qemu/target/microblaze/translate.c
Richard Henderson 8b86d6d258 tcg: Hoist max_insns computation to tb_gen_code
In order to handle TB's that translate to too much code, we
need to place the control of the length of the translation
in the hands of the code gen master loop.

Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2019-04-24 13:04:33 -07:00

1855 lines
53 KiB
C

/*
* Xilinx MicroBlaze emulation for qemu: main translation routines.
*
* Copyright (c) 2009 Edgar E. Iglesias.
* Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "disas/disas.h"
#include "exec/exec-all.h"
#include "tcg-op.h"
#include "exec/helper-proto.h"
#include "microblaze-decode.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-gen.h"
#include "exec/translator.h"
#include "qemu/qemu-print.h"
#include "trace-tcg.h"
#include "exec/log.h"
#define SIM_COMPAT 0
#define DISAS_GNU 1
#define DISAS_MB 1
#if DISAS_MB && !SIM_COMPAT
# define LOG_DIS(...) qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__)
#else
# define LOG_DIS(...) do { } while (0)
#endif
#define D(x)
#define EXTRACT_FIELD(src, start, end) \
(((src) >> start) & ((1 << (end - start + 1)) - 1))
/* is_jmp field values */
#define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */
#define DISAS_UPDATE DISAS_TARGET_1 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP DISAS_TARGET_2 /* only pc was modified statically */
static TCGv_i32 env_debug;
static TCGv_i32 cpu_R[32];
static TCGv_i64 cpu_SR[14];
static TCGv_i32 env_imm;
static TCGv_i32 env_btaken;
static TCGv_i64 env_btarget;
static TCGv_i32 env_iflags;
static TCGv env_res_addr;
static TCGv_i32 env_res_val;
#include "exec/gen-icount.h"
/* This is the state at translation time. */
typedef struct DisasContext {
MicroBlazeCPU *cpu;
uint32_t pc;
/* Decoder. */
int type_b;
uint32_t ir;
uint8_t opcode;
uint8_t rd, ra, rb;
uint16_t imm;
unsigned int cpustate_changed;
unsigned int delayed_branch;
unsigned int tb_flags, synced_flags; /* tb dependent flags. */
unsigned int clear_imm;
int is_jmp;
#define JMP_NOJMP 0
#define JMP_DIRECT 1
#define JMP_DIRECT_CC 2
#define JMP_INDIRECT 3
unsigned int jmp;
uint32_t jmp_pc;
int abort_at_next_insn;
struct TranslationBlock *tb;
int singlestep_enabled;
} DisasContext;
static const char *regnames[] =
{
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
};
static const char *special_regnames[] =
{
"rpc", "rmsr", "sr2", "rear", "sr4", "resr", "sr6", "rfsr",
"sr8", "sr9", "sr10", "rbtr", "sr12", "redr"
};
static inline void t_sync_flags(DisasContext *dc)
{
/* Synch the tb dependent flags between translator and runtime. */
if (dc->tb_flags != dc->synced_flags) {
tcg_gen_movi_i32(env_iflags, dc->tb_flags);
dc->synced_flags = dc->tb_flags;
}
}
static inline void t_gen_raise_exception(DisasContext *dc, uint32_t index)
{
TCGv_i32 tmp = tcg_const_i32(index);
t_sync_flags(dc);
tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc);
gen_helper_raise_exception(cpu_env, tmp);
tcg_temp_free_i32(tmp);
dc->is_jmp = DISAS_UPDATE;
}
static inline bool use_goto_tb(DisasContext *dc, target_ulong dest)
{
#ifndef CONFIG_USER_ONLY
return (dc->tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK);
#else
return true;
#endif
}
static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest)
{
if (use_goto_tb(dc, dest)) {
tcg_gen_goto_tb(n);
tcg_gen_movi_i64(cpu_SR[SR_PC], dest);
tcg_gen_exit_tb(dc->tb, n);
} else {
tcg_gen_movi_i64(cpu_SR[SR_PC], dest);
tcg_gen_exit_tb(NULL, 0);
}
}
static void read_carry(DisasContext *dc, TCGv_i32 d)
{
tcg_gen_extrl_i64_i32(d, cpu_SR[SR_MSR]);
tcg_gen_shri_i32(d, d, 31);
}
/*
* write_carry sets the carry bits in MSR based on bit 0 of v.
