qemu/hw/riscv/virt.c
Bin Meng 59f74489cf hw/riscv: virt: Fix the value of "riscv, ndev" in the dtb
Commit 28d8c28120 ("hw/riscv: virt: Add optional AIA IMSIC support to virt machine")
changed the value of VIRT_IRQCHIP_NUM_SOURCES from 127 to 53, which
is VIRTIO_NDEV and also used as the value of "riscv,ndev" property
in the dtb. Unfortunately this is wrong as VIRT_IRQCHIP_NUM_SOURCES
should include interrupt source 0 but "riscv,ndev" does not.

While we are here, we also fix the comments of platform bus irq range
which is now "64 to 96", but should be "64 to 95", introduced since
commit 1832b7cb3f ("hw/riscv: virt: Create a platform bus").

Fixes: 28d8c28120 ("hw/riscv: virt: Add optional AIA IMSIC support to virt machine")
Signed-off-by: Bin Meng <bmeng@tinylab.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20221211030829.802437-13-bmeng@tinylab.org>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-01-06 10:42:55 +10:00

1699 lines
64 KiB
C

/*
* QEMU RISC-V VirtIO Board
*
* Copyright (c) 2017 SiFive, Inc.
*
* RISC-V machine with 16550a UART and VirtIO MMIO
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qemu/guest-random.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "hw/qdev-properties.h"
#include "hw/char/serial.h"
#include "target/riscv/cpu.h"
#include "hw/core/sysbus-fdt.h"
#include "target/riscv/pmu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/virt.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/numa.h"
#include "hw/intc/riscv_aclint.h"
#include "hw/intc/riscv_aplic.h"
#include "hw/intc/riscv_imsic.h"
#include "hw/intc/sifive_plic.h"
#include "hw/misc/sifive_test.h"
#include "hw/platform-bus.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/tpm.h"
#include "hw/pci/pci.h"
#include "hw/pci-host/gpex.h"
#include "hw/display/ramfb.h"
/*
* The virt machine physical address space used by some of the devices
* namely ACLINT, PLIC, APLIC, and IMSIC depend on number of Sockets,
* number of CPUs, and number of IMSIC guest files.
*
* Various limits defined by VIRT_SOCKETS_MAX_BITS, VIRT_CPUS_MAX_BITS,
* and VIRT_IRQCHIP_MAX_GUESTS_BITS are tuned for maximum utilization
* of virt machine physical address space.
*/
#define VIRT_IMSIC_GROUP_MAX_SIZE (1U << IMSIC_MMIO_GROUP_MIN_SHIFT)
#if VIRT_IMSIC_GROUP_MAX_SIZE < \
IMSIC_GROUP_SIZE(VIRT_CPUS_MAX_BITS, VIRT_IRQCHIP_MAX_GUESTS_BITS)
#error "Can't accomodate single IMSIC group in address space"
#endif
#define VIRT_IMSIC_MAX_SIZE (VIRT_SOCKETS_MAX * \
VIRT_IMSIC_GROUP_MAX_SIZE)
#if 0x4000000 < VIRT_IMSIC_MAX_SIZE
#error "Can't accomodate all IMSIC groups in address space"
#endif
static const MemMapEntry virt_memmap[] = {
[VIRT_DEBUG] = { 0x0, 0x100 },
[VIRT_MROM] = { 0x1000, 0xf000 },
[VIRT_TEST] = { 0x100000, 0x1000 },
[VIRT_RTC] = { 0x101000, 0x1000 },
[VIRT_CLINT] = { 0x2000000, 0x10000 },
[VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 },
[VIRT_PCIE_PIO] = { 0x3000000, 0x10000 },
[VIRT_PLATFORM_BUS] = { 0x4000000, 0x2000000 },
[VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
[VIRT_APLIC_M] = { 0xc000000, APLIC_SIZE(VIRT_CPUS_MAX) },
[VIRT_APLIC_S] = { 0xd000000, APLIC_SIZE(VIRT_CPUS_MAX) },
[VIRT_UART0] = { 0x10000000, 0x100 },
[VIRT_VIRTIO] = { 0x10001000, 0x1000 },
[VIRT_FW_CFG] = { 0x10100000, 0x18 },
[VIRT_FLASH] = { 0x20000000, 0x4000000 },
[VIRT_IMSIC_M] = { 0x24000000, VIRT_IMSIC_MAX_SIZE },
[VIRT_IMSIC_S] = { 0x28000000, VIRT_IMSIC_MAX_SIZE },
[VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
[VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
[VIRT_DRAM] = { 0x80000000, 0x0 },
};
/* PCIe high mmio is fixed for RV32 */
#define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL
#define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB)
/* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
#define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB)
static MemMapEntry virt_high_pcie_memmap;
#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the ARM virt board.
*/
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
object_property_add_child(OBJECT(s), name, OBJECT(dev));
object_property_add_alias(OBJECT(s), alias_prop_name,
OBJECT(dev), "drive");
return PFLASH_CFI01(dev);
}
static void virt_flash_create(RISCVVirtState *s)
{
s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
}
static void virt_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void virt_flash_map(RISCVVirtState *s,
MemoryRegion *sysmem)
{
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
virt_flash_map1(s->flash[0], flashbase, flashsize,
sysmem);
virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static void create_pcie_irq_map(RISCVVirtState *s, void *fdt, char *nodename,
uint32_t irqchip_phandle)
{
int pin, dev;
uint32_t irq_map_stride = 0;
uint32_t full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS *
FDT_MAX_INT_MAP_WIDTH] = {};
uint32_t *irq_map = full_irq_map;
/* This code creates a standard swizzle of interrupts such that
* each device's first interrupt is based on it's PCI_SLOT number.
* (See pci_swizzle_map_irq_fn())
*
* We only need one entry per interrupt in the table (not one per
* possible slot) seeing the interrupt-map-mask will allow the table
* to wrap to any number of devices.
