx);
qemu_fdt_setprop_cell(fdt, ser, "clock-frequency", PLATFORM_CLK_FREQ_HZ);
qemu_fdt_setprop_cells(fdt, ser, "interrupts", 42, 2);
qemu_fdt_setprop_phandle(fdt, ser, "interrupt-parent", mpic);
qemu_fdt_setprop_string(fdt, "/aliases", alias, ser);
if (defcon) {
/*
* "linux,stdout-path" and "stdout" properties are deprecated by linux
* kernel. New platforms should only use the "stdout-path" property. Set
* the new property and continue using older property to remain
* compatible with the existing firmware.
*/
qemu_fdt_setprop_string(fdt, "/chosen", "linux,stdout-path", ser);
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", ser);
}
g_free(ser);
}
static void create_dt_mpc8xxx_gpio(void *fdt, const char *soc, const char *mpic)
{
hwaddr mmio0 = MPC8XXX_GPIO_OFFSET;
int irq0 = MPC8XXX_GPIO_IRQ;
gchar *node = g_strdup_printf("%s/gpio@%"PRIx64, soc, mmio0);
gchar *poweroff = g_strdup_printf("%s/power-off", soc);
int gpio_ph;
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,qoriq-gpio");
qemu_fdt_setprop_cells(fdt, node, "reg", mmio0, 0x1000);
qemu_fdt_setprop_cells(fdt, node, "interrupts", irq0, 0x2);
qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, node, "#gpio-cells", 2);
qemu_fdt_setprop(fdt, node, "gpio-controller", NULL, 0);
gpio_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cell(fdt, node, "phandle", gpio_ph);
qemu_fdt_setprop_cell(fdt, node, "linux,phandle", gpio_ph);
/* Power Off Pin */
qemu_fdt_add_subnode(fdt, poweroff);
qemu_fdt_setprop_string(fdt, poweroff, "compatible", "gpio-poweroff");
qemu_fdt_setprop_cells(fdt, poweroff, "gpios", gpio_ph, 0, 0);
g_free(node);
g_free(poweroff);
}
static void dt_rtc_create(void *fdt, const char *i2c, const char *alias)
{
int offset = RTC_REGS_OFFSET;
gchar *rtc = g_strdup_printf("%s/rtc@%"PRIx32, i2c, offset);
qemu_fdt_add_subnode(fdt, rtc);
qemu_fdt_setprop_string(fdt, rtc, "compatible", "pericom,pt7c4338");
qemu_fdt_setprop_cells(fdt, rtc, "reg", offset);
qemu_fdt_setprop_string(fdt, "/aliases", alias, rtc);
g_free(rtc);
}
static void dt_i2c_create(void *fdt, const char *soc, const char *mpic,
const char *alias)
{
hwaddr mmio0 = MPC8544_I2C_REGS_OFFSET;
int irq0 = MPC8544_I2C_IRQ;
gchar *i2c = g_strdup_printf("%s/i2c@%"PRIx64, soc, mmio0);
qemu_fdt_add_subnode(fdt, i2c);
qemu_fdt_setprop_string(fdt, i2c, "device_type", "i2c");
qemu_fdt_setprop_string(fdt, i2c, "compatible", "fsl-i2c");
qemu_fdt_setprop_cells(fdt, i2c, "reg", mmio0, 0x14);
qemu_fdt_setprop_cells(fdt, i2c, "cell-index", 0);
qemu_fdt_setprop_cells(fdt, i2c, "interrupts", irq0, 0x2);
qemu_fdt_setprop_phandle(fdt, i2c, "interrupt-parent", mpic);
qemu_fdt_setprop_string(fdt, "/aliases", alias, i2c);
g_free(i2c);
}
static void dt_sdhc_create(void *fdt, const char *parent, const char *mpic)
{
hwaddr mmio = MPC85XX_ESDHC_REGS_OFFSET;
hwaddr size = MPC85XX_ESDHC_REGS_SIZE;
int irq = MPC85XX_ESDHC_IRQ;
g_autofree char *name = NULL;
name = g_strdup_printf("%s/sdhc@%" PRIx64, parent, mmio);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop(fdt, name, "sdhci,auto-cmd12", NULL, 0);
qemu_fdt_setprop_phandle(fdt, name, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, name, "bus-width", 4);
qemu_fdt_setprop_cells(fdt, name, "interrupts", irq, 0x2);
qemu_fdt_setprop_cells(fdt, name, "reg", mmio, size);
qemu_fdt_setprop_string(fdt, name, "compatible", "fsl,esdhc");
}
typedef struct PlatformDevtreeData {
void *fdt;
const char *mpic;
int irq_start;
const char *node;
PlatformBusDevice *pbus;
} PlatformDevtreeData;
static int create_devtree_etsec(SysBusDevice *sbdev, PlatformDevtreeData *data)
{
eTSEC *etsec = ETSEC_COMMON(sbdev);
PlatformBusDevice *pbus = data->pbus;
hwaddr mmio0 = platform_bus_get_mmio_addr(pbus, sbdev, 0);
int irq0 = platform_bus_get_irqn(pbus, sbdev, 0);
int irq1 = platform_bus_get_irqn(pbus, sbdev, 1);
int irq2 = platform_bus_get_irqn(pbus, sbdev, 2);
gchar *node = g_strdup_printf("%s/ethernet@%"PRIx64, data->node, mmio0);
gchar *group = g_strdup_printf("%s/queue-group", node);
void *fdt = data->fdt;
assert((int64_t)mmio0 >= 0);
assert(irq0 >= 0);
assert(irq1 >= 0);
assert(irq2 >= 0);
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop(fdt, node, "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, node, "device_type", "network");
qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,etsec2");
