qemu/include/block/block.h
Alberto Garcia ecd30d2d97 block: Allow changing bs->file on reopen
When the x-blockdev-reopen was added it allowed reconfiguring the
graph by replacing backing files, but changing the 'file' option was
forbidden. Because of this restriction some operations are not
possible, notably inserting and removing block filters.

This patch adds support for replacing the 'file' option. This is
similar to replacing the backing file and the user is likewise
responsible for the correctness of the resulting graph, otherwise this
can lead to data corruption.

Signed-off-by: Alberto Garcia <berto@igalia.com>
 [vsementsov: bdrv_reopen_parse_file_or_backing() is modified a lot]
Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
Message-Id: <20210610120537.196183-9-vsementsov@virtuozzo.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2021-06-29 16:51:00 +02:00

858 lines
34 KiB
C

#ifndef BLOCK_H
#define BLOCK_H
#include "block/aio.h"
#include "block/aio-wait.h"
#include "qemu/iov.h"
#include "qemu/coroutine.h"
#include "block/accounting.h"
#include "block/dirty-bitmap.h"
#include "block/blockjob.h"
#include "qemu/hbitmap.h"
#include "qemu/transactions.h"
/*
* generated_co_wrapper
*
* Function specifier, which does nothing but mark functions to be
* generated by scripts/block-coroutine-wrapper.py
*
* Read more in docs/devel/block-coroutine-wrapper.rst
*/
#define generated_co_wrapper
/* block.c */
typedef struct BlockDriver BlockDriver;
typedef struct BdrvChild BdrvChild;
typedef struct BdrvChildClass BdrvChildClass;
typedef struct BlockDriverInfo {
/* in bytes, 0 if irrelevant */
int cluster_size;
/* offset at which the VM state can be saved (0 if not possible) */
int64_t vm_state_offset;
bool is_dirty;
/*
* True if this block driver only supports compressed writes
*/
bool needs_compressed_writes;
} BlockDriverInfo;
typedef struct BlockFragInfo {
uint64_t allocated_clusters;
uint64_t total_clusters;
uint64_t fragmented_clusters;
uint64_t compressed_clusters;
} BlockFragInfo;
typedef enum {
BDRV_REQ_COPY_ON_READ = 0x1,
BDRV_REQ_ZERO_WRITE = 0x2,
/*
* The BDRV_REQ_MAY_UNMAP flag is used in write_zeroes requests to indicate
* that the block driver should unmap (discard) blocks if it is guaranteed
* that the result will read back as zeroes. The flag is only passed to the
* driver if the block device is opened with BDRV_O_UNMAP.
*/
BDRV_REQ_MAY_UNMAP = 0x4,
BDRV_REQ_FUA = 0x10,
BDRV_REQ_WRITE_COMPRESSED = 0x20,
/* Signifies that this write request will not change the visible disk
* content. */
BDRV_REQ_WRITE_UNCHANGED = 0x40,
/* Forces request serialisation. Use only with write requests. */
BDRV_REQ_SERIALISING = 0x80,
/* Execute the request only if the operation can be offloaded or otherwise
* be executed efficiently, but return an error instead of using a slow
* fallback. */
BDRV_REQ_NO_FALLBACK = 0x100,
/*
* BDRV_REQ_PREFETCH makes sense only in the context of copy-on-read
* (i.e., together with the BDRV_REQ_COPY_ON_READ flag or when a COR
* filter is involved), in which case it signals that the COR operation
* need not read the data into memory (qiov) but only ensure they are
* copied to the top layer (i.e., that COR operation is done).
*/
BDRV_REQ_PREFETCH = 0x200,
/*
* If we need to wait for other requests, just fail immediately. Used
* only together with BDRV_REQ_SERIALISING.