* v[31:1] are ignored.
*/
static void write_carry(DisasContext *dc, TCGv_i32 v)
{
TCGv_i64 t0 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(t0, v);
/* Deposit bit 0 into MSR_C and the alias MSR_CC. */
tcg_gen_deposit_i64(cpu_SR[SR_MSR], cpu_SR[SR_MSR], t0, 2, 1);
tcg_gen_deposit_i64(cpu_SR[SR_MSR], cpu_SR[SR_MSR], t0, 31, 1);
tcg_temp_free_i64(t0);
}
static void write_carryi(DisasContext *dc, bool carry)
{
TCGv_i32 t0 = tcg_temp_new_i32();
tcg_gen_movi_i32(t0, carry);
write_carry(dc, t0);
tcg_temp_free_i32(t0);
}
/*
* Returns true if the insn an illegal operation.
* If exceptions are enabled, an exception is raised.
*/
static bool trap_illegal(DisasContext *dc, bool cond)
{
if (cond && (dc->tb_flags & MSR_EE_FLAG)
&& (dc->cpu->env.pvr.regs[2] & PVR2_ILL_OPCODE_EXC_MASK)) {
tcg_gen_movi_i64(cpu_SR[SR_ESR], ESR_EC_ILLEGAL_OP);
t_gen_raise_exception(dc, EXCP_HW_EXCP);
}
return cond;
}
/*
* Returns true if the insn is illegal in userspace.
* If exceptions are enabled, an exception is raised.
*/
static bool trap_userspace(DisasContext *dc, bool cond)
{
int mem_index = cpu_mmu_index(&dc->cpu->env, false);
bool cond_user = cond && mem_index == MMU_USER_IDX;
if (cond_user && (dc->tb_flags & MSR_EE_FLAG)) {
tcg_gen_movi_i64(cpu_SR[SR_ESR], ESR_EC_PRIVINSN);
t_gen_raise_exception(dc, EXCP_HW_EXCP);
}
return cond_user;
}
/* True if ALU operand b is a small immediate that may deserve
faster treatment. */
static inline int dec_alu_op_b_is_small_imm(DisasContext *dc)
{
/* Immediate insn without the imm prefix ? */
return dc->type_b && !(dc->tb_flags & IMM_FLAG);
}
static inline TCGv_i32 *dec_alu_op_b(DisasContext *dc)
{
if (dc->type_b) {
if (dc->tb_flags & IMM_FLAG)
tcg_gen_ori_i32(env_imm, env_imm, dc->imm);
else
tcg_gen_movi_i32(env_imm, (int32_t)((int16_t)dc->imm));
return &env_imm;
} else
return &cpu_R[dc->rb];
}
static void dec_add(DisasContext *dc)
{
unsigned int k, c;
TCGv_i32 cf;
k = dc->opcode & 4;
c = dc->opcode & 2;
LOG_DIS("add%s%s%s r%d r%d r%d\n",
dc->type_b ? "i" : "", k ? "k" : "", c ? "c" : "",
dc->rd, dc->ra, dc->rb);
/* Take care of the easy cases first. */
if (k) {
/* k - keep carry, no need to update MSR. */
/* If rd == r0, it's a nop. */
if (dc->rd) {
tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc)));
if (c) {
/* c - Add carry into the result. */
cf = tcg_temp_new_i32();
read_carry(dc, cf);
tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf);
tcg_temp_free_i32(cf);
}
}
return;
}
/* From now on, we can assume k is zero. So we need to update MSR. */
/* Extract carry. */
cf = tcg_temp_new_i32();
if (c) {
read_carry(dc, cf);
} else {
tcg_gen_movi_i32(cf, 0);
}
if (dc->rd) {
TCGv_i32 ncf = tcg_temp_new_i32();
gen_helper_carry(ncf, cpu_R[dc->ra], *(dec_alu_op_b(dc)), cf);
tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc)));
tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf);
write_carry(dc, ncf);
tcg_temp_free_i32(ncf);
} else {
gen_helper_carry(cf, cpu_R[dc->ra], *(dec_alu_op_b(dc)), cf);
write_carry(dc, cf);
}
tcg_temp_free_i32(cf);
}
static void dec_sub(DisasContext *dc)
{
unsigned int u, cmp, k, c;
TCGv_i32 cf, na;
u = dc->imm & 2;
k = dc->opcode & 4;
c = dc->opcode & 2;
cmp = (dc->imm & 1) && (!dc->type_b) && k;
if (cmp) {
LOG_DIS("cmp%s r%d, r%d ir=%x\n", u ? "u" : "", dc->rd, dc->ra, dc->ir);
if (dc->rd) {
if (u)
gen_helper_cmpu(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]);
else
gen_helper_cmp(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]);
}
return;
}
LOG_DIS("sub%s%s r%d, r%d r%d\n",
k ? "k" : "", c ? "c" : "", dc->rd, dc->ra, dc->rb);
/* Take care of the easy cases first. */
if (k) {
/* k - keep carry, no need to update MSR. */
/* If rd == r0, it's a nop. */
if (dc->rd) {
tcg_gen_sub_i32(cpu_R[dc->rd], *(dec_alu_op_b(dc)), cpu_R[dc->ra]);
if (c) {
/* c - Add carry into the result. */
cf = tcg_temp_new_i32();
read_carry(dc, cf);
tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf);
tcg_temp_free_i32(cf);
}
}
return;
}
/* From now on, we can assume k is zero. So we need to update MSR. */
/* Extract carry. And complement a into na. */
cf = tcg_temp_new_i32();
na = tcg_temp_new_i32();
if (c) {
read_carry(dc, cf);
} else {
tcg_gen_movi_i32(cf, 1);
}
/* d = b + ~a + c. carry defaults to 1. */
tcg_gen_not_i32(na, cpu_R[dc->ra]);
if (dc->rd) {
TCGv_i32 ncf = tcg_temp_new_i32();
gen_helper_carry(ncf, na, *(dec_alu_op_b(dc)), cf);
tcg_gen_add_i32(cpu_R[dc->rd], na, *(dec_alu_op_b(dc)));
tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf);
write_carry(dc, ncf);
tcg_temp_free_i32(ncf);
} else {
gen_helper_carry(cf, na, *(dec_alu_op_b(dc)), cf);
write_carry(dc, cf);
}
tcg_temp_free_i32(cf);
tcg_temp_free_i32(na);
}
static void dec_pattern(DisasContext *dc)
{
unsigned int mode;
if (trap_illegal(dc, !dc->cpu->cfg.use_pcmp_instr)) {
return;
}
mode = dc->opcode & 3;
switch (mode) {
case 0:
/* pcmpbf. */
LOG_DIS("pcmpbf r%d r%d r%d\n", dc->rd, dc->ra, dc->rb);
if (dc->rd)
gen_helper_pcmpbf(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 2:
LOG_DIS("pcmpeq r%d r%d r%d\n", dc->rd, dc->ra, dc->rb);
if (dc->rd) {
tcg_gen_setcond_i32(TCG_COND_EQ, cpu_R[dc->rd],
cpu_R[dc->ra], cpu_R[dc->rb]);
}
break;
case 3:
LOG_DIS("pcmpne r%d r%d r%d\n", dc->rd, dc->ra, dc->rb);
if (dc->rd) {
tcg_gen_setcond_i32(TCG_COND_NE, cpu_R[dc->rd],
cpu_R[dc->ra], cpu_R[dc->rb]);
}
break;
default:
cpu_abort(CPU(dc->cpu),
"unsupported pattern insn opcode=%x\n", dc->opcode);
break;
}
}
static void dec_and(DisasContext *dc)