qemu_fdt_setprop_string(fdt, node, "model", "eTSEC");
qemu_fdt_setprop(fdt, node, "local-mac-address", etsec->conf.macaddr.a, 6);
qemu_fdt_setprop_cells(fdt, node, "fixed-link", 0, 1, 1000, 0, 0);
qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1);
qemu_fdt_add_subnode(fdt, group);
qemu_fdt_setprop_cells(fdt, group, "reg", mmio0, 0x1000);
qemu_fdt_setprop_cells(fdt, group, "interrupts",
data->irq_start + irq0, 0x2,
data->irq_start + irq1, 0x2,
data->irq_start + irq2, 0x2);
g_free(node);
g_free(group);
return 0;
}
static void sysbus_device_create_devtree(SysBusDevice *sbdev, void *opaque)
{
PlatformDevtreeData *data = opaque;
bool matched = false;
if (object_dynamic_cast(OBJECT(sbdev), TYPE_ETSEC_COMMON)) {
create_devtree_etsec(sbdev, data);
matched = true;
}
if (!matched) {
error_report("Device %s is not supported by this machine yet.",
qdev_fw_name(DEVICE(sbdev)));
exit(1);
}
}
static void create_devtree_flash(SysBusDevice *sbdev,
PlatformDevtreeData *data)
{
g_autofree char *name = NULL;
uint64_t num_blocks = object_property_get_uint(OBJECT(sbdev),
"num-blocks",
&error_fatal);
uint64_t sector_length = object_property_get_uint(OBJECT(sbdev),
"sector-length",
&error_fatal);
uint64_t bank_width = object_property_get_uint(OBJECT(sbdev),
"width",
&error_fatal);
hwaddr flashbase = 0;
hwaddr flashsize = num_blocks * sector_length;
void *fdt = data->fdt;
name = g_strdup_printf("%s/nor@%" PRIx64, data->node, flashbase);
qemu_fdt_add_subnode(fdt, name);
qemu_fdt_setprop_string(fdt, name, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(fdt, name, "reg",
1, flashbase, 1, flashsize);
qemu_fdt_setprop_cell(fdt, name, "bank-width", bank_width);
}
static void platform_bus_create_devtree(PPCE500MachineState *pms,
void *fdt, const char *mpic)
{
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
gchar *node = g_strdup_printf("/platform@%"PRIx64, pmc->platform_bus_base);
const char platcomp[] = "qemu,platform\0simple-bus";
uint64_t addr = pmc->platform_bus_base;
uint64_t size = pmc->platform_bus_size;
int irq_start = pmc->platform_bus_first_irq;
SysBusDevice *sbdev;
bool ambiguous;
/* Create a /platform node that we can put all devices into */
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop(fdt, node, "compatible", platcomp, sizeof(platcomp));
/* Our platform bus region is less than 32bit big, so 1 cell is enough for
address and size */
qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1);
qemu_fdt_setprop_cells(fdt, node, "ranges", 0, addr >> 32, addr, size);
qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic);
/* Create dt nodes for dynamic devices */
PlatformDevtreeData data = {
.fdt = fdt,
.mpic = mpic,
.irq_start = irq_start,
.node = node,
.pbus = pms->pbus_dev,
};
/* Loop through all dynamic sysbus devices and create nodes for them */
foreach_dynamic_sysbus_device(sysbus_device_create_devtree, &data);
sbdev = SYS_BUS_DEVICE(object_resolve_path_type("", TYPE_PFLASH_CFI01,
&ambiguous));
if (sbdev) {
assert(!ambiguous);
create_devtree_flash(sbdev, &data);
}
g_free(node);
}
static int ppce500_load_device_tree(PPCE500MachineState *pms,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size,
hwaddr kernel_base,
hwaddr kernel_size,
bool dry_run)
{
MachineState *machine = MACHINE(pms);
unsigned int smp_cpus = machine->smp.cpus;
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
CPUPPCState *env = cpu_env(first_cpu);
int ret = -1;
uint64_t mem_reg_property[] = { 0, cpu_to_be64(machine->ram_size) };
int fdt_size;
void *fdt;
uint8_t hypercall[16];
uint32_t clock_freq = PLATFORM_CLK_FREQ_HZ;
uint32_t tb_freq = PLATFORM_CLK_FREQ_HZ;
int i;
char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus";
char *soc;
char *mpic;
uint32_t mpic_ph;
uint32_t msi_ph;
char *gutil;
char *pci;
char *msi;
uint32_t *pci_map = NULL;
int len;
uint32_t pci_ranges[14] =
{
0x2000000, 0x0, pmc->pci_mmio_bus_base,
pmc->pci_mmio_base >> 32, pmc->pci_mmio_base,
0x0, 0x20000000,
0x1000000, 0x0, 0x0,
pmc->pci_pio_base >> 32, pmc->pci_pio_base,
0x0, 0x10000,
};
const char *dtb_file = machine->dtb;
const char *toplevel_compat = machine->dt_compatible;
uint8_t rng_seed[32];
if (dtb_file) {
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file);
if (!filename) {
goto out;
}
fdt = load_device_tree(filename, &fdt_size);
g_free(filename);
if (!fdt) {
goto out;
}
goto done;
}