*/
BDRV_REQ_NO_WAIT = 0x400,
/* Mask of valid flags */
BDRV_REQ_MASK = 0x7ff,
} BdrvRequestFlags;
typedef struct BlockSizes {
uint32_t phys;
uint32_t log;
} BlockSizes;
typedef struct HDGeometry {
uint32_t heads;
uint32_t sectors;
uint32_t cylinders;
} HDGeometry;
#define BDRV_O_NO_SHARE 0x0001 /* don't share permissions */
#define BDRV_O_RDWR 0x0002
#define BDRV_O_RESIZE 0x0004 /* request permission for resizing the node */
#define BDRV_O_SNAPSHOT 0x0008 /* open the file read only and save writes in a snapshot */
#define BDRV_O_TEMPORARY 0x0010 /* delete the file after use */
#define BDRV_O_NOCACHE 0x0020 /* do not use the host page cache */
#define BDRV_O_NATIVE_AIO 0x0080 /* use native AIO instead of the thread pool */
#define BDRV_O_NO_BACKING 0x0100 /* don't open the backing file */
#define BDRV_O_NO_FLUSH 0x0200 /* disable flushing on this disk */
#define BDRV_O_COPY_ON_READ 0x0400 /* copy read backing sectors into image */
#define BDRV_O_INACTIVE 0x0800 /* consistency hint for migration handoff */
#define BDRV_O_CHECK 0x1000 /* open solely for consistency check */
#define BDRV_O_ALLOW_RDWR 0x2000 /* allow reopen to change from r/o to r/w */
#define BDRV_O_UNMAP 0x4000 /* execute guest UNMAP/TRIM operations */
#define BDRV_O_PROTOCOL 0x8000 /* if no block driver is explicitly given:
select an appropriate protocol driver,
ignoring the format layer */
#define BDRV_O_NO_IO 0x10000 /* don't initialize for I/O */
#define BDRV_O_AUTO_RDONLY 0x20000 /* degrade to read-only if opening read-write fails */
#define BDRV_O_IO_URING 0x40000 /* use io_uring instead of the thread pool */
#define BDRV_O_CACHE_MASK (BDRV_O_NOCACHE | BDRV_O_NO_FLUSH)
/* Option names of options parsed by the block layer */
#define BDRV_OPT_CACHE_WB "cache.writeback"
#define BDRV_OPT_CACHE_DIRECT "cache.direct"
#define BDRV_OPT_CACHE_NO_FLUSH "cache.no-flush"
#define BDRV_OPT_READ_ONLY "read-only"
#define BDRV_OPT_AUTO_READ_ONLY "auto-read-only"
#define BDRV_OPT_DISCARD "discard"
#define BDRV_OPT_FORCE_SHARE "force-share"
#define BDRV_SECTOR_BITS 9
#define BDRV_SECTOR_SIZE (1ULL << BDRV_SECTOR_BITS)
#define BDRV_REQUEST_MAX_SECTORS MIN_CONST(SIZE_MAX >> BDRV_SECTOR_BITS, \
INT_MAX >> BDRV_SECTOR_BITS)
#define BDRV_REQUEST_MAX_BYTES (BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS)
/*
* We want allow aligning requests and disk length up to any 32bit alignment
* and don't afraid of overflow.
* To achieve it, and in the same time use some pretty number as maximum disk
* size, let's define maximum "length" (a limit for any offset/bytes request and
* for disk size) to be the greatest power of 2 less than INT64_MAX.
*/
#define BDRV_MAX_ALIGNMENT (1L << 30)
#define BDRV_MAX_LENGTH (QEMU_ALIGN_DOWN(INT64_MAX, BDRV_MAX_ALIGNMENT))
/*
* Allocation status flags for bdrv_block_status() and friends.
*
* Public flags:
* BDRV_BLOCK_DATA: allocation for data at offset is tied to this layer
* BDRV_BLOCK_ZERO: offset reads as zero
* BDRV_BLOCK_OFFSET_VALID: an associated offset exists for accessing raw data
* BDRV_BLOCK_ALLOCATED: the content of the block is determined by this
* layer rather than any backing, set by block layer
* BDRV_BLOCK_EOF: the returned pnum covers through end of file for this
* layer, set by block layer
*
* Internal flags:
* BDRV_BLOCK_RAW: for use by passthrough drivers, such as raw, to request
* that the block layer recompute the answer from the returned
* BDS; must be accompanied by just BDRV_BLOCK_OFFSET_VALID.
* BDRV_BLOCK_RECURSE: request that the block layer will recursively search for
* zeroes in file child of current block node inside
* returned region. Only valid together with both
* BDRV_BLOCK_DATA and BDRV_BLOCK_OFFSET_VALID. Should not
* appear with BDRV_BLOCK_ZERO.