{
unsigned int not;
if (!dc->type_b && (dc->imm & (1 << 10))) {
dec_pattern(dc);
return;
}
not = dc->opcode & (1 << 1);
LOG_DIS("and%s\n", not ? "n" : "");
if (!dc->rd)
return;
if (not) {
tcg_gen_andc_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc)));
} else
tcg_gen_and_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc)));
}
static void dec_or(DisasContext *dc)
{
if (!dc->type_b && (dc->imm & (1 << 10))) {
dec_pattern(dc);
return;
}
LOG_DIS("or r%d r%d r%d imm=%x\n", dc->rd, dc->ra, dc->rb, dc->imm);
if (dc->rd)
tcg_gen_or_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc)));
}
static void dec_xor(DisasContext *dc)
{
if (!dc->type_b && (dc->imm & (1 << 10))) {
dec_pattern(dc);
return;
}
LOG_DIS("xor r%d\n", dc->rd);
if (dc->rd)
tcg_gen_xor_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc)));
}
static inline void msr_read(DisasContext *dc, TCGv_i32 d)
{
tcg_gen_extrl_i64_i32(d, cpu_SR[SR_MSR]);
}
static inline void msr_write(DisasContext *dc, TCGv_i32 v)
{
TCGv_i64 t;
t = tcg_temp_new_i64();
dc->cpustate_changed = 1;
/* PVR bit is not writable. */
tcg_gen_extu_i32_i64(t, v);
tcg_gen_andi_i64(t, t, ~MSR_PVR);
tcg_gen_andi_i64(cpu_SR[SR_MSR], cpu_SR[SR_MSR], MSR_PVR);
tcg_gen_or_i64(cpu_SR[SR_MSR], cpu_SR[SR_MSR], t);
tcg_temp_free_i64(t);
}
static void dec_msr(DisasContext *dc)
{
CPUState *cs = CPU(dc->cpu);
TCGv_i32 t0, t1;
unsigned int sr, rn;
bool to, clrset, extended = false;
sr = extract32(dc->imm, 0, 14);
to = extract32(dc->imm, 14, 1);
clrset = extract32(dc->imm, 15, 1) == 0;
dc->type_b = 1;
if (to) {
dc->cpustate_changed = 1;
}
/* Extended MSRs are only available if addr_size > 32. */
if (dc->cpu->cfg.addr_size > 32) {
/* The E-bit is encoded differently for To/From MSR. */
static const unsigned int e_bit[] = { 19, 24 };
extended = extract32(dc->imm, e_bit[to], 1);
}
/* msrclr and msrset. */
if (clrset) {
bool clr = extract32(dc->ir, 16, 1);
LOG_DIS("msr%s r%d imm=%x\n", clr ? "clr" : "set",
dc->rd, dc->imm);
if (!dc->cpu->cfg.use_msr_instr) {
/* nop??? */
return;
}
if (trap_userspace(dc, dc->imm != 4 && dc->imm != 0)) {
return;
}
if (dc->rd)
msr_read(dc, cpu_R[dc->rd]);
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
msr_read(dc, t0);
tcg_gen_mov_i32(t1, *(dec_alu_op_b(dc)));
if (clr) {
tcg_gen_not_i32(t1, t1);
tcg_gen_and_i32(t0, t0, t1);
} else
tcg_gen_or_i32(t0, t0, t1);
msr_write(dc, t0);
tcg_temp_free_i32(t0);
tcg_temp_free_i32(t1);
tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc + 4);
dc->is_jmp = DISAS_UPDATE;
return;
}
if (trap_userspace(dc, to)) {
return;
}
#if !defined(CONFIG_USER_ONLY)
/* Catch read/writes to the mmu block. */
if ((sr & ~0xff) == 0x1000) {
TCGv_i32 tmp_ext = tcg_const_i32(extended);