*/
for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
int devfn = dev * 0x8;
for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
int i = 0;
/* Fill PCI address cells */
irq_map[i] = cpu_to_be32(devfn << 8);
i += FDT_PCI_ADDR_CELLS;
/* Fill PCI Interrupt cells */
irq_map[i] = cpu_to_be32(pin + 1);
i += FDT_PCI_INT_CELLS;
/* Fill interrupt controller phandle and cells */
irq_map[i++] = cpu_to_be32(irqchip_phandle);
irq_map[i++] = cpu_to_be32(irq_nr);
if (s->aia_type != VIRT_AIA_TYPE_NONE) {
irq_map[i++] = cpu_to_be32(0x4);
}
if (!irq_map_stride) {
irq_map_stride = i;
}
irq_map += irq_map_stride;
}
}
qemu_fdt_setprop(fdt, nodename, "interrupt-map", full_irq_map,
GPEX_NUM_IRQS * GPEX_NUM_IRQS *
irq_map_stride * sizeof(uint32_t));
qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
0x1800, 0, 0, 0x7);
}
static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
char *clust_name, uint32_t *phandle,
bool is_32_bit, uint32_t *intc_phandles)
{
int cpu;
uint32_t cpu_phandle;
MachineState *mc = MACHINE(s);
char *name, *cpu_name, *core_name, *intc_name;
for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
cpu_phandle = (*phandle)++;
cpu_name = g_strdup_printf("/cpus/cpu@%d",
s->soc[socket].hartid_base + cpu);
qemu_fdt_add_subnode(mc->fdt, cpu_name);
if (riscv_feature(&s->soc[socket].harts[cpu].env,
RISCV_FEATURE_MMU)) {
qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
(is_32_bit) ? "riscv,sv32" : "riscv,sv48");
} else {
qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
"riscv,none");
}
name = riscv_isa_string(&s->soc[socket].harts[cpu]);
qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name);
g_free(name);
qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv");
qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay");
qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg",
s->soc[socket].hartid_base + cpu);
qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu");
riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket);
qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle);
intc_phandles[cpu] = (*phandle)++;
intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
qemu_fdt_add_subnode(mc->fdt, intc_name);
qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
intc_phandles[cpu]);
qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
"riscv,cpu-intc");
qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);
core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
qemu_fdt_add_subnode(mc->fdt, core_name);
qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle);
g_free(core_name);
g_free(intc_name);
g_free(cpu_name);
}
}
static void create_fdt_socket_memory(RISCVVirtState *s,
const MemMapEntry *memmap, int socket)
{
char *mem_name;
uint64_t addr, size;
MachineState *mc = MACHINE(s);
addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
size = riscv_socket_mem_size(mc, socket);
mem_name = g_strdup_printf("/memory@%lx", (long)addr);
qemu_fdt_add_subnode(mc->fdt, mem_name);
qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg",
addr >> 32, addr, size >> 32, size);
qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory");
riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket);
g_free(mem_name);
}
static void create_fdt_socket_clint(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *intc_phandles)
{
int cpu;
char *clint_name;
uint32_t *clint_cells;
unsigned long clint_addr;
MachineState *mc = MACHINE(s);
static const char * const clint_compat[2] = {
"sifive,clint0", "riscv,clint0"
};
clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
}
clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
qemu_fdt_add_subnode(mc->fdt, clint_name);
qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible",
(char **)&clint_compat,
ARRAY_SIZE(clint_compat));
qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg",
0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended",
clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket);
g_free(clint_name);
g_free(clint_cells);
}
static void create_fdt_socket_aclint(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *intc_phandles)
{
int cpu;
char *name;
unsigned long addr, size;
uint32_t aclint_cells_size;
uint32_t *aclint_mswi_cells;
uint32_t *aclint_sswi_cells;
uint32_t *aclint_mtimer_cells;
MachineState *mc = MACHINE(s);
aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
}
aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
name = g_strdup_printf("/soc/mswi@%lx", addr);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible",
"riscv,aclint-mswi");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
aclint_mswi_cells, aclint_cells_size);
qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
g_free(name);
}
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_CLINT].base +
(RISCV_ACLINT_DEFAULT_MTIMER_SIZE * socket);
size = RISCV_ACLINT_DEFAULT_MTIMER_SIZE;
} else {
addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
(memmap[VIRT_CLINT].size * socket);
size = memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE;
}
name = g_strdup_printf("/soc/mtimer@%lx", addr);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible",
"riscv,aclint-mtimer");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
0x0, size - RISCV_ACLINT_DEFAULT_MTIME,
0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
0x0, RISCV_ACLINT_DEFAULT_MTIME);
qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
aclint_mtimer_cells, aclint_cells_size);
riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
g_free(name);
if (s->aia_type != VIRT_AIA_TYPE_APLIC_IMSIC) {
addr = memmap[VIRT_ACLINT_SSWI].base +
(memmap[VIRT_ACLINT_SSWI].size * socket);
name = g_strdup_printf("/soc/sswi@%lx", addr);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible",