*
* If BDRV_BLOCK_OFFSET_VALID is set, the map parameter represents the
* host offset within the returned BDS that is allocated for the
* corresponding raw guest data. However, whether that offset
* actually contains data also depends on BDRV_BLOCK_DATA, as follows:
*
* DATA ZERO OFFSET_VALID
* t t t sectors read as zero, returned file is zero at offset
* t f t sectors read as valid from file at offset
* f t t sectors preallocated, read as zero, returned file not
* necessarily zero at offset
* f f t sectors preallocated but read from backing_hd,
* returned file contains garbage at offset
* t t f sectors preallocated, read as zero, unknown offset
* t f f sectors read from unknown file or offset
* f t f not allocated or unknown offset, read as zero
* f f f not allocated or unknown offset, read from backing_hd
*/
#define BDRV_BLOCK_DATA 0x01
#define BDRV_BLOCK_ZERO 0x02
#define BDRV_BLOCK_OFFSET_VALID 0x04
#define BDRV_BLOCK_RAW 0x08
#define BDRV_BLOCK_ALLOCATED 0x10
#define BDRV_BLOCK_EOF 0x20
#define BDRV_BLOCK_RECURSE 0x40
typedef QTAILQ_HEAD(BlockReopenQueue, BlockReopenQueueEntry) BlockReopenQueue;
typedef struct BDRVReopenState {
BlockDriverState *bs;
int flags;
BlockdevDetectZeroesOptions detect_zeroes;
bool backing_missing;
BlockDriverState *old_backing_bs; /* keep pointer for permissions update */
BlockDriverState *old_file_bs; /* keep pointer for permissions update */
QDict *options;
QDict *explicit_options;
void *opaque;
} BDRVReopenState;
/*
* Block operation types
*/
typedef enum BlockOpType {
BLOCK_OP_TYPE_BACKUP_SOURCE,
BLOCK_OP_TYPE_BACKUP_TARGET,
BLOCK_OP_TYPE_CHANGE,
BLOCK_OP_TYPE_COMMIT_SOURCE,
BLOCK_OP_TYPE_COMMIT_TARGET,
BLOCK_OP_TYPE_DATAPLANE,
BLOCK_OP_TYPE_DRIVE_DEL,
BLOCK_OP_TYPE_EJECT,
BLOCK_OP_TYPE_EXTERNAL_SNAPSHOT,
BLOCK_OP_TYPE_INTERNAL_SNAPSHOT,
BLOCK_OP_TYPE_INTERNAL_SNAPSHOT_DELETE,
BLOCK_OP_TYPE_MIRROR_SOURCE,
BLOCK_OP_TYPE_MIRROR_TARGET,
BLOCK_OP_TYPE_RESIZE,
BLOCK_OP_TYPE_STREAM,
BLOCK_OP_TYPE_REPLACE,
BLOCK_OP_TYPE_MAX,
} BlockOpType;
/* Block node permission constants */
enum {
/**
* A user that has the "permission" of consistent reads is guaranteed that
* their view of the contents of the block device is complete and
* self-consistent, representing the contents of a disk at a specific
* point.
*
* For most block devices (including their backing files) this is true, but
* the property cannot be maintained in a few situations like for
* intermediate nodes of a commit block job.
*/
BLK_PERM_CONSISTENT_READ = 0x01,
/** This permission is required to change the visible disk contents. */
BLK_PERM_WRITE = 0x02,
/**
* This permission (which is weaker than BLK_PERM_WRITE) is both enough and
* required for writes to the block node when the caller promises that
* the visible disk content doesn't change.
*
* As the BLK_PERM_WRITE permission is strictly stronger, either is
* sufficient to perform an unchanging write.
*/
BLK_PERM_WRITE_UNCHANGED = 0x04,
/** This permission is required to change the size of a block node. */
BLK_PERM_RESIZE = 0x08,
/**
* This permission is required to change the node that this BdrvChild
* points to.
*/
BLK_PERM_GRAPH_MOD = 0x10,
BLK_PERM_ALL = 0x1f,
DEFAULT_PERM_PASSTHROUGH = BLK_PERM_CONSISTENT_READ
| BLK_PERM_WRITE
| BLK_PERM_WRITE_UNCHANGED
| BLK_PERM_RESIZE,
DEFAULT_PERM_UNCHANGED = BLK_PERM_ALL & ~DEFAULT_PERM_PASSTHROUGH,
};
/*
* Flags that parent nodes assign to child nodes to specify what kind of
* role(s) they take.
*
* At least one of DATA, METADATA, FILTERED, or COW must be set for
* every child.
*/
enum BdrvChildRoleBits {
/*
* This child stores data.
* Any node may have an arbitrary number of such children.
*/
BDRV_CHILD_DATA = (1 << 0),
/*
* This child stores metadata.
* Any node may have an arbitrary number of metadata-storing
* children.
*/
BDRV_CHILD_METADATA = (1 << 1),
/*
* A child that always presents exactly the same visible data as
* the parent, e.g. by virtue of the parent forwarding all reads
* and writes.