TCGv_i32 tmp_sr;
sr &= 7;
tmp_sr = tcg_const_i32(sr);
LOG_DIS("m%ss sr%d r%d imm=%x\n", to ? "t" : "f", sr, dc->ra, dc->imm);
if (to) {
gen_helper_mmu_write(cpu_env, tmp_ext, tmp_sr, cpu_R[dc->ra]);
} else {
gen_helper_mmu_read(cpu_R[dc->rd], cpu_env, tmp_ext, tmp_sr);
}
tcg_temp_free_i32(tmp_sr);
tcg_temp_free_i32(tmp_ext);
return;
}
#endif
if (to) {
LOG_DIS("m%ss sr%x r%d imm=%x\n", to ? "t" : "f", sr, dc->ra, dc->imm);
switch (sr) {
case 0:
break;
case 1:
msr_write(dc, cpu_R[dc->ra]);
break;
case SR_EAR:
case SR_ESR:
case SR_FSR:
tcg_gen_extu_i32_i64(cpu_SR[sr], cpu_R[dc->ra]);
break;
case 0x800:
tcg_gen_st_i32(cpu_R[dc->ra],
cpu_env, offsetof(CPUMBState, slr));
break;
case 0x802:
tcg_gen_st_i32(cpu_R[dc->ra],
cpu_env, offsetof(CPUMBState, shr));
break;
default:
cpu_abort(CPU(dc->cpu), "unknown mts reg %x\n", sr);
break;
}
} else {
LOG_DIS("m%ss r%d sr%x imm=%x\n", to ? "t" : "f", dc->rd, sr, dc->imm);
switch (sr) {
case 0:
tcg_gen_movi_i32(cpu_R[dc->rd], dc->pc);
break;
case 1:
msr_read(dc, cpu_R[dc->rd]);
break;
case SR_EAR:
if (extended) {
tcg_gen_extrh_i64_i32(cpu_R[dc->rd], cpu_SR[sr]);
break;
}
case SR_ESR:
case SR_FSR:
case SR_BTR:
tcg_gen_extrl_i64_i32(cpu_R[dc->rd], cpu_SR[sr]);
break;
case 0x800:
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, slr));
break;
case 0x802:
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, shr));
break;
case 0x2000 ... 0x200c:
rn = sr & 0xf;
tcg_gen_ld_i32(cpu_R[dc->rd],
cpu_env, offsetof(CPUMBState, pvr.regs[rn]));
break;
default:
cpu_abort(cs, "unknown mfs reg %x\n", sr);
break;
}
}
if (dc->rd == 0) {
tcg_gen_movi_i32(cpu_R[0], 0);
}
}
/* Multiplier unit. */
static void dec_mul(DisasContext *dc)
{
TCGv_i32 tmp;
unsigned int subcode;
if (trap_illegal(dc, !dc->cpu->cfg.use_hw_mul)) {
return;
}
subcode = dc->imm & 3;
if (dc->type_b) {
LOG_DIS("muli r%d r%d %x\n", dc->rd, dc->ra, dc->imm);
tcg_gen_mul_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc)));
return;
}
/* mulh, mulhsu and mulhu are not available if C_USE_HW_MUL is < 2. */
if (subcode >= 1 && subcode <= 3 && dc->cpu->cfg.use_hw_mul < 2) {
/* nop??? */
}
tmp = tcg_temp_new_i32();
switch (subcode) {
case 0:
LOG_DIS("mul r%d r%d r%d\n", dc->rd, dc->ra, dc->rb);
tcg_gen_mul_i32(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 1:
LOG_DIS("mulh r%d r%d r%d\n", dc->rd, dc->ra, dc->rb);
tcg_gen_muls2_i32(tmp, cpu_R[dc->rd],
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 2:
LOG_DIS("mulhsu r%d r%d r%d\n", dc->rd, dc->ra, dc->rb);
tcg_gen_mulsu2_i32(tmp, cpu_R[dc->rd],
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 3:
LOG_DIS("mulhu r%d r%d r%d\n", dc->rd, dc->ra, dc->rb);
tcg_gen_mulu2_i32(tmp, cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]);