fdt = create_device_tree(&fdt_size);
if (fdt == NULL) {
goto out;
}
/* Manipulate device tree in memory. */
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 2);
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
qemu_fdt_setprop(fdt, "/memory", "reg", mem_reg_property,
sizeof(mem_reg_property));
qemu_fdt_add_subnode(fdt, "/chosen");
if (initrd_size) {
ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
initrd_base);
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
}
ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
(initrd_base + initrd_size));
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
}
}
if (kernel_base != -1ULL) {
qemu_fdt_setprop_cells(fdt, "/chosen", "qemu,boot-kernel",
kernel_base >> 32, kernel_base,
kernel_size >> 32, kernel_size);
}
ret = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
machine->kernel_cmdline);
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/bootargs\n");
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
qemu_fdt_setprop(fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
if (kvm_enabled()) {
/* Read out host's frequencies */
clock_freq = kvmppc_get_clockfreq();
tb_freq = kvmppc_get_tbfreq();
/* indicate KVM hypercall interface */
qemu_fdt_add_subnode(fdt, "/hypervisor");
qemu_fdt_setprop_string(fdt, "/hypervisor", "compatible",
"linux,kvm");
kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
qemu_fdt_setprop(fdt, "/hypervisor", "hcall-instructions",
hypercall, sizeof(hypercall));
/* if KVM supports the idle hcall, set property indicating this */
if (kvmppc_get_hasidle(env)) {
qemu_fdt_setprop(fdt, "/hypervisor", "has-idle", NULL, 0);
}
}
/* Create CPU nodes */
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0);
/* We need to generate the cpu nodes in reverse order, so Linux can pick
the first node as boot node and be happy */
for (i = smp_cpus - 1; i >= 0; i--) {
CPUState *cpu;
char *cpu_name;
uint64_t cpu_release_addr = pmc->spin_base + (i * 0x20);
cpu = qemu_get_cpu(i);
if (cpu == NULL) {
continue;
}
env = cpu_env(cpu);
cpu_name = g_strdup_printf("/cpus/PowerPC,8544@%x", i);
qemu_fdt_add_subnode(fdt, cpu_name);
qemu_fdt_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
qemu_fdt_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
qemu_fdt_setprop_cell(fdt, cpu_name, "reg", i);
qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-line-size",
env->dcache_line_size);
qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-line-size",
env->icache_line_size);
qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
if (cpu->cpu_index) {
qemu_fdt_setprop_string(fdt, cpu_name, "status", "disabled");
qemu_fdt_setprop_string(fdt, cpu_name, "enable-method",
"spin-table");
qemu_fdt_setprop_u64(fdt, cpu_name, "cpu-release-addr",
cpu_release_addr);
} else {
qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
}
g_free(cpu_name);
}
qemu_fdt_add_subnode(fdt, "/aliases");
/* XXX These should go into their respective devices' code */
soc = g_strdup_printf("/soc@%"PRIx64, pmc->ccsrbar_base);
qemu_fdt_add_subnode(fdt, soc);
qemu_fdt_setprop_string(fdt, soc, "device_type", "soc");
qemu_fdt_setprop(fdt, soc, "compatible", compatible_sb,
sizeof(compatible_sb));
qemu_fdt_setprop_cell(fdt, soc, "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, soc, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, soc, "ranges", 0x0,
pmc->ccsrbar_base >> 32, pmc->ccsrbar_base,
MPC8544_CCSRBAR_SIZE);
/* XXX should contain a reasonable value */
qemu_fdt_setprop_cell(fdt, soc, "bus-frequency", 0);
mpic = g_strdup_printf("%s/pic@%llx", soc, MPC8544_MPIC_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, mpic);
qemu_fdt_setprop_string(fdt, mpic, "device_type", "open-pic");
qemu_fdt_setprop_string(fdt, mpic, "compatible", "fsl,mpic");
qemu_fdt_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_OFFSET,
0x40000);
qemu_fdt_setprop_cell(fdt, mpic, "#address-cells", 0);
qemu_fdt_setprop_cell(fdt, mpic, "#interrupt-cells", 2);
mpic_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cell(fdt, mpic, "phandle", mpic_ph);
qemu_fdt_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph);
qemu_fdt_setprop(fdt, mpic, "interrupt-controller", NULL, 0);
/*
* We have to generate ser1 first, because Linux takes the first
* device it finds in the dt as serial output device. And we generate
* devices in reverse order to the dt.