* This flag is mutually exclusive with DATA, METADATA, and COW.
* Any node may have at most one filtered child at a time.
*/
BDRV_CHILD_FILTERED = (1 << 2),
/*
* Child from which to read all data that isn't allocated in the
* parent (i.e., the backing child); such data is copied to the
* parent through COW (and optionally COR).
* This field is mutually exclusive with DATA, METADATA, and
* FILTERED.
* Any node may have at most one such backing child at a time.
*/
BDRV_CHILD_COW = (1 << 3),
/*
* The primary child. For most drivers, this is the child whose
* filename applies best to the parent node.
* Any node may have at most one primary child at a time.
*/
BDRV_CHILD_PRIMARY = (1 << 4),
/* Useful combination of flags */
BDRV_CHILD_IMAGE = BDRV_CHILD_DATA
| BDRV_CHILD_METADATA
| BDRV_CHILD_PRIMARY,
};
/* Mask of BdrvChildRoleBits values */
typedef unsigned int BdrvChildRole;
char *bdrv_perm_names(uint64_t perm);
uint64_t bdrv_qapi_perm_to_blk_perm(BlockPermission qapi_perm);
/* disk I/O throttling */
void bdrv_init(void);
void bdrv_init_with_whitelist(void);
bool bdrv_uses_whitelist(void);
int bdrv_is_whitelisted(BlockDriver *drv, bool read_only);
BlockDriver *bdrv_find_protocol(const char *filename,
bool allow_protocol_prefix,
Error **errp);
BlockDriver *bdrv_find_format(const char *format_name);
int bdrv_create(BlockDriver *drv, const char* filename,
QemuOpts *opts, Error **errp);
int bdrv_create_file(const char *filename, QemuOpts *opts, Error **errp);
BlockDriverState *bdrv_new(void);
int bdrv_append(BlockDriverState *bs_new, BlockDriverState *bs_top,
Error **errp);
int bdrv_replace_node(BlockDriverState *from, BlockDriverState *to,
Error **errp);
BlockDriverState *bdrv_insert_node(BlockDriverState *bs, QDict *node_options,
int flags, Error **errp);
int bdrv_drop_filter(BlockDriverState *bs, Error **errp);
int bdrv_parse_aio(const char *mode, int *flags);
int bdrv_parse_cache_mode(const char *mode, int *flags, bool *writethrough);
int bdrv_parse_discard_flags(const char *mode, int *flags);
BdrvChild *bdrv_open_child(const char *filename,
QDict *options, const char *bdref_key,
BlockDriverState* parent,
const BdrvChildClass *child_class,
BdrvChildRole child_role,
bool allow_none, Error **errp);
BlockDriverState *bdrv_open_blockdev_ref(BlockdevRef *ref, Error **errp);
int bdrv_set_backing_hd(BlockDriverState *bs, BlockDriverState *backing_hd,
Error **errp);
int bdrv_open_backing_file(BlockDriverState *bs, QDict *parent_options,
const char *bdref_key, Error **errp);
BlockDriverState *bdrv_open(const char *filename, const char *reference,
QDict *options, int flags, Error **errp);
BlockDriverState *bdrv_new_open_driver(BlockDriver *drv, const char *node_name,
int flags, Error **errp);
BlockReopenQueue *bdrv_reopen_queue(BlockReopenQueue *bs_queue,
BlockDriverState *bs, QDict *options,
bool keep_old_opts);
int bdrv_reopen_multiple(BlockReopenQueue *bs_queue, Error **errp);
int bdrv_reopen_set_read_only(BlockDriverState *bs, bool read_only,
Error **errp);
int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
int64_t bytes, BdrvRequestFlags flags);
int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags);
int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int64_t bytes);
int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf,
int64_t bytes);
int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
const void *buf, int64_t bytes);
/*
* Efficiently zero a region of the disk image. Note that this is a regular
* I/O request like read or write and should have a reasonable size. This
* function is not suitable for zeroing the entire image in a single request
* because it may allocate memory for the entire region.