break;
default:
cpu_abort(CPU(dc->cpu), "unknown MUL insn %x\n", subcode);
break;
}
tcg_temp_free_i32(tmp);
}
/* Div unit. */
static void dec_div(DisasContext *dc)
{
unsigned int u;
u = dc->imm & 2;
LOG_DIS("div\n");
if (trap_illegal(dc, !dc->cpu->cfg.use_div)) {
return;
}
if (u)
gen_helper_divu(cpu_R[dc->rd], cpu_env, *(dec_alu_op_b(dc)),
cpu_R[dc->ra]);
else
gen_helper_divs(cpu_R[dc->rd], cpu_env, *(dec_alu_op_b(dc)),
cpu_R[dc->ra]);
if (!dc->rd)
tcg_gen_movi_i32(cpu_R[dc->rd], 0);
}
static void dec_barrel(DisasContext *dc)
{
TCGv_i32 t0;
unsigned int imm_w, imm_s;
bool s, t, e = false, i = false;
if (trap_illegal(dc, !dc->cpu->cfg.use_barrel)) {
return;
}
if (dc->type_b) {
/* Insert and extract are only available in immediate mode. */
i = extract32(dc->imm, 15, 1);
e = extract32(dc->imm, 14, 1);
}
s = extract32(dc->imm, 10, 1);
t = extract32(dc->imm, 9, 1);
imm_w = extract32(dc->imm, 6, 5);
imm_s = extract32(dc->imm, 0, 5);
LOG_DIS("bs%s%s%s r%d r%d r%d\n",
e ? "e" : "",
s ? "l" : "r", t ? "a" : "l", dc->rd, dc->ra, dc->rb);
if (e) {
if (imm_w + imm_s > 32 || imm_w == 0) {
/* These inputs have an undefined behavior. */
qemu_log_mask(LOG_GUEST_ERROR, "bsefi: Bad input w=%d s=%d\n",
imm_w, imm_s);
} else {
tcg_gen_extract_i32(cpu_R[dc->rd], cpu_R[dc->ra], imm_s, imm_w);
}
} else if (i) {
int width = imm_w - imm_s + 1;
if (imm_w < imm_s) {
/* These inputs have an undefined behavior. */
qemu_log_mask(LOG_GUEST_ERROR, "bsifi: Bad input w=%d s=%d\n",
imm_w, imm_s);
} else {
tcg_gen_deposit_i32(cpu_R[dc->rd], cpu_R[dc->rd], cpu_R[dc->ra],
imm_s, width);
}
} else {
t0 = tcg_temp_new_i32();
tcg_gen_mov_i32(t0, *(dec_alu_op_b(dc)));
tcg_gen_andi_i32(t0, t0, 31);
if (s) {
tcg_gen_shl_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0);
} else {
if (t) {
tcg_gen_sar_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0);
} else {
tcg_gen_shr_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0);
}
}
tcg_temp_free_i32(t0);
}
}
static void dec_bit(DisasContext *dc)
{
CPUState *cs = CPU(dc->cpu);
TCGv_i32 t0;
unsigned int op;
op = dc->ir & ((1 << 9) - 1);
switch (op) {
case 0x21:
/* src. */
t0 = tcg_temp_new_i32();
LOG_DIS("src r%d r%d\n", dc->rd, dc->ra);
tcg_gen_extrl_i64_i32(t0, cpu_SR[SR_MSR]);
tcg_gen_andi_i32(t0, t0, MSR_CC);
write_carry(dc, cpu_R[dc->ra]);
if (dc->rd) {
tcg_gen_shri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1);
tcg_gen_or_i32(cpu_R[dc->rd], cpu_R[dc->rd], t0);
}
tcg_temp_free_i32(t0);
break;
case 0x1:
case 0x41:
/* srl. */
LOG_DIS("srl r%d r%d\n", dc->rd, dc->ra);
/* Update carry. Note that write carry only looks at the LSB. */
write_carry(dc, cpu_R[dc->ra]);
if (dc->rd) {
if (op == 0x41)
tcg_gen_shri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1);