*/
if (serial_hd(1)) {
dt_serial_create(fdt, MPC8544_SERIAL1_REGS_OFFSET,
soc, mpic, "serial1", 1, false);
}
if (serial_hd(0)) {
dt_serial_create(fdt, MPC8544_SERIAL0_REGS_OFFSET,
soc, mpic, "serial0", 0, true);
}
/* i2c */
dt_i2c_create(fdt, soc, mpic, "i2c");
dt_rtc_create(fdt, "i2c", "rtc");
/* sdhc */
if (pmc->has_esdhc) {
dt_sdhc_create(fdt, soc, mpic);
}
gutil = g_strdup_printf("%s/global-utilities@%llx", soc,
MPC8544_UTIL_OFFSET);
qemu_fdt_add_subnode(fdt, gutil);
qemu_fdt_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts");
qemu_fdt_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_OFFSET, 0x1000);
qemu_fdt_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0);
g_free(gutil);
msi = g_strdup_printf("/%s/msi@%llx", soc, MPC8544_MSI_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, msi);
qemu_fdt_setprop_string(fdt, msi, "compatible", "fsl,mpic-msi");
qemu_fdt_setprop_cells(fdt, msi, "reg", MPC8544_MSI_REGS_OFFSET, 0x200);
msi_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cells(fdt, msi, "msi-available-ranges", 0x0, 0x100);
qemu_fdt_setprop_phandle(fdt, msi, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, msi, "interrupts",
0xe0, 0x0,
0xe1, 0x0,
0xe2, 0x0,
0xe3, 0x0,
0xe4, 0x0,
0xe5, 0x0,
0xe6, 0x0,
0xe7, 0x0);
qemu_fdt_setprop_cell(fdt, msi, "phandle", msi_ph);
qemu_fdt_setprop_cell(fdt, msi, "linux,phandle", msi_ph);
g_free(msi);
pci = g_strdup_printf("/pci@%llx",
pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, pci);
qemu_fdt_setprop_cell(fdt, pci, "cell-index", 0);
qemu_fdt_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci");
qemu_fdt_setprop_string(fdt, pci, "device_type", "pci");
qemu_fdt_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0,
0x0, 0x7);
pci_map = pci_map_create(fdt, qemu_fdt_get_phandle(fdt, mpic),
pmc->pci_first_slot, pmc->pci_nr_slots,
&len);
qemu_fdt_setprop(fdt, pci, "interrupt-map", pci_map, len);
qemu_fdt_setprop_phandle(fdt, pci, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, pci, "interrupts", 24, 2);
qemu_fdt_setprop_cells(fdt, pci, "bus-range", 0, 255);
for (i = 0; i < 14; i++) {
pci_ranges[i] = cpu_to_be32(pci_ranges[i]);
}
qemu_fdt_setprop_cell(fdt, pci, "fsl,msi", msi_ph);
qemu_fdt_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges));
qemu_fdt_setprop_cells(fdt, pci, "reg",
(pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET) >> 32,
(pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET),
0, 0x1000);
qemu_fdt_setprop_cell(fdt, pci, "clock-frequency", 66666666);
qemu_fdt_setprop_cell(fdt, pci, "#interrupt-cells", 1);
qemu_fdt_setprop_cell(fdt, pci, "#size-cells", 2);
qemu_fdt_setprop_cell(fdt, pci, "#address-cells", 3);
qemu_fdt_setprop_string(fdt, "/aliases", "pci0", pci);
g_free(pci);
if (pmc->has_mpc8xxx_gpio) {
create_dt_mpc8xxx_gpio(fdt, soc, mpic);
}
g_free(soc);
platform_bus_create_devtree(pms, fdt, mpic);
g_free(mpic);
pmc->fixup_devtree(fdt);
if (toplevel_compat) {
qemu_fdt_setprop(fdt, "/", "compatible", toplevel_compat,
strlen(toplevel_compat) + 1);
}
done:
if (!dry_run) {
qemu_fdt_dumpdtb(fdt, fdt_size);
cpu_physical_memory_write(addr, fdt, fdt_size);
/* Set machine->fdt for 'dumpdtb' QMP/HMP command */
g_free(machine->fdt);
machine->fdt = fdt;
} else {
g_free(fdt);
}
ret = fdt_size;
out:
g_free(pci_map);
return ret;
}
typedef struct DeviceTreeParams {
PPCE500MachineState *machine;
hwaddr addr;
hwaddr initrd_base;
hwaddr initrd_size;
hwaddr kernel_base;
hwaddr kernel_size;
Notifier notifier;
} DeviceTreeParams;
static void ppce500_reset_device_tree(void *opaque)
{
DeviceTreeParams *p = opaque;
ppce500_load_device_tree(p->machine, p->addr, p->initrd_base,
p->initrd_size, p->kernel_base, p->kernel_size,
false);
}
static void ppce500_init_notify(Notifier *notifier, void *data)
{
DeviceTreeParams *p = container_of(notifier, DeviceTreeParams, notifier);
ppce500_reset_device_tree(p);
}