*/
int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
int64_t bytes, BdrvRequestFlags flags);
BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs,
const char *backing_file);
void bdrv_refresh_filename(BlockDriverState *bs);
int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
PreallocMode prealloc, BdrvRequestFlags flags,
Error **errp);
int generated_co_wrapper
bdrv_truncate(BdrvChild *child, int64_t offset, bool exact,
PreallocMode prealloc, BdrvRequestFlags flags, Error **errp);
int64_t bdrv_nb_sectors(BlockDriverState *bs);
int64_t bdrv_getlength(BlockDriverState *bs);
int64_t bdrv_get_allocated_file_size(BlockDriverState *bs);
BlockMeasureInfo *bdrv_measure(BlockDriver *drv, QemuOpts *opts,
BlockDriverState *in_bs, Error **errp);
void bdrv_get_geometry(BlockDriverState *bs, uint64_t *nb_sectors_ptr);
void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp);
int bdrv_commit(BlockDriverState *bs);
int bdrv_make_empty(BdrvChild *c, Error **errp);
int bdrv_change_backing_file(BlockDriverState *bs, const char *backing_file,
const char *backing_fmt, bool warn);
void bdrv_register(BlockDriver *bdrv);
int bdrv_drop_intermediate(BlockDriverState *top, BlockDriverState *base,
const char *backing_file_str);
BlockDriverState *bdrv_find_overlay(BlockDriverState *active,
BlockDriverState *bs);
BlockDriverState *bdrv_find_base(BlockDriverState *bs);
bool bdrv_is_backing_chain_frozen(BlockDriverState *bs, BlockDriverState *base,
Error **errp);
int bdrv_freeze_backing_chain(BlockDriverState *bs, BlockDriverState *base,
Error **errp);
void bdrv_unfreeze_backing_chain(BlockDriverState *bs, BlockDriverState *base);
int coroutine_fn bdrv_co_delete_file(BlockDriverState *bs, Error **errp);
void coroutine_fn bdrv_co_delete_file_noerr(BlockDriverState *bs);
typedef struct BdrvCheckResult {
int corruptions;
int leaks;
int check_errors;
int corruptions_fixed;
int leaks_fixed;
int64_t image_end_offset;
BlockFragInfo bfi;
} BdrvCheckResult;
typedef enum {
BDRV_FIX_LEAKS = 1,
BDRV_FIX_ERRORS = 2,
} BdrvCheckMode;
int generated_co_wrapper bdrv_check(BlockDriverState *bs, BdrvCheckResult *res,
BdrvCheckMode fix);
/* The units of offset and total_work_size may be chosen arbitrarily by the
* block driver; total_work_size may change during the course of the amendment
* operation */
typedef void BlockDriverAmendStatusCB(BlockDriverState *bs, int64_t offset,
int64_t total_work_size, void *opaque);
int bdrv_amend_options(BlockDriverState *bs_new, QemuOpts *opts,
BlockDriverAmendStatusCB *status_cb, void *cb_opaque,
bool force,
Error **errp);
/* check if a named node can be replaced when doing drive-mirror */
BlockDriverState *check_to_replace_node(BlockDriverState *parent_bs,
const char *node_name, Error **errp);
/* async block I/O */
void bdrv_aio_cancel(BlockAIOCB *acb);
void bdrv_aio_cancel_async(BlockAIOCB *acb);
/* sg packet commands */
int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf);
/* Invalidate any cached metadata used by image formats */
int generated_co_wrapper bdrv_invalidate_cache(BlockDriverState *bs,
Error **errp);
void bdrv_invalidate_cache_all(Error **errp);
int bdrv_inactivate_all(void);
/* Ensure contents are flushed to disk. */
int generated_co_wrapper bdrv_flush(BlockDriverState *bs);
int coroutine_fn bdrv_co_flush(BlockDriverState *bs);
int bdrv_flush_all(void);
void bdrv_close_all(void);
void bdrv_drain(BlockDriverState *bs);
void coroutine_fn bdrv_co_drain(BlockDriverState *bs);
void bdrv_drain_all_begin(void);
void bdrv_drain_all_end(void);
void bdrv_drain_all(void);
#define BDRV_POLL_WHILE(bs, cond) ({ \
BlockDriverState *bs_ = (bs); \
AIO_WAIT_WHILE(bdrv_get_aio_context(bs_), \
cond); })
int generated_co_wrapper bdrv_pdiscard(BdrvChild *child, int64_t offset,
int64_t bytes);
int bdrv_co_pdiscard(BdrvChild *child, int64_t offset, int64_t bytes);
int bdrv_has_zero_init_1(BlockDriverState *bs);
int bdrv_has_zero_init(BlockDriverState *bs);
bool bdrv_can_write_zeroes_with_unmap(BlockDriverState *bs);
int bdrv_block_status(BlockDriverState *bs, int64_t offset,