else
tcg_gen_sari_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1);
}
break;
case 0x60:
LOG_DIS("ext8s r%d r%d\n", dc->rd, dc->ra);
tcg_gen_ext8s_i32(cpu_R[dc->rd], cpu_R[dc->ra]);
break;
case 0x61:
LOG_DIS("ext16s r%d r%d\n", dc->rd, dc->ra);
tcg_gen_ext16s_i32(cpu_R[dc->rd], cpu_R[dc->ra]);
break;
case 0x64:
case 0x66:
case 0x74:
case 0x76:
/* wdc. */
LOG_DIS("wdc r%d\n", dc->ra);
trap_userspace(dc, true);
break;
case 0x68:
/* wic. */
LOG_DIS("wic r%d\n", dc->ra);
trap_userspace(dc, true);
break;
case 0xe0:
if (trap_illegal(dc, !dc->cpu->cfg.use_pcmp_instr)) {
return;
}
if (dc->cpu->cfg.use_pcmp_instr) {
tcg_gen_clzi_i32(cpu_R[dc->rd], cpu_R[dc->ra], 32);
}
break;
case 0x1e0:
/* swapb */
LOG_DIS("swapb r%d r%d\n", dc->rd, dc->ra);
tcg_gen_bswap32_i32(cpu_R[dc->rd], cpu_R[dc->ra]);
break;
case 0x1e2:
/*swaph */
LOG_DIS("swaph r%d r%d\n", dc->rd, dc->ra);
tcg_gen_rotri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 16);
break;
default:
cpu_abort(cs, "unknown bit oc=%x op=%x rd=%d ra=%d rb=%d\n",
dc->pc, op, dc->rd, dc->ra, dc->rb);
break;
}
}
static inline void sync_jmpstate(DisasContext *dc)
{
if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) {
if (dc->jmp == JMP_DIRECT) {
tcg_gen_movi_i32(env_btaken, 1);
}
dc->jmp = JMP_INDIRECT;
tcg_gen_movi_i64(env_btarget, dc->jmp_pc);
}
}
static void dec_imm(DisasContext *dc)
{
LOG_DIS("imm %x\n", dc->imm << 16);
tcg_gen_movi_i32(env_imm, (dc->imm << 16));
dc->tb_flags |= IMM_FLAG;
dc->clear_imm = 0;
}
static inline void compute_ldst_addr(DisasContext *dc, bool ea, TCGv t)
{
bool extimm = dc->tb_flags & IMM_FLAG;
/* Should be set to true if r1 is used by loadstores. */
bool stackprot = false;
TCGv_i32 t32;
/* All load/stores use ra. */
if (dc->ra == 1 && dc->cpu->cfg.stackprot) {
stackprot = true;
}
/* Treat the common cases first. */
if (!dc->type_b) {
if (ea) {
int addr_size = dc->cpu->cfg.addr_size;
if (addr_size == 32) {
tcg_gen_extu_i32_tl(t, cpu_R[dc->rb]);
return;
}
tcg_gen_concat_i32_i64(t, cpu_R[dc->rb], cpu_R[dc->ra]);
if (addr_size < 64) {
/* Mask off out of range bits. */
tcg_gen_andi_i64(t, t, MAKE_64BIT_MASK(0, addr_size));
}
return;
}
/* If any of the regs is r0, set t to the value of the other reg. */
if (dc->ra == 0) {
tcg_gen_extu_i32_tl(t, cpu_R[dc->rb]);
return;
} else if (dc->rb == 0) {
tcg_gen_extu_i32_tl(t, cpu_R[dc->ra]);
return;
}
if (dc->rb == 1 && dc->cpu->cfg.stackprot) {
stackprot = true;
}
t32 = tcg_temp_new_i32();
tcg_gen_add_i32(t32, cpu_R[dc->ra], cpu_R[dc->rb]);
tcg_gen_extu_i32_tl(t, t32);
tcg_temp_free_i32(t32);
if (stackprot) {
gen_helper_stackprot(cpu_env, t);
}
return;
}
/* Immediate. */
t32 = tcg_temp_new_i32();
if (!extimm) {