"riscv,aclint-sswi");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
aclint_sswi_cells, aclint_cells_size);
qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
g_free(name);
}
g_free(aclint_mswi_cells);
g_free(aclint_mtimer_cells);
g_free(aclint_sswi_cells);
}
static void create_fdt_socket_plic(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *phandle, uint32_t *intc_phandles,
uint32_t *plic_phandles)
{
int cpu;
char *plic_name;
uint32_t *plic_cells;
unsigned long plic_addr;
MachineState *mc = MACHINE(s);
static const char * const plic_compat[2] = {
"sifive,plic-1.0.0", "riscv,plic0"
};
if (kvm_enabled()) {
plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
} else {
plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
}
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
if (kvm_enabled()) {
plic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
} else {
plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
}
}
plic_phandles[socket] = (*phandle)++;
plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
qemu_fdt_add_subnode(mc->fdt, plic_name);
qemu_fdt_setprop_cell(mc->fdt, plic_name,
"#interrupt-cells", FDT_PLIC_INT_CELLS);
qemu_fdt_setprop_cell(mc->fdt, plic_name,
"#address-cells", FDT_PLIC_ADDR_CELLS);
qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible",
(char **)&plic_compat,
ARRAY_SIZE(plic_compat));
qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended",
plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg",
0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev",
VIRT_IRQCHIP_NUM_SOURCES - 1);
riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket);
qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle",
plic_phandles[socket]);
if (!socket) {
platform_bus_add_all_fdt_nodes(mc->fdt, plic_name,
memmap[VIRT_PLATFORM_BUS].base,
memmap[VIRT_PLATFORM_BUS].size,
VIRT_PLATFORM_BUS_IRQ);
}
g_free(plic_name);
g_free(plic_cells);
}
static uint32_t imsic_num_bits(uint32_t count)
{
uint32_t ret = 0;
while (BIT(ret) < count) {
ret++;
}
return ret;
}
static void create_fdt_imsic(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle, uint32_t *intc_phandles,
uint32_t *msi_m_phandle, uint32_t *msi_s_phandle)
{
int cpu, socket;
char *imsic_name;
MachineState *mc = MACHINE(s);
uint32_t imsic_max_hart_per_socket, imsic_guest_bits;
uint32_t *imsic_cells, *imsic_regs, imsic_addr, imsic_size;
*msi_m_phandle = (*phandle)++;
*msi_s_phandle = (*phandle)++;
imsic_cells = g_new0(uint32_t, mc->smp.cpus * 2);
imsic_regs = g_new0(uint32_t, riscv_socket_count(mc) * 4);
/* M-level IMSIC node */
for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
imsic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_EXT);
}
imsic_max_hart_per_socket = 0;
for (socket = 0; socket < riscv_socket_count(mc); socket++) {
imsic_addr = memmap[VIRT_IMSIC_M].base +
socket * VIRT_IMSIC_GROUP_MAX_SIZE;
imsic_size = IMSIC_HART_SIZE(0) * s->soc[socket].num_harts;
imsic_regs[socket * 4 + 0] = 0;
imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
imsic_regs[socket * 4 + 2] = 0;
imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
imsic_max_hart_per_socket = s->soc[socket].num_harts;
}
}
imsic_name = g_strdup_printf("/soc/imsics@%lx",
(unsigned long)memmap[VIRT_IMSIC_M].base);
qemu_fdt_add_subnode(mc->fdt, imsic_name);
qemu_fdt_setprop_string(mc->fdt, imsic_name, "compatible",
"riscv,imsics");
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "#interrupt-cells",
FDT_IMSIC_INT_CELLS);
qemu_fdt_setprop(mc->fdt, imsic_name, "interrupt-controller",
NULL, 0);
qemu_fdt_setprop(mc->fdt, imsic_name, "msi-controller",
NULL, 0);
qemu_fdt_setprop(mc->fdt, imsic_name, "interrupts-extended",
imsic_cells, mc->smp.cpus * sizeof(uint32_t) * 2);
qemu_fdt_setprop(mc->fdt, imsic_name, "reg", imsic_regs,
riscv_socket_count(mc) * sizeof(uint32_t) * 4);
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,num-ids",
VIRT_IRQCHIP_NUM_MSIS);
if (riscv_socket_count(mc) > 1) {
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,hart-index-bits",
imsic_num_bits(imsic_max_hart_per_socket));
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,group-index-bits",
imsic_num_bits(riscv_socket_count(mc)));
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,group-index-shift",
IMSIC_MMIO_GROUP_MIN_SHIFT);
}
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "phandle", *msi_m_phandle);
g_free(imsic_name);
/* S-level IMSIC node */
for (cpu = 0; cpu < mc->smp.cpus; cpu++) {
imsic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
imsic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
}
imsic_guest_bits = imsic_num_bits(s->aia_guests + 1);
imsic_max_hart_per_socket = 0;
for (socket = 0; socket < riscv_socket_count(mc); socket++) {
imsic_addr = memmap[VIRT_IMSIC_S].base +
socket * VIRT_IMSIC_GROUP_MAX_SIZE;
imsic_size = IMSIC_HART_SIZE(imsic_guest_bits) *
s->soc[socket].num_harts;
imsic_regs[socket * 4 + 0] = 0;
imsic_regs[socket * 4 + 1] = cpu_to_be32(imsic_addr);
imsic_regs[socket * 4 + 2] = 0;
imsic_regs[socket * 4 + 3] = cpu_to_be32(imsic_size);
if (imsic_max_hart_per_socket < s->soc[socket].num_harts) {
imsic_max_hart_per_socket = s->soc[socket].num_harts;
}
}
imsic_name = g_strdup_printf("/soc/imsics@%lx",
(unsigned long)memmap[VIRT_IMSIC_S].base);
qemu_fdt_add_subnode(mc->fdt, imsic_name);
qemu_fdt_setprop_string(mc->fdt, imsic_name, "compatible",
"riscv,imsics");
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "#interrupt-cells",
FDT_IMSIC_INT_CELLS);
qemu_fdt_setprop(mc->fdt, imsic_name, "interrupt-controller",
NULL, 0);
qemu_fdt_setprop(mc->fdt, imsic_name, "msi-controller",
NULL, 0);
qemu_fdt_setprop(mc->fdt, imsic_name, "interrupts-extended",
imsic_cells, mc->smp.cpus * sizeof(uint32_t) * 2);
qemu_fdt_setprop(mc->fdt, imsic_name, "reg", imsic_regs,
riscv_socket_count(mc) * sizeof(uint32_t) * 4);