int64_t bytes, int64_t *pnum, int64_t *map,
BlockDriverState **file);
int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
int64_t offset, int64_t bytes, int64_t *pnum,
int64_t *map, BlockDriverState **file);
int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
int64_t *pnum);
int bdrv_is_allocated_above(BlockDriverState *top, BlockDriverState *base,
bool include_base, int64_t offset, int64_t bytes,
int64_t *pnum);
int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
int64_t bytes);
bool bdrv_is_read_only(BlockDriverState *bs);
int bdrv_can_set_read_only(BlockDriverState *bs, bool read_only,
bool ignore_allow_rdw, Error **errp);
int bdrv_apply_auto_read_only(BlockDriverState *bs, const char *errmsg,
Error **errp);
bool bdrv_is_writable(BlockDriverState *bs);
bool bdrv_is_sg(BlockDriverState *bs);
bool bdrv_is_inserted(BlockDriverState *bs);
void bdrv_lock_medium(BlockDriverState *bs, bool locked);
void bdrv_eject(BlockDriverState *bs, bool eject_flag);
const char *bdrv_get_format_name(BlockDriverState *bs);
BlockDriverState *bdrv_find_node(const char *node_name);
BlockDeviceInfoList *bdrv_named_nodes_list(bool flat, Error **errp);
XDbgBlockGraph *bdrv_get_xdbg_block_graph(Error **errp);
BlockDriverState *bdrv_lookup_bs(const char *device,
const char *node_name,
Error **errp);
bool bdrv_chain_contains(BlockDriverState *top, BlockDriverState *base);
BlockDriverState *bdrv_next_node(BlockDriverState *bs);
BlockDriverState *bdrv_next_all_states(BlockDriverState *bs);
typedef struct BdrvNextIterator {
enum {
BDRV_NEXT_BACKEND_ROOTS,
BDRV_NEXT_MONITOR_OWNED,
} phase;
BlockBackend *blk;
BlockDriverState *bs;
} BdrvNextIterator;
BlockDriverState *bdrv_first(BdrvNextIterator *it);
BlockDriverState *bdrv_next(BdrvNextIterator *it);
void bdrv_next_cleanup(BdrvNextIterator *it);
BlockDriverState *bdrv_next_monitor_owned(BlockDriverState *bs);
bool bdrv_supports_compressed_writes(BlockDriverState *bs);
void bdrv_iterate_format(void (*it)(void *opaque, const char *name),
void *opaque, bool read_only);
const char *bdrv_get_node_name(const BlockDriverState *bs);
const char *bdrv_get_device_name(const BlockDriverState *bs);
const char *bdrv_get_device_or_node_name(const BlockDriverState *bs);
int bdrv_get_flags(BlockDriverState *bs);
int bdrv_get_info(BlockDriverState *bs, BlockDriverInfo *bdi);
ImageInfoSpecific *bdrv_get_specific_info(BlockDriverState *bs,
Error **errp);
BlockStatsSpecific *bdrv_get_specific_stats(BlockDriverState *bs);
void bdrv_round_to_clusters(BlockDriverState *bs,
int64_t offset, int64_t bytes,
int64_t *cluster_offset,
int64_t *cluster_bytes);
void bdrv_get_backing_filename(BlockDriverState *bs,
char *filename, int filename_size);
char *bdrv_get_full_backing_filename(BlockDriverState *bs, Error **errp);
char *bdrv_get_full_backing_filename_from_filename(const char *backed,
const char *backing,
Error **errp);
char *bdrv_dirname(BlockDriverState *bs, Error **errp);
int path_has_protocol(const char *path);
int path_is_absolute(const char *path);
char *path_combine(const char *base_path, const char *filename);
int generated_co_wrapper
bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos);
int generated_co_wrapper
bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos);
int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
int64_t pos, int size);
int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
int64_t pos, int size);
void bdrv_img_create(const char *filename, const char *fmt,
const char *base_filename, const char *base_fmt,
char *options, uint64_t img_size, int flags,
bool quiet, Error **errp);
/* Returns the alignment in bytes that is required so that no bounce buffer
* is required throughout the stack */
size_t bdrv_min_mem_align(BlockDriverState *bs);
/* Returns optimal alignment in bytes for bounce buffer */
size_t bdrv_opt_mem_align(BlockDriverState *bs);
void *qemu_blockalign(BlockDriverState *bs, size_t size);
void *qemu_blockalign0(BlockDriverState *bs, size_t size);
