qemu/hw/misc/imx7_src.c
Jean-Christophe Dubois 12517bc978 Add i.MX7 SRC device implementation
The SRC device is normally used to start the secondary CPU.

When running Linux directly, QEMU is emulating a PSCI interface that UBOOT
is installing at boot time and therefore the fact that the SRC device is
unimplemented is hidden as Qemu respond directly to PSCI requets without
using the SRC device.

But if you try to run a more bare metal application (maybe uboot itself),
then it is not possible to start the secondary CPU as the SRC is an
unimplemented device.

This patch adds the ability to start the secondary CPU through the SRC
device so that you can use this feature in bare metal applications.

Signed-off-by: Jean-Christophe Dubois <jcd@tribudubois.net>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Message-id: ce9a0162defd2acee5dc7f8a674743de0cded569.1692964892.git.jcd@tribudubois.net
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2023-08-31 09:45:17 +01:00

277 lines
7.3 KiB
C

/*
* IMX7 System Reset Controller
*
* Copyright (c) 2023 Jean-Christophe Dubois <jcd@tribudubois.net>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include "hw/misc/imx7_src.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "target/arm/arm-powerctl.h"
#include "hw/core/cpu.h"
#include "hw/registerfields.h"
#include "trace.h"
static const char *imx7_src_reg_name(uint32_t reg)
{
static char unknown[20];
switch (reg) {
case SRC_SCR:
return "SRC_SCR";
case SRC_A7RCR0:
return "SRC_A7RCR0";
case SRC_A7RCR1:
return "SRC_A7RCR1";
case SRC_M4RCR:
return "SRC_M4RCR";
case SRC_ERCR:
return "SRC_ERCR";
case SRC_HSICPHY_RCR:
return "SRC_HSICPHY_RCR";
case SRC_USBOPHY1_RCR:
return "SRC_USBOPHY1_RCR";
case SRC_USBOPHY2_RCR:
return "SRC_USBOPHY2_RCR";
case SRC_PCIEPHY_RCR:
return "SRC_PCIEPHY_RCR";
case SRC_SBMR1:
return "SRC_SBMR1";
case SRC_SRSR:
return "SRC_SRSR";
case SRC_SISR:
return "SRC_SISR";
case SRC_SIMR:
return "SRC_SIMR";
case SRC_SBMR2:
return "SRC_SBMR2";
case SRC_GPR1:
return "SRC_GPR1";
case SRC_GPR2:
return "SRC_GPR2";
case SRC_GPR3:
return "SRC_GPR3";
case SRC_GPR4:
return "SRC_GPR4";
case SRC_GPR5:
return "SRC_GPR5";
case SRC_GPR6:
return "SRC_GPR6";
case SRC_GPR7:
return "SRC_GPR7";
case SRC_GPR8:
return "SRC_GPR8";
case SRC_GPR9:
return "SRC_GPR9";
case SRC_GPR10:
return "SRC_GPR10";
default:
sprintf(unknown, "%u ?", reg);
return unknown;
}
}
static const VMStateDescription vmstate_imx7_src = {
.name = TYPE_IMX7_SRC,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, IMX7SRCState, SRC_MAX),
VMSTATE_END_OF_LIST()
},
};
static void imx7_src_reset(DeviceState *dev)
{
IMX7SRCState *s = IMX7_SRC(dev);
memset(s->regs, 0, sizeof(s->regs));
/* Set reset values */
s->regs[SRC_SCR] = 0xA0;
s->regs[SRC_SRSR] = 0x1;
s->regs[SRC_SIMR] = 0x1F;
}
static uint64_t imx7_src_read(void *opaque, hwaddr offset, unsigned size)
{
uint32_t value = 0;
IMX7SRCState *s = (IMX7SRCState *)opaque;
uint32_t index = offset >> 2;
if (index < SRC_MAX) {
value = s->regs[index];
} else {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX7_SRC, __func__, offset);
}
trace_imx7_src_read(imx7_src_reg_name(index), value);
return value;
}
/*
* The reset is asynchronous so we need to defer clearing the reset
* bit until the work is completed.
*/
struct SRCSCRResetInfo {
IMX7SRCState *s;
uint32_t reset_bit;
};
static void imx7_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
{