static int ppce500_prep_device_tree(PPCE500MachineState *machine,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size,
hwaddr kernel_base,
hwaddr kernel_size)
{
DeviceTreeParams *p = g_new(DeviceTreeParams, 1);
p->machine = machine;
p->addr = addr;
p->initrd_base = initrd_base;
p->initrd_size = initrd_size;
p->kernel_base = kernel_base;
p->kernel_size = kernel_size;
qemu_register_reset_nosnapshotload(ppce500_reset_device_tree, p);
p->notifier.notify = ppce500_init_notify;
qemu_add_machine_init_done_notifier(&p->notifier);
/* Issue the device tree loader once, so that we get the size of the blob */
return ppce500_load_device_tree(machine, addr, initrd_base, initrd_size,
kernel_base, kernel_size, true);
}
hwaddr booke206_page_size_to_tlb(uint64_t size)
{
return 63 - clz64(size / KiB);
}
static int booke206_initial_map_tsize(CPUPPCState *env)
{
struct boot_info *bi = env->load_info;
hwaddr dt_end;
int ps;
/* Our initial TLB entry needs to cover everything from 0 to
the device tree top */
dt_end = bi->dt_base + bi->dt_size;
ps = booke206_page_size_to_tlb(dt_end) + 1;
if (ps & 1) {
/* e500v2 can only do even TLB size bits */
ps++;
}
return ps;
}
static uint64_t mmubooke_initial_mapsize(CPUPPCState *env)
{
int tsize;
tsize = booke206_initial_map_tsize(env);
return (1ULL << 10 << tsize);
}
/* Create -kernel TLB entries for BookE. */
static void mmubooke_create_initial_mapping(CPUPPCState *env)
{
ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 0);
hwaddr size;
int ps;
ps = booke206_initial_map_tsize(env);
size = (ps << MAS1_TSIZE_SHIFT);
tlb->mas1 = MAS1_VALID | size;
tlb->mas2 = 0;
tlb->mas7_3 = 0;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
#ifdef CONFIG_KVM
env->tlb_dirty = true;
#endif
}
static void ppce500_cpu_reset_sec(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(cs);
cs->exception_index = EXCP_HLT;
}
static void ppce500_cpu_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
struct boot_info *bi = env->load_info;
cpu_reset(cs);
/* Set initial guest state. */
cs->halted = 0;
env->gpr[1] = (16 * MiB) - 8;
env->gpr[3] = bi->dt_base;
env->gpr[4] = 0;
env->gpr[5] = 0;
env->gpr[6] = EPAPR_MAGIC;
env->gpr[7] = mmubooke_initial_mapsize(env);
env->gpr[8] = 0;
env->gpr[9] = 0;
env->nip = bi->entry;
mmubooke_create_initial_mapping(env);
}
static DeviceState *ppce500_init_mpic_qemu(PPCE500MachineState *pms,
IrqLines *irqs)
{
DeviceState *dev;
SysBusDevice *s;
int i, j, k;
MachineState *machine = MACHINE(pms);
unsigned int smp_cpus = machine->smp.cpus;
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
dev = qdev_new(TYPE_OPENPIC);
object_property_add_child(OBJECT(machine), "pic", OBJECT(dev));
qdev_prop_set_uint32(dev, "model", pmc->mpic_version);
qdev_prop_set_uint32(dev, "nb_cpus", smp_cpus);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
k = 0;
for (i = 0; i < smp_cpus; i++) {
for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
sysbus_connect_irq(s, k++, irqs[i].irq[j]);
}
}
return dev;
}
static DeviceState *ppce500_init_mpic_kvm(const PPCE500MachineClass *pmc,
IrqLines *irqs, Error **errp)
{
#ifdef CONFIG_KVM
DeviceState *dev;
CPUState *cs;
dev = qdev_new(TYPE_KVM_OPENPIC);
qdev_prop_set_uint32(dev, "model", pmc->mpic_version);
if (!sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), errp)) {
object_unparent(OBJECT(dev));
return NULL;
}
CPU_FOREACH(cs) {
if (kvm_openpic_connect_vcpu(dev, cs)) {
fprintf(stderr, "%s: failed to connect vcpu to irqchip\n",
__func__);
abort();
}
}
return dev;
#else
g_assert_not_reached();
#endif
}
static DeviceState *ppce500_init_mpic(PPCE500MachineState *pms,
MemoryRegion *ccsr,
IrqLines *irqs)
{
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
DeviceState *dev = NULL;
SysBusDevice *s;
if (kvm_enabled()) {
Error *err = NULL;
if (kvm_kernel_irqchip_allowed()) {
dev = ppce500_init_mpic_kvm(pmc, irqs, &err);
}
if (kvm_kernel_irqchip_required() && !dev) {