void *qemu_try_blockalign(BlockDriverState *bs, size_t size);
void *qemu_try_blockalign0(BlockDriverState *bs, size_t size);
bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov);
void bdrv_enable_copy_on_read(BlockDriverState *bs);
void bdrv_disable_copy_on_read(BlockDriverState *bs);
void bdrv_ref(BlockDriverState *bs);
void bdrv_unref(BlockDriverState *bs);
void bdrv_unref_child(BlockDriverState *parent, BdrvChild *child);
BdrvChild *bdrv_attach_child(BlockDriverState *parent_bs,
BlockDriverState *child_bs,
const char *child_name,
const BdrvChildClass *child_class,
BdrvChildRole child_role,
Error **errp);
bool bdrv_op_is_blocked(BlockDriverState *bs, BlockOpType op, Error **errp);
void bdrv_op_block(BlockDriverState *bs, BlockOpType op, Error *reason);
void bdrv_op_unblock(BlockDriverState *bs, BlockOpType op, Error *reason);
void bdrv_op_block_all(BlockDriverState *bs, Error *reason);
void bdrv_op_unblock_all(BlockDriverState *bs, Error *reason);
bool bdrv_op_blocker_is_empty(BlockDriverState *bs);
#define BLKDBG_EVENT(child, evt) \
do { \
if (child) { \
bdrv_debug_event(child->bs, evt); \
} \
} while (0)
void bdrv_debug_event(BlockDriverState *bs, BlkdebugEvent event);
int bdrv_debug_breakpoint(BlockDriverState *bs, const char *event,
const char *tag);
int bdrv_debug_remove_breakpoint(BlockDriverState *bs, const char *tag);
int bdrv_debug_resume(BlockDriverState *bs, const char *tag);
bool bdrv_debug_is_suspended(BlockDriverState *bs, const char *tag);
/**
* bdrv_get_aio_context:
*
* Returns: the currently bound #AioContext
*/
AioContext *bdrv_get_aio_context(BlockDriverState *bs);
/**
* Move the current coroutine to the AioContext of @bs and return the old
* AioContext of the coroutine. Increase bs->in_flight so that draining @bs
* will wait for the operation to proceed until the corresponding
* bdrv_co_leave().
*
* Consequently, you can't call drain inside a bdrv_co_enter/leave() section as
* this will deadlock.
*/
AioContext *coroutine_fn bdrv_co_enter(BlockDriverState *bs);
/**
* Ends a section started by bdrv_co_enter(). Move the current coroutine back
* to old_ctx and decrease bs->in_flight again.
*/
void coroutine_fn bdrv_co_leave(BlockDriverState *bs, AioContext *old_ctx);
/**
* Locks the AioContext of @bs if it's not the current AioContext. This avoids
* double locking which could lead to deadlocks: This is a coroutine_fn, so we
* know we already own the lock of the current AioContext.
*
* May only be called in the main thread.
*/
void coroutine_fn bdrv_co_lock(BlockDriverState *bs);
/**
* Unlocks the AioContext of @bs if it's not the current AioContext.
*/
void coroutine_fn bdrv_co_unlock(BlockDriverState *bs);
/**
* Transfer control to @co in the aio context of @bs
*/
void bdrv_coroutine_enter(BlockDriverState *bs, Coroutine *co);
void bdrv_set_aio_context_ignore(BlockDriverState *bs,
AioContext *new_context, GSList **ignore);
int bdrv_try_set_aio_context(BlockDriverState *bs, AioContext *ctx,
Error **errp);
int bdrv_child_try_set_aio_context(BlockDriverState *bs, AioContext *ctx,
BdrvChild *ignore_child, Error **errp);
bool bdrv_child_can_set_aio_context(BdrvChild *c, AioContext *ctx,
GSList **ignore, Error **errp);
bool bdrv_can_set_aio_context(BlockDriverState *bs, AioContext *ctx,
GSList **ignore, Error **errp);
AioContext *bdrv_child_get_parent_aio_context(BdrvChild *c);
AioContext *child_of_bds_get_parent_aio_context(BdrvChild *c);
int bdrv_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz);
int bdrv_probe_geometry(BlockDriverState *bs, HDGeometry *geo);
void bdrv_io_plug(BlockDriverState *bs);
void bdrv_io_unplug(BlockDriverState *bs);
/**
* bdrv_parent_drained_begin_single:
*
* Begin a quiesced section for the parent of @c. If @poll is true, wait for
* any pending activity to cease.
*/
void bdrv_parent_drained_begin_single(BdrvChild *c, bool poll);
/**
* bdrv_parent_drained_end_single:
*
* End a quiesced section for the parent of @c.
*
* This polls @bs's AioContext until all scheduled sub-drained_ends
* have settled, which may result in graph changes.