struct SRCSCRResetInfo *ri = data.host_ptr;
IMX7SRCState *s = ri->s;
assert(qemu_mutex_iothread_locked());
s->regs[SRC_A7RCR0] = deposit32(s->regs[SRC_A7RCR0], ri->reset_bit, 1, 0);
trace_imx7_src_write(imx7_src_reg_name(SRC_A7RCR0), s->regs[SRC_A7RCR0]);
g_free(ri);
}
static void imx7_defer_clear_reset_bit(uint32_t cpuid,
IMX7SRCState *s,
uint32_t reset_shift)
{
struct SRCSCRResetInfo *ri;
CPUState *cpu = arm_get_cpu_by_id(cpuid);
if (!cpu) {
return;
}
ri = g_new(struct SRCSCRResetInfo, 1);
ri->s = s;
ri->reset_bit = reset_shift;
async_run_on_cpu(cpu, imx7_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri));
}
static void imx7_src_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
IMX7SRCState *s = (IMX7SRCState *)opaque;
uint32_t index = offset >> 2;
long unsigned int change_mask;
uint32_t current_value = value;
if (index >= SRC_MAX) {
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
HWADDR_PRIx "\n", TYPE_IMX7_SRC, __func__, offset);
return;
}
trace_imx7_src_write(imx7_src_reg_name(SRC_A7RCR0), s->regs[SRC_A7RCR0]);
change_mask = s->regs[index] ^ (uint32_t)current_value;
switch (index) {
case SRC_A7RCR0:
if (FIELD_EX32(change_mask, CORE0, RST)) {
arm_reset_cpu(0);
imx7_defer_clear_reset_bit(0, s, R_CORE0_RST_SHIFT);
}
if (FIELD_EX32(change_mask, CORE1, RST)) {
arm_reset_cpu(1);
imx7_defer_clear_reset_bit(1, s, R_CORE1_RST_SHIFT);
}
s->regs[index] = current_value;
break;
case SRC_A7RCR1:
/*
* On real hardware when the system reset controller starts a
* secondary CPU it runs through some boot ROM code which reads
* the SRC_GPRX registers controlling the start address and branches
* to it.
* Here we are taking a short cut and branching directly to the
* requested address (we don't want to run the boot ROM code inside
* QEMU)
*/
if (FIELD_EX32(change_mask, CORE1, ENABLE)) {
if (FIELD_EX32(current_value, CORE1, ENABLE)) {
/* CORE 1 is brought up */
arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
3, false);
} else {
/* CORE 1 is shut down */
arm_set_cpu_off(1);
}
/* We clear the reset bits as the processor changed state */
imx7_defer_clear_reset_bit(1, s, R_CORE1_RST_SHIFT);
clear_bit(R_CORE1_RST_SHIFT, &change_mask);
}
s->regs[index] = current_value;
break;
default:
s->regs[index] = current_value;
break;
}
}
static const struct MemoryRegionOps imx7_src_ops = {
.read = imx7_src_read,
.write = imx7_src_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
/*
* Our device would not work correctly if the guest was doing
* unaligned access. This might not be a limitation on the real
* device but in practice there is no reason for a guest to access
* this device unaligned.
*/
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void imx7_src_realize(DeviceState *dev, Error **errp)
{
IMX7SRCState *s = IMX7_SRC(dev);
memory_region_init_io(&s->iomem, OBJECT(dev), &imx7_src_ops, s,
TYPE_IMX7_SRC, 0x1000);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
}
static void imx7_src_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = imx7_src_realize;
dc->reset = imx7_src_reset;
dc->vmsd = &vmstate_imx7_src;
dc->desc = "i.MX6 System Reset Controller";
}
static const TypeInfo imx7_src_info = {
.name = TYPE_IMX7_SRC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IMX7SRCState),
.class_init = imx7_src_class_init,
};
static void imx7_src_register_types(void)
{
type_register_static(&imx7_src_info);
}
type_init(imx7_src_register_types)