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,num-ids",
VIRT_IRQCHIP_NUM_MSIS);
if (imsic_guest_bits) {
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,guest-index-bits",
imsic_guest_bits);
}
if (riscv_socket_count(mc) > 1) {
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,hart-index-bits",
imsic_num_bits(imsic_max_hart_per_socket));
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,group-index-bits",
imsic_num_bits(riscv_socket_count(mc)));
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "riscv,group-index-shift",
IMSIC_MMIO_GROUP_MIN_SHIFT);
}
qemu_fdt_setprop_cell(mc->fdt, imsic_name, "phandle", *msi_s_phandle);
g_free(imsic_name);
g_free(imsic_regs);
g_free(imsic_cells);
}
static void create_fdt_socket_aplic(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t msi_m_phandle,
uint32_t msi_s_phandle,
uint32_t *phandle,
uint32_t *intc_phandles,
uint32_t *aplic_phandles)
{
int cpu;
char *aplic_name;
uint32_t *aplic_cells;
unsigned long aplic_addr;
MachineState *mc = MACHINE(s);
uint32_t aplic_m_phandle, aplic_s_phandle;
aplic_m_phandle = (*phandle)++;
aplic_s_phandle = (*phandle)++;
aplic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
/* M-level APLIC node */
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aplic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_EXT);
}
aplic_addr = memmap[VIRT_APLIC_M].base +
(memmap[VIRT_APLIC_M].size * socket);
aplic_name = g_strdup_printf("/soc/aplic@%lx", aplic_addr);
qemu_fdt_add_subnode(mc->fdt, aplic_name);
qemu_fdt_setprop_string(mc->fdt, aplic_name, "compatible", "riscv,aplic");
qemu_fdt_setprop_cell(mc->fdt, aplic_name,
"#interrupt-cells", FDT_APLIC_INT_CELLS);
qemu_fdt_setprop(mc->fdt, aplic_name, "interrupt-controller", NULL, 0);
if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
qemu_fdt_setprop(mc->fdt, aplic_name, "interrupts-extended",
aplic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 2);
} else {
qemu_fdt_setprop_cell(mc->fdt, aplic_name, "msi-parent",
msi_m_phandle);
}
qemu_fdt_setprop_cells(mc->fdt, aplic_name, "reg",
0x0, aplic_addr, 0x0, memmap[VIRT_APLIC_M].size);
qemu_fdt_setprop_cell(mc->fdt, aplic_name, "riscv,num-sources",
VIRT_IRQCHIP_NUM_SOURCES);
qemu_fdt_setprop_cell(mc->fdt, aplic_name, "riscv,children",
aplic_s_phandle);
qemu_fdt_setprop_cells(mc->fdt, aplic_name, "riscv,delegate",
aplic_s_phandle, 0x1, VIRT_IRQCHIP_NUM_SOURCES);
riscv_socket_fdt_write_id(mc, mc->fdt, aplic_name, socket);
qemu_fdt_setprop_cell(mc->fdt, aplic_name, "phandle", aplic_m_phandle);
g_free(aplic_name);
/* S-level APLIC node */
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
aplic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aplic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
}
aplic_addr = memmap[VIRT_APLIC_S].base +
(memmap[VIRT_APLIC_S].size * socket);
aplic_name = g_strdup_printf("/soc/aplic@%lx", aplic_addr);
qemu_fdt_add_subnode(mc->fdt, aplic_name);
qemu_fdt_setprop_string(mc->fdt, aplic_name, "compatible", "riscv,aplic");
qemu_fdt_setprop_cell(mc->fdt, aplic_name,
"#interrupt-cells", FDT_APLIC_INT_CELLS);
qemu_fdt_setprop(mc->fdt, aplic_name, "interrupt-controller", NULL, 0);
if (s->aia_type == VIRT_AIA_TYPE_APLIC) {
qemu_fdt_setprop(mc->fdt, aplic_name, "interrupts-extended",
aplic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 2);
} else {
qemu_fdt_setprop_cell(mc->fdt, aplic_name, "msi-parent",
msi_s_phandle);
}
qemu_fdt_setprop_cells(mc->fdt, aplic_name, "reg",
0x0, aplic_addr, 0x0, memmap[VIRT_APLIC_S].size);
qemu_fdt_setprop_cell(mc->fdt, aplic_name, "riscv,num-sources",
VIRT_IRQCHIP_NUM_SOURCES);
riscv_socket_fdt_write_id(mc, mc->fdt, aplic_name, socket);
qemu_fdt_setprop_cell(mc->fdt, aplic_name, "phandle", aplic_s_phandle);
if (!socket) {
platform_bus_add_all_fdt_nodes(mc->fdt, aplic_name,
memmap[VIRT_PLATFORM_BUS].base,
memmap[VIRT_PLATFORM_BUS].size,
VIRT_PLATFORM_BUS_IRQ);
}
g_free(aplic_name);
g_free(aplic_cells);
aplic_phandles[socket] = aplic_s_phandle;
}
static void create_fdt_pmu(RISCVVirtState *s)
{
char *pmu_name;
MachineState *mc = MACHINE(s);
RISCVCPU hart = s->soc[0].harts[0];
pmu_name = g_strdup_printf("/soc/pmu");
qemu_fdt_add_subnode(mc->fdt, pmu_name);
qemu_fdt_setprop_string(mc->fdt, pmu_name, "compatible", "riscv,pmu");
riscv_pmu_generate_fdt_node(mc->fdt, hart.cfg.pmu_num, pmu_name);
g_free(pmu_name);
}
static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
bool is_32_bit, uint32_t *phandle,
uint32_t *irq_mmio_phandle,
uint32_t *irq_pcie_phandle,
uint32_t *irq_virtio_phandle,
uint32_t *msi_pcie_phandle)
{
char *clust_name;
int socket, phandle_pos;
MachineState *mc = MACHINE(s);
uint32_t msi_m_phandle = 0, msi_s_phandle = 0;
uint32_t *intc_phandles, xplic_phandles[MAX_NODES];
qemu_fdt_add_subnode(mc->fdt, "/cpus");
qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency",
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map");
intc_phandles = g_new0(uint32_t, mc->smp.cpus);
phandle_pos = mc->smp.cpus;
for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
phandle_pos -= s->soc[socket].num_harts;
clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
qemu_fdt_add_subnode(mc->fdt, clust_name);
create_fdt_socket_cpus(s, socket, clust_name, phandle,
is_32_bit, &intc_phandles[phandle_pos]);
create_fdt_socket_memory(s, memmap, socket);
g_free(clust_name);
if (!kvm_enabled()) {
if (s->have_aclint) {
create_fdt_socket_aclint(s, memmap, socket,
&intc_phandles[phandle_pos]);
} else {
create_fdt_socket_clint(s, memmap, socket,
&intc_phandles[phandle_pos]);
}
}
}
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
create_fdt_imsic(s, memmap, phandle, intc_phandles,
&msi_m_phandle, &msi_s_phandle);
*msi_pcie_phandle = msi_s_phandle;
}
phandle_pos = mc->smp.cpus;
for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