*/
void bdrv_parent_drained_end_single(BdrvChild *c);
/**
* bdrv_drain_poll:
*
* Poll for pending requests in @bs, its parents (except for @ignore_parent),
* and if @recursive is true its children as well (used for subtree drain).
*
* If @ignore_bds_parents is true, parents that are BlockDriverStates must
* ignore the drain request because they will be drained separately (used for
* drain_all).
*
* This is part of bdrv_drained_begin.
*/
bool bdrv_drain_poll(BlockDriverState *bs, bool recursive,
BdrvChild *ignore_parent, bool ignore_bds_parents);
/**
* bdrv_drained_begin:
*
* Begin a quiesced section for exclusive access to the BDS, by disabling
* external request sources including NBD server and device model. Note that
* this doesn't block timers or coroutines from submitting more requests, which
* means block_job_pause is still necessary.
*
* This function can be recursive.
*/
void bdrv_drained_begin(BlockDriverState *bs);
/**
* bdrv_do_drained_begin_quiesce:
*
* Quiesces a BDS like bdrv_drained_begin(), but does not wait for already
* running requests to complete.
*/
void bdrv_do_drained_begin_quiesce(BlockDriverState *bs,
BdrvChild *parent, bool ignore_bds_parents);
/**
* Like bdrv_drained_begin, but recursively begins a quiesced section for
* exclusive access to all child nodes as well.
*/
void bdrv_subtree_drained_begin(BlockDriverState *bs);
/**
* bdrv_drained_end:
*
* End a quiescent section started by bdrv_drained_begin().
*
* This polls @bs's AioContext until all scheduled sub-drained_ends
* have settled. On one hand, that may result in graph changes. On
* the other, this requires that the caller either runs in the main
* loop; or that all involved nodes (@bs and all of its parents) are
* in the caller's AioContext.
*/
void bdrv_drained_end(BlockDriverState *bs);
/**
* bdrv_drained_end_no_poll:
*
* Same as bdrv_drained_end(), but do not poll for the subgraph to
* actually become unquiesced. Therefore, no graph changes will occur
* with this function.
*
* *drained_end_counter is incremented for every background operation
* that is scheduled, and will be decremented for every operation once
* it settles. The caller must poll until it reaches 0. The counter
* should be accessed using atomic operations only.
*/
void bdrv_drained_end_no_poll(BlockDriverState *bs, int *drained_end_counter);
/**
* End a quiescent section started by bdrv_subtree_drained_begin().
*/
void bdrv_subtree_drained_end(BlockDriverState *bs);
void bdrv_add_child(BlockDriverState *parent, BlockDriverState *child,
Error **errp);
void bdrv_del_child(BlockDriverState *parent, BdrvChild *child, Error **errp);
bool bdrv_can_store_new_dirty_bitmap(BlockDriverState *bs, const char *name,
uint32_t granularity, Error **errp);
/**
*
* bdrv_register_buf/bdrv_unregister_buf:
*
* Register/unregister a buffer for I/O. For example, VFIO drivers are
* interested to know the memory areas that would later be used for I/O, so
* that they can prepare IOMMU mapping etc., to get better performance.
*/
void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size);
void bdrv_unregister_buf(BlockDriverState *bs, void *host);
/**
*
* bdrv_co_copy_range:
*
* Do offloaded copy between two children. If the operation is not implemented
* by the driver, or if the backend storage doesn't support it, a negative
* error code will be returned.
*
* Note: block layer doesn't emulate or fallback to a bounce buffer approach
* because usually the caller shouldn't attempt offloaded copy any more (e.g.
* calling copy_file_range(2)) after the first error, thus it should fall back
* to a read+write path in the caller level.
*
* @src: Source child to copy data from
* @src_offset: offset in @src image to read data
* @dst: Destination child to copy data to
* @dst_offset: offset in @dst image to write data
* @bytes: number of bytes to copy
* @flags: request flags. Supported flags:
* BDRV_REQ_ZERO_WRITE - treat the @src range as zero data and do zero
* write on @dst as if bdrv_co_pwrite_zeroes is
* called. Used to simplify caller code, or
* during BlockDriver.bdrv_co_copy_range_from()
* recursion.
* BDRV_REQ_NO_SERIALISING - do not serialize with other overlapping
* requests currently in flight.
*
* Returns: 0 if succeeded; negative error code if failed.
**/
int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
BdrvChild *dst, int64_t dst_offset,
int64_t bytes, BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags);
void bdrv_cancel_in_flight(BlockDriverState *bs);
#endif