tcg_gen_addi_i32(t32, cpu_R[dc->ra], (int16_t)dc->imm);
} else {
tcg_gen_add_i32(t32, cpu_R[dc->ra], *(dec_alu_op_b(dc)));
}
tcg_gen_extu_i32_tl(t, t32);
tcg_temp_free_i32(t32);
if (stackprot) {
gen_helper_stackprot(cpu_env, t);
}
return;
}
static void dec_load(DisasContext *dc)
{
TCGv_i32 v;
TCGv addr;
unsigned int size;
bool rev = false, ex = false, ea = false;
int mem_index = cpu_mmu_index(&dc->cpu->env, false);
TCGMemOp mop;
mop = dc->opcode & 3;
size = 1 << mop;
if (!dc->type_b) {
ea = extract32(dc->ir, 7, 1);
rev = extract32(dc->ir, 9, 1);
ex = extract32(dc->ir, 10, 1);
}
mop |= MO_TE;
if (rev) {
mop ^= MO_BSWAP;
}
if (trap_illegal(dc, size > 4)) {
return;
}
if (trap_userspace(dc, ea)) {
return;
}
LOG_DIS("l%d%s%s%s%s\n", size, dc->type_b ? "i" : "", rev ? "r" : "",
ex ? "x" : "",
ea ? "ea" : "");
t_sync_flags(dc);
addr = tcg_temp_new();
compute_ldst_addr(dc, ea, addr);
/* Extended addressing bypasses the MMU. */
mem_index = ea ? MMU_NOMMU_IDX : mem_index;
/*
* When doing reverse accesses we need to do two things.
*
* 1. Reverse the address wrt endianness.
* 2. Byteswap the data lanes on the way back into the CPU core.
*/
if (rev && size != 4) {
/* Endian reverse the address. t is addr. */
switch (size) {
case 1:
{
/* 00 -> 11
01 -> 10
10 -> 10
11 -> 00 */
TCGv low = tcg_temp_new();
tcg_gen_andi_tl(low, addr, 3);
tcg_gen_sub_tl(low, tcg_const_tl(3), low);
tcg_gen_andi_tl(addr, addr, ~3);
tcg_gen_or_tl(addr, addr, low);
tcg_temp_free(low);
break;
}
case 2:
/* 00 -> 10
10 -> 00. */
tcg_gen_xori_tl(addr, addr, 2);
break;
default:
cpu_abort(CPU(dc->cpu), "Invalid reverse size\n");
break;
}
}
/* lwx does not throw unaligned access errors, so force alignment */
if (ex) {
tcg_gen_andi_tl(addr, addr, ~3);
}
/* If we get a fault on a dslot, the jmpstate better be in sync. */
sync_jmpstate(dc);
/* Verify alignment if needed. */
/*
* Microblaze gives MMU faults priority over faults due to
* unaligned addresses. That's why we speculatively do the load
* into v. If the load succeeds, we verify alignment of the
* address and if that succeeds we write into the destination reg.
*/
v = tcg_temp_new_i32();
tcg_gen_qemu_ld_i32(v, addr, mem_index, mop);
if ((dc->cpu->env.pvr.regs[2] & PVR2_UNALIGNED_EXC_MASK) && size > 1) {
tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc);
gen_helper_memalign(cpu_env, addr, tcg_const_i32(dc->rd),
tcg_const_i32(0), tcg_const_i32(size - 1));
}
if (ex) {
tcg_gen_mov_tl(env_res_addr, addr);
tcg_gen_mov_i32(env_res_val, v);
}
if (dc->rd) {
tcg_gen_mov_i32(cpu_R[dc->rd], v);
}
tcg_temp_free_i32(v);
if (ex) { /* lwx */
/* no support for AXI exclusive so always clear C */
write_carryi(dc, 0);
}
tcg_temp_free(addr);
}
static void dec_store(DisasContext *dc)
{
TCGv addr;
TCGLabel *