error_reportf_err(err,
"kernel_irqchip requested but unavailable: ");
exit(1);
}
}
if (!dev) {
dev = ppce500_init_mpic_qemu(pms, irqs);
}
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(ccsr, MPC8544_MPIC_REGS_OFFSET,
s->mmio[0].memory);
return dev;
}
static void ppce500_power_off(void *opaque, int line, int on)
{
if (on) {
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
}
}
void ppce500_init(MachineState *machine)
{
MemoryRegion *address_space_mem = get_system_memory();
PPCE500MachineState *pms = PPCE500_MACHINE(machine);
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(machine);
MachineClass *mc = MACHINE_CLASS(pmc);
PCIBus *pci_bus;
CPUPPCState *env = NULL;
uint64_t loadaddr;
hwaddr kernel_base = -1LL;
int kernel_size = 0;
hwaddr dt_base = 0;
hwaddr initrd_base = 0;
int initrd_size = 0;
hwaddr cur_base = 0;
char *filename;
const char *payload_name;
bool kernel_as_payload;
hwaddr bios_entry = 0;
target_long payload_size;
struct boot_info *boot_info = NULL;
int dt_size;
int i;
unsigned int smp_cpus = machine->smp.cpus;
/* irq num for pin INTA, INTB, INTC and INTD is 1, 2, 3 and
* 4 respectively */
unsigned int pci_irq_nrs[PCI_NUM_PINS] = {1, 2, 3, 4};
IrqLines *irqs;
DeviceState *dev, *mpicdev;
DriveInfo *dinfo;
CPUPPCState *firstenv = NULL;
MemoryRegion *ccsr_addr_space;
SysBusDevice *s;
PPCE500CCSRState *ccsr;
I2CBus *i2c;
irqs = g_new0(IrqLines, smp_cpus);
for (i = 0; i < smp_cpus; i++) {
PowerPCCPU *cpu;
CPUState *cs;
cpu = POWERPC_CPU(object_new(machine->cpu_type));
env = &cpu->env;
cs = CPU(cpu);
if (env->mmu_model != POWERPC_MMU_BOOKE206) {
error_report("MMU model %i not supported by this machine",
env->mmu_model);
exit(1);
}
/*
* Secondary CPU starts in halted state for now. Needs to change
* when implementing non-kernel boot.
*/
object_property_set_bool(OBJECT(cs), "start-powered-off", i != 0,
&error_abort);
qdev_realize_and_unref(DEVICE(cs), NULL, &error_fatal);
if (!firstenv) {
firstenv = env;
}
irqs[i].irq[OPENPIC_OUTPUT_INT] =
qdev_get_gpio_in(DEVICE(cpu), PPCE500_INPUT_INT);
irqs[i].irq[OPENPIC_OUTPUT_CINT] =
qdev_get_gpio_in(DEVICE(cpu), PPCE500_INPUT_CINT);
env->spr_cb[SPR_BOOKE_PIR].default_value = cs->cpu_index = i;
env->mpic_iack = pmc->ccsrbar_base + MPC8544_MPIC_REGS_OFFSET + 0xa0;
ppc_booke_timers_init(cpu, PLATFORM_CLK_FREQ_HZ, PPC_TIMER_E500);
/* Register reset handler */
if (!i) {
/* Primary CPU */
boot_info = g_new0(struct boot_info, 1);
qemu_register_reset(ppce500_cpu_reset, cpu);
env->load_info = boot_info;
} else {
/* Secondary CPUs */
qemu_register_reset(ppce500_cpu_reset_sec, cpu);
}
}
env = firstenv;
if (!QEMU_IS_ALIGNED(machine->ram_size, RAM_SIZES_ALIGN)) {
error_report("RAM size must be multiple of %" PRIu64, RAM_SIZES_ALIGN);
exit(EXIT_FAILURE);
}
/* Register Memory */
memory_region_add_subregion(address_space_mem, 0, machine->ram);
dev = qdev_new("e500-ccsr");
object_property_add_child(OBJECT(machine), "e500-ccsr", OBJECT(dev));
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
ccsr = CCSR(dev);
ccsr_addr_space = &ccsr->ccsr_space;
memory_region_add_subregion(address_space_mem, pmc->ccsrbar_base,
ccsr_addr_space);
mpicdev = ppce500_init_mpic(pms, ccsr_addr_space, irqs);
g_free(irqs);
/* Serial */
if (serial_hd(0)) {
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL0_REGS_OFFSET,
0, qdev_get_gpio_in(mpicdev, 42), 399193,
serial_hd(0), DEVICE_BIG_ENDIAN);
}
if (serial_hd(1)) {
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL1_REGS_OFFSET,
0, qdev_get_gpio_in(mpicdev, 42), 399193,
serial_hd(1), DEVICE_BIG_ENDIAN);
}
/* I2C */
dev = qdev_new("mpc-i2c");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC8544_I2C_IRQ));
memory_region_add_subregion(ccsr_addr_space, MPC8544_I2C_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
i2c_slave_create_simple(i2c, "ds1338", RTC_REGS_OFFSET);
/* eSDHC */
if (pmc->has_esdhc) {