phandle_pos -= s->soc[socket].num_harts;
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
create_fdt_socket_plic(s, memmap, socket, phandle,
&intc_phandles[phandle_pos], xplic_phandles);
} else {
create_fdt_socket_aplic(s, memmap, socket,
msi_m_phandle, msi_s_phandle, phandle,
&intc_phandles[phandle_pos], xplic_phandles);
}
}
g_free(intc_phandles);
for (socket = 0; socket < riscv_socket_count(mc); socket++) {
if (socket == 0) {
*irq_mmio_phandle = xplic_phandles[socket];
*irq_virtio_phandle = xplic_phandles[socket];
*irq_pcie_phandle = xplic_phandles[socket];
}
if (socket == 1) {
*irq_virtio_phandle = xplic_phandles[socket];
*irq_pcie_phandle = xplic_phandles[socket];
}
if (socket == 2) {
*irq_pcie_phandle = xplic_phandles[socket];
}
}
riscv_socket_fdt_write_distance_matrix(mc, mc->fdt);
}
static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_virtio_phandle)
{
int i;
char *name;
MachineState *mc = MACHINE(s);
for (i = 0; i < VIRTIO_COUNT; i++) {
name = g_strdup_printf("/soc/virtio_mmio@%lx",
(long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
0x0, memmap[VIRT_VIRTIO].size);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
irq_virtio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(mc->fdt, name, "interrupts",
VIRTIO_IRQ + i);
} else {
qemu_fdt_setprop_cells(mc->fdt, name, "interrupts",
VIRTIO_IRQ + i, 0x4);
}
g_free(name);
}
}
static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_pcie_phandle,
uint32_t msi_pcie_phandle)
{
char *name;
MachineState *mc = MACHINE(s);
name = g_strdup_printf("/soc/pci@%lx",
(long) memmap[VIRT_PCIE_ECAM].base);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells",
FDT_PCI_ADDR_CELLS);
qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells",
FDT_PCI_INT_CELLS);
qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2);
qemu_fdt_setprop_string(mc->fdt, name, "compatible",
"pci-host-ecam-generic");
qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci");
qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0);
qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0,
memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0);
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
qemu_fdt_setprop_cell(mc->fdt, name, "msi-parent", msi_pcie_phandle);
}
qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0,
memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
1, FDT_PCI_RANGE_MMIO,
2, memmap[VIRT_PCIE_MMIO].base,
2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
1, FDT_PCI_RANGE_MMIO_64BIT,
2, virt_high_pcie_memmap.base,
2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
create_pcie_irq_map(s, mc->fdt, name, irq_pcie_phandle);
g_free(name);
}
static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle)
{
char *name;
uint32_t test_phandle;
MachineState *mc = MACHINE(s);
test_phandle = (*phandle)++;
name = g_strdup_printf("/soc/test@%lx",
(long)memmap[VIRT_TEST].base);
qemu_fdt_add_subnode(mc->fdt, name);
{
static const char * const compat[3] = {
"sifive,test1", "sifive,test0", "syscon"
};
qemu_fdt_setprop_string_array(mc->fdt, name, "compatible",
(char **)&compat, ARRAY_SIZE(compat));
}
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle);
test_phandle = qemu_fdt_get_phandle(mc->fdt, name);
g_free(name);
name = g_strdup_printf("/reboot");
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot");
qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET);
g_free(name);
name = g_strdup_printf("/poweroff");
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff");
qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS);
g_free(name);
}
static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_mmio_phandle)
{
char *name;
MachineState *mc = MACHINE(s);
name = g_strdup_printf("/soc/serial@%lx", (long)memmap[VIRT_UART0].base);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, memmap[VIRT_UART0].base,
0x0, memmap[VIRT_UART0].size);
qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ);
} else {
qemu_fdt_setprop_cells(mc->fdt, name, "interrupts", UART0_IRQ, 0x4);
}
qemu_fdt_add_subnode(mc->fdt, "/chosen");
qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name);
g_free(name);
}
static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_mmio_phandle)
{
char *name;
MachineState *mc = MACHINE(s);
name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible",
"google,goldfish-rtc");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
irq_mmio_phandle);
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ);
} else {
qemu_fdt_setprop_cells(mc->fdt, name, "interrupts", RTC_IRQ, 0x4);
}
g_free(name);
}
static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
{
char *name;
MachineState *mc = MACHINE(s);
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
name = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4);
g_free(name);
}
static void create_fdt_fw_cfg(RISCVVirtState *s, const MemMapEntry *memmap)
{
char *nodename;
MachineState *mc = MACHINE(s);
hwaddr base = memmap[VIRT_FW_CFG].base;
hwaddr size = memmap[VIRT_FW_CFG].size;
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
qemu_fdt_add_subnode(mc->fdt, nodename);
qemu_fdt_setprop_string(mc->fdt, nodename,
"compatible", "qemu,fw-cfg-mmio");
qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0);
g_free(nodename);
}
static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
uint64_t mem_size, const char *cmdline, bool is_32_bit)
{
MachineState *mc = MACHINE(s);
uint32_t phandle = 1, irq_mmio_phandle = 1, msi_pcie_phandle = 1;
uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
uint8_t rng_seed[32];
if (mc->dtb) {
mc->fdt = load_device_tree(mc->dtb, &s->fdt_size);
if (!mc->fdt) {
error_report("load_device_tree() failed");
exit(1);
}
goto update_bootargs;
} else {
mc->fdt = create_device_tree(&s->fdt_size);