dev = qdev_new(TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(dev, "name", "esdhc");
qdev_prop_set_uint64(dev, "size", MPC85XX_ESDHC_REGS_SIZE);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
memory_region_add_subregion(ccsr_addr_space, MPC85XX_ESDHC_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
/*
* Compatible with:
* - SD Host Controller Specification Version 2.0 Part A2
* (See MPC8569E Reference Manual)
*/
dev = qdev_new(TYPE_SYSBUS_SDHCI);
qdev_prop_set_uint8(dev, "sd-spec-version", 2);
qdev_prop_set_uint8(dev, "endianness", DEVICE_BIG_ENDIAN);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC85XX_ESDHC_IRQ));
memory_region_add_subregion(ccsr_addr_space, MPC85XX_ESDHC_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
}
/* General Utility device */
dev = qdev_new("mpc8544-guts");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
memory_region_add_subregion(ccsr_addr_space, MPC8544_UTIL_OFFSET,
sysbus_mmio_get_region(s, 0));
/* PCI */
dev = qdev_new("e500-pcihost");
object_property_add_child(OBJECT(machine), "pci-host", OBJECT(dev));
qdev_prop_set_uint32(dev, "first_slot", pmc->pci_first_slot);
qdev_prop_set_uint32(dev, "first_pin_irq", pci_irq_nrs[0]);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
for (i = 0; i < PCI_NUM_PINS; i++) {
sysbus_connect_irq(s, i, qdev_get_gpio_in(mpicdev, pci_irq_nrs[i]));
}
memory_region_add_subregion(ccsr_addr_space, MPC8544_PCI_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
if (!pci_bus)
printf("couldn't create PCI controller!\n");
if (pci_bus) {
/* Register network interfaces. */
pci_init_nic_devices(pci_bus, mc->default_nic);
}
/* Register spinning region */
sysbus_create_simple("e500-spin", pmc->spin_base, NULL);
if (pmc->has_mpc8xxx_gpio) {
qemu_irq poweroff_irq;
dev = qdev_new("mpc8xxx_gpio");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC8XXX_GPIO_IRQ));
memory_region_add_subregion(ccsr_addr_space, MPC8XXX_GPIO_OFFSET,
sysbus_mmio_get_region(s, 0));
/* Power Off GPIO at Pin 0 */
poweroff_irq = qemu_allocate_irq(ppce500_power_off, NULL, 0);
qdev_connect_gpio_out(dev, 0, poweroff_irq);
}
/* Platform Bus Device */
dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
qdev_prop_set_uint32(dev, "num_irqs", pmc->platform_bus_num_irqs);
qdev_prop_set_uint32(dev, "mmio_size", pmc->platform_bus_size);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
pms->pbus_dev = PLATFORM_BUS_DEVICE(dev);
s = SYS_BUS_DEVICE(pms->pbus_dev);
for (i = 0; i < pmc->platform_bus_num_irqs; i++) {
int irqn = pmc->platform_bus_first_irq + i;
sysbus_connect_irq(s, i, qdev_get_gpio_in(mpicdev, irqn));
}
memory_region_add_subregion(address_space_mem,
pmc->platform_bus_base,
&pms->pbus_dev->mmio);
dinfo = drive_get(IF_PFLASH, 0, 0);
if (dinfo) {
BlockBackend *blk = blk_by_legacy_dinfo(dinfo);
BlockDriverState *bs = blk_bs(blk);
uint64_t mmio_size = memory_region_size(&pms->pbus_dev->mmio);
uint64_t size = bdrv_getlength(bs);
uint32_t sector_len = 64 * KiB;
if (!is_power_of_2(size)) {
error_report("Size of pflash file must be a power of two.");
exit(1);
}
if (size > mmio_size) {
error_report("Size of pflash file must not be bigger than %" PRIu64
" bytes.", mmio_size);
exit(1);
}
if (!QEMU_IS_ALIGNED(size, sector_len)) {
error_report("Size of pflash file must be a multiple of %" PRIu32
".", sector_len);
exit(1);
}
dev = qdev_new(TYPE_PFLASH_CFI01);
qdev_prop_set_drive(dev, "drive", blk);
qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
qdev_prop_set_uint64(dev, "sector-length", sector_len);
qdev_prop_set_uint8(dev, "width", 2);
qdev_prop_set_bit(dev, "big-endian", true);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x0000);
qdev_prop_set_uint16(dev, "id3", 0x0);
qdev_prop_set_string(dev, "name", "e500.flash");
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(&pms->pbus_dev->mmio, 0,
pflash_cfi01_get_memory(PFLASH_CFI01(dev)));
}
/*
* Smart firmware defaults ahead!