if (!mc->fdt) {
error_report("create_device_tree() failed");
exit(1);
}
}
qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu");
qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio");
qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(mc->fdt, "/soc");
qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2);
create_fdt_sockets(s, memmap, is_32_bit, &phandle,
&irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle,
&msi_pcie_phandle);
create_fdt_virtio(s, memmap, irq_virtio_phandle);
create_fdt_pcie(s, memmap, irq_pcie_phandle, msi_pcie_phandle);
create_fdt_reset(s, memmap, &phandle);
create_fdt_uart(s, memmap, irq_mmio_phandle);
create_fdt_rtc(s, memmap, irq_mmio_phandle);
create_fdt_flash(s, memmap);
create_fdt_fw_cfg(s, memmap);
create_fdt_pmu(s);
update_bootargs:
if (cmdline && *cmdline) {
qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline);
}
/* Pass seed to RNG */
qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
qemu_fdt_setprop(mc->fdt, "/chosen", "rng-seed", rng_seed, sizeof(rng_seed));
}
static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
hwaddr ecam_base, hwaddr ecam_size,
hwaddr mmio_base, hwaddr mmio_size,
hwaddr high_mmio_base,
hwaddr high_mmio_size,
hwaddr pio_base,
DeviceState *irqchip)
{
DeviceState *dev;
MemoryRegion *ecam_alias, *ecam_reg;
MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
qemu_irq irq;
int i;
dev = qdev_new(TYPE_GPEX_HOST);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, ecam_size);
memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, mmio_base, mmio_size);
memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
/* Map high MMIO space */
high_mmio_alias = g_new0(MemoryRegion, 1);
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
mmio_reg, high_mmio_base, high_mmio_size);
memory_region_add_subregion(get_system_memory(), high_mmio_base,
high_mmio_alias);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
irq = qdev_get_gpio_in(irqchip, PCIE_IRQ + i);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
}
return dev;
}
static FWCfgState *create_fw_cfg(const MachineState *mc)
{
hwaddr base = virt_memmap[VIRT_FW_CFG].base;
FWCfgState *fw_cfg;
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
&address_space_memory);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus);
return fw_cfg;
}
static DeviceState *virt_create_plic(const MemMapEntry *memmap, int socket,
int base_hartid, int hart_count)
{
DeviceState *ret;
char *plic_hart_config;
/* Per-socket PLIC hart topology configuration string */
plic_hart_config = riscv_plic_hart_config_string(hart_count);
/* Per-socket PLIC */
ret = sifive_plic_create(
memmap[VIRT_PLIC].base + socket * memmap[VIRT_PLIC].size,
plic_hart_config, hart_count, base_hartid,
VIRT_IRQCHIP_NUM_SOURCES,
((1U << VIRT_IRQCHIP_NUM_PRIO_BITS) - 1),
VIRT_PLIC_PRIORITY_BASE,
VIRT_PLIC_PENDING_BASE,
VIRT_PLIC_ENABLE_BASE,
VIRT_PLIC_ENABLE_STRIDE,
VIRT_PLIC_CONTEXT_BASE,
VIRT_PLIC_CONTEXT_STRIDE,
memmap[VIRT_PLIC].size);
g_free(plic_hart_config);
return ret;
}
static DeviceState *virt_create_aia(RISCVVirtAIAType aia_type, int aia_guests,
const MemMapEntry *memmap, int socket,
int base_hartid, int hart_count)
{
int i;
hwaddr addr;
uint32_t guest_bits;
DeviceState *aplic_m;
bool msimode = (aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) ? true : false;
if (msimode) {
/* Per-socket M-level IMSICs */
addr = memmap[VIRT_IMSIC_M].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
for (i = 0; i < hart_count; i++) {
riscv_imsic_create(addr + i * IMSIC_HART_SIZE(0),
base_hartid + i, true, 1,
VIRT_IRQCHIP_NUM_MSIS);
}
/* Per-socket S-level IMSICs */
guest_bits = imsic_num_bits(aia_guests + 1);
addr = memmap[VIRT_IMSIC_S].base + socket * VIRT_IMSIC_GROUP_MAX_SIZE;
for (i = 0; i < hart_count; i++) {
riscv_imsic_create(addr + i * IMSIC_HART_SIZE(guest_bits),
base_hartid + i, false, 1 + aia_guests,
VIRT_IRQCHIP_NUM_MSIS);
}
}
/* Per-socket M-level APLIC */
aplic_m = riscv_aplic_create(
memmap[VIRT_APLIC_M].base + socket * memmap[VIRT_APLIC_M].size,
memmap[VIRT_APLIC_M].size,
(msimode) ? 0 : base_hartid,
(msimode) ? 0 : hart_count,
VIRT_IRQCHIP_NUM_SOURCES,
VIRT_IRQCHIP_NUM_PRIO_BITS,
msimode, true, NULL);
if (aplic_m) {
/* Per-socket S-level APLIC */
riscv_aplic_create(
memmap[VIRT_APLIC_S].base + socket * memmap[VIRT_APLIC_S].size,
memmap[VIRT_APLIC_S].size,
(msimode) ? 0 : base_hartid,
(msimode) ? 0 : hart_count,
VIRT_IRQCHIP_NUM_SOURCES,
VIRT_IRQCHIP_NUM_PRIO_BITS,
msimode, false, aplic_m);
}
return aplic_m;
}
static void create_platform_bus(RISCVVirtState *s, DeviceState *irqchip)
{
DeviceState *dev;
SysBusDevice *sysbus;
const MemMapEntry *memmap = virt_memmap;
int i;
MemoryRegion *sysmem = get_system_memory();
dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
qdev_prop_set_uint32(dev, "num_irqs", VIRT_PLATFORM_BUS_NUM_IRQS);
qdev_prop_set_uint32(dev, "mmio_size", memmap[VIRT_PLATFORM_BUS].size);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
s->platform_bus_dev = dev;
sysbus = SYS_BUS_DEVICE(dev);
for (i = 0; i < VIRT_PLATFORM_BUS_NUM_IRQS; i++) {
int irq = VIRT_PLATFORM_BUS_IRQ + i;
sysbus_connect_irq(sysbus, i, qdev_get_gpio_in(irqchip, irq));
}
memory_region_add_subregion(sysmem,
memmap[VIRT_PLATFORM_BUS].base,
sysbus_mmio_get_region(sysbus, 0));
}
static void virt_machine_done(Notifier *notifier, void *data)
{
RISCVVirtState *s = container_of(notifier, RISCVVirtState,
machine_done);
const MemMapEntry *memmap = virt_memmap;
MachineState *machine = MACHINE(s);
target_ulong start_addr = memmap[VIRT_DRAM].base;
target_ulong firmware_end_addr, kernel_start_addr;
uint32_t fdt_load_addr;
uint64_t kernel_entry;
/*
* Only direct boot kernel is currently supported for KVM VM,
* so the "-bios" parameter is not supported when KVM is enabled.