*
* We follow the following table to select which payload we execute.
*
* -kernel | -bios | payload
* ---------+-------+---------
* N | Y | u-boot
* N | N | u-boot
* Y | Y | u-boot
* Y | N | kernel
*
* This ensures backwards compatibility with how we used to expose
* -kernel to users but allows them to run through u-boot as well.
*/
kernel_as_payload = false;
if (machine->firmware == NULL) {
if (machine->kernel_filename) {
payload_name = machine->kernel_filename;
kernel_as_payload = true;
} else {
payload_name = "u-boot.e500";
}
} else {
payload_name = machine->firmware;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, payload_name);
if (!filename) {
error_report("could not find firmware/kernel file '%s'", payload_name);
exit(1);
}
payload_size = load_elf(filename, NULL, NULL, NULL,
&bios_entry, &loadaddr, NULL, NULL,
1, PPC_ELF_MACHINE, 0, 0);
if (payload_size < 0) {
/*
* Hrm. No ELF image? Try a uImage, maybe someone is giving us an
* ePAPR compliant kernel
*/
loadaddr = LOAD_UIMAGE_LOADADDR_INVALID;
payload_size = load_uimage(filename, &bios_entry, &loadaddr, NULL,
NULL, NULL);
if (payload_size < 0) {
error_report("could not load firmware '%s'", filename);
exit(1);
}
}
g_free(filename);
if (kernel_as_payload) {
kernel_base = loadaddr;
kernel_size = payload_size;
}
cur_base = loadaddr + payload_size;
if (cur_base < 32 * MiB) {
/* u-boot occupies memory up to 32MB, so load blobs above */
cur_base = 32 * MiB;
}
/* Load bare kernel only if no bios/u-boot has been provided */
if (machine->kernel_filename && !kernel_as_payload) {
kernel_base = cur_base;
kernel_size = load_image_targphys(machine->kernel_filename,
cur_base,
machine->ram_size - cur_base);
if (kernel_size < 0) {
error_report("could not load kernel '%s'",
machine->kernel_filename);
exit(1);
}
cur_base += kernel_size;
}
/* Load initrd. */
if (machine->initrd_filename) {
initrd_base = (cur_base + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
initrd_size = load_image_targphys(machine->initrd_filename, initrd_base,
machine->ram_size - initrd_base);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
machine->initrd_filename);
exit(1);
}
cur_base = initrd_base + initrd_size;
}
/*
* Reserve space for dtb behind the kernel image because Linux has a bug
* where it can only handle the dtb if it's within the first 64MB of where
* <kernel> starts. dtb cannot not reach initrd_base because INITRD_LOAD_PAD
* ensures enough space between kernel and initrd.
*/
dt_base = (loadaddr + payload_size + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
if (dt_base + DTB_MAX_SIZE > machine->ram_size) {
error_report("not enough memory for device tree");
exit(1);
}
dt_size = ppce500_prep_device_tree(pms, dt_base,
initrd_base, initrd_size,
kernel_base, kernel_size);
if (dt_size < 0) {
error_report("couldn't load device tree");
exit(1);
}
assert(dt_size < DTB_MAX_SIZE);
boot_info->entry = bios_entry;
boot_info->dt_base = dt_base;
boot_info->dt_size = dt_size;
}
static void e500_ccsr_initfn(Object *obj)
{
PPCE500CCSRState *ccsr = CCSR(obj);
memory_region_init(&ccsr->ccsr_space, obj, "e500-ccsr",
MPC8544_CCSRBAR_SIZE);
}
static const TypeInfo e500_ccsr_info = {
.name = TYPE_CCSR,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PPCE500CCSRState),
.instance_init = e500_ccsr_initfn,
};
static const TypeInfo ppce500_info = {
.name = TYPE_PPCE500_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(PPCE500MachineState),
.class_size = sizeof(PPCE500MachineClass),
};
static void e500_register_types(void)
{
type_register_static(&e500_ccsr_info);
type_register_static(&ppce500_info);
}
type_init(e500_register_types)