*/
if (kvm_enabled()) {
if (machine->firmware) {
if (strcmp(machine->firmware, "none")) {
error_report("Machine mode firmware is not supported in "
"combination with KVM.");
exit(1);
}
} else {
machine->firmware = g_strdup("none");
}
}
if (riscv_is_32bit(&s->soc[0])) {
firmware_end_addr = riscv_find_and_load_firmware(machine,
RISCV32_BIOS_BIN, start_addr, NULL);
} else {
firmware_end_addr = riscv_find_and_load_firmware(machine,
RISCV64_BIOS_BIN, start_addr, NULL);
}
/*
* Init fw_cfg. Must be done before riscv_load_fdt, otherwise the device
* tree cannot be altered and we get FDT_ERR_NOSPACE.
*/
s->fw_cfg = create_fw_cfg(machine);
rom_set_fw(s->fw_cfg);
if (drive_get(IF_PFLASH, 0, 1)) {
/*
* S-mode FW like EDK2 will be kept in second plash (unit 1).
* When both kernel, initrd and pflash options are provided in the
* command line, the kernel and initrd will be copied to the fw_cfg
* table and opensbi will jump to the flash address which is the
* entry point of S-mode FW. It is the job of the S-mode FW to load
* the kernel and initrd using fw_cfg table.
*
* If only pflash is given but not -kernel, then it is the job of
* of the S-mode firmware to locate and load the kernel.
* In either case, the next_addr for opensbi will be the flash address.
*/
riscv_setup_firmware_boot(machine);
kernel_entry = virt_memmap[VIRT_FLASH].base +
virt_memmap[VIRT_FLASH].size / 2;
} else if (machine->kernel_filename) {
kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
firmware_end_addr);
kernel_entry = riscv_load_kernel(machine->kernel_filename,
kernel_start_addr, NULL);
if (machine->initrd_filename) {
hwaddr start;
hwaddr end = riscv_load_initrd(machine->initrd_filename,
machine->ram_size, kernel_entry,
&start);
qemu_fdt_setprop_cell(machine->fdt, "/chosen",
"linux,initrd-start", start);
qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end",
end);
}
} else {
/*
* If dynamic firmware is used, it doesn't know where is the next mode
* if kernel argument is not set.
*/
kernel_entry = 0;
}
if (drive_get(IF_PFLASH, 0, 0)) {
/*
* Pflash was supplied, let's overwrite the address we jump to after
* reset to the base of the flash.
*/
start_addr = virt_memmap[VIRT_FLASH].base;
}
/* Compute the fdt load address in dram */
fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
machine->ram_size, machine->fdt);
/* load the reset vector */
riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
virt_memmap[VIRT_MROM].base,
virt_memmap[VIRT_MROM].size, kernel_entry,
fdt_load_addr);
/*
* Only direct boot kernel is currently supported for KVM VM,
* So here setup kernel start address and fdt address.
* TODO:Support firmware loading and integrate to TCG start
*/
if (kvm_enabled()) {
riscv_setup_direct_kernel(kernel_entry, fdt_load_addr);
}
}
static void virt_machine_init(MachineState *machine)
{
const MemMapEntry *memmap = virt_memmap;
RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
char *soc_name;
DeviceState *mmio_irqchip, *virtio_irqchip, *pcie_irqchip;
int i, base_hartid, hart_count;
/* Check socket count limit */
if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
error_report("number of sockets/nodes should be less than %d",
VIRT_SOCKETS_MAX);
exit(1);
}
/* Initialize sockets */
mmio_irqchip = virtio_irqchip = pcie_irqchip = NULL;
for (i = 0; i < riscv_socket_count(machine); i++) {
if (!riscv_socket_check_hartids(machine, i)) {
error_report("discontinuous hartids in socket%d", i);
exit(1);
}
base_hartid = riscv_socket_first_hartid(machine, i);
if (base_hartid < 0) {
error_report("can't find hartid base for socket%d", i);
exit(1);
}
hart_count = riscv_socket_hart_count(machine, i);
if (hart_count < 0) {
error_report("can't find hart count for socket%d", i);
exit(1);
}
soc_name = g_strdup_printf("soc%d", i);
object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
TYPE_RISCV_HART_ARRAY);
g_free(soc_name);
object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
machine->cpu_type, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
base_hartid, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
hart_count, &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
if (!kvm_enabled()) {
if (s->have_aclint) {
if (s->aia_type == VIRT_AIA_TYPE_APLIC_IMSIC) {
/* Per-socket ACLINT MTIMER */
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP,
RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
} else {
/* Per-socket ACLINT MSWI, MTIMER, and SSWI */
riscv_aclint_swi_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size +
RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE,
base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP,
RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
riscv_aclint_swi_create(memmap[VIRT_ACLINT_SSWI].base +
i * memmap[VIRT_ACLINT_SSWI].size,
base_hartid, hart_count, true);
}
} else {
/* Per-socket SiFive CLINT */
riscv_aclint_swi_create(
memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(memmap[VIRT_CLINT].base +
i * memmap[VIRT_CLINT].size + RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
}
}
/* Per-socket interrupt controller */
if (s->aia_type == VIRT_AIA_TYPE_NONE) {
s->irqchip[i] = virt_create_plic(memmap, i,
base_hartid, hart_count);
} else {
s->irqchip[i] = virt_create_aia(s->aia_type, s->aia_guests,
memmap, i, base_hartid,
hart_count);
}
/* Try to use different IRQCHIP instance based device type */
if (i == 0) {
mmio_irqchip = s->irqchip[i];
virtio_irqchip = s->irqchip[i];
pcie_irqchip = s->irqchip[i];
}
if (i == 1) {
virtio_irqchip = s->irqchip[i];
pcie_irqchip = s->irqchip[i];
}
if (i == 2) {
pcie_irqchip = s->irqchip[i];
}
}
if (riscv_is_32bit(&s->soc[0])) {
#if HOST_LONG_BITS == 64
/* limit RAM size in a 32-bit system */
if (machine->ram_size > 10 * GiB) {
machine->ram_size = 10 * GiB;
error_report("Limiting RAM size to 10 GiB");
}
#endif
virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
} else {
virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
virt_high_pcie_memmap.base =
ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
}
/* register system main memory (actual RAM) */
memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
machine->ram);
/* boot rom */
memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
memmap[VIRT_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
mask_rom);
/* SiFive Test MMIO device */
sifive_test_create(memmap[VIRT_TEST].base);
/* VirtIO MMIO devices */
for (i = 0; i < VIRTIO_COUNT; i++) {
sysbus_create_simple("virtio-mmio",
memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
qdev_get_gpio_in(DEVICE(virtio_irqchip), VIRTIO_IRQ + i));
}
gpex_pcie_init(system_memory,
memmap[VIRT_PCIE_ECAM].base,
memmap[VIRT_PCIE_ECAM].size,
memmap[VIRT_PCIE_MMIO].base,
memmap[VIRT_PCIE_MMIO].size,
virt_high_pcie_memmap.base,
virt_high_pcie_memmap.size,
memmap[VIRT_PCIE_PIO].base,
DEVICE(pcie_irqchip));
create_platform_bus(s, DEVICE(mmio_irqchip));
serial_mm_init(system_memory, memmap[VIRT_UART0].base,
0, qdev_get_gpio_in(DEVICE(mmio_irqchip), UART0_IRQ), 399193,
serial_hd(0), DEVICE_LITTLE_ENDIAN);
sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
qdev_get_gpio_in(DEVICE(mmio_irqchip), RTC_IRQ));
virt_flash_create(s);
for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
/* Map legacy -drive if=pflash to machine properties */
pflash_cfi01_legacy_drive(s->flash[i],
drive_get(IF_PFLASH, 0, i));
}
virt_flash_map(s, system_memory);
/* create device tree */
create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
riscv_is_32bit(&s->soc[0]));
s->machine_done.notify = virt_machine_done;
qemu_add_machine_init_done_notifier(&s->machine_done);
}
static void virt_machine_instance_init(Object *obj)
{
}
static char *virt_get_aia_guests(Object *obj, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
char val[32];
sprintf(val, "%d", s->aia_guests);
return g_strdup(val);
}
static void virt_set_aia_guests(Object *obj, const char *val, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
s->aia_guests = atoi(val);
if (s->aia_guests < 0 || s->aia_guests > VIRT_IRQCHIP_MAX_GUESTS) {
error_setg(errp, "Invalid number of AIA IMSIC guests");
error_append_hint(errp, "Valid values be between 0 and %d.\n",
VIRT_IRQCHIP_MAX_GUESTS);
}
}
static char *virt_get_aia(Object *obj, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
const char *val;
switch (s->aia_type) {
case VIRT_AIA_TYPE_APLIC:
val = "aplic";
break;
case VIRT_AIA_TYPE_APLIC_IMSIC:
val = "aplic-imsic";
break;
default:
val = "none";
break;
};
return g_strdup(val);
}
static void virt_set_aia(Object *obj, const char *val, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(obj);
if (!strcmp(val, "none")) {
s->aia_type = VIRT_AIA_TYPE_NONE;
} else if (!strcmp(val, "aplic")) {
s->aia_type = VIRT_AIA_TYPE_APLIC;
} else if (!strcmp(val, "aplic-imsic")) {
s->aia_type = VIRT_AIA_TYPE_APLIC_IMSIC;
} else {
error_setg(errp, "Invalid AIA interrupt controller type");
error_append_hint(errp, "Valid values are none, aplic, and "
"aplic-imsic.\n");
}
}
static bool virt_get_aclint(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
return s->have_aclint;
}
static void virt_set_aclint(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
s->have_aclint = value;
}
static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
DeviceState *dev)
{
MachineClass *mc = MACHINE_GET_CLASS(machine);
if (device_is_dynamic_sysbus(mc, dev)) {
return HOTPLUG_HANDLER(machine);
}
return NULL;
}
static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
DeviceState *dev, Error **errp)
{
RISCVVirtState *s = RISCV_VIRT_MACHINE(hotplug_dev);
if (s->platform_bus_dev) {
MachineClass *mc = MACHINE_GET_CLASS(s);
if (device_is_dynamic_sysbus(mc, dev)) {
platform_bus_link_device(PLATFORM_BUS_DEVICE(s->platform_bus_dev),
SYS_BUS_DEVICE(dev));
}
}
}
static void virt_machine_class_init(ObjectClass *oc, void *data)
{
char str[128];
MachineClass *mc = MACHINE_CLASS(oc);
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
mc->desc = "RISC-V VirtIO board";
mc->init = virt_machine_init;
mc->max_cpus = VIRT_CPUS_MAX;
mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
mc->pci_allow_0_address = true;
mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
mc->numa_mem_supported = true;
mc->default_ram_id = "riscv_virt_board.ram";
assert(!mc->get_hotplug_handler);
mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
hc->plug = virt_machine_device_plug_cb;
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
#ifdef CONFIG_TPM
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
#endif
object_class_property_add_bool(oc, "aclint", virt_get_aclint,
virt_set_aclint);
object_class_property_set_description(oc, "aclint",
"Set on/off to enable/disable "
"emulating ACLINT devices");
object_class_property_add_str(oc, "aia", virt_get_aia,
virt_set_aia);
object_class_property_set_description(oc, "aia",
"Set type of AIA interrupt "
"conttoller. Valid values are "
"none, aplic, and aplic-imsic.");
object_class_property_add_str(oc, "aia-guests",
virt_get_aia_guests,
virt_set_aia_guests);
sprintf(str, "Set number of guest MMIO pages for AIA IMSIC. Valid value "
"should be between 0 and %d.", VIRT_IRQCHIP_MAX_GUESTS);
object_class_property_set_description(oc, "aia-guests", str);
}
static const TypeInfo virt_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("virt"),
.parent = TYPE_MACHINE,
.class_init = virt_machine_class_init,
.instance_init = virt_machine_instance_init,
.instance_size = sizeof(RISCVVirtState),
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
},
};
static void virt_machine_init_register_types(void)
{
type_register_static(&virt_machine_typeinfo);
}
type_init(virt_machine_init_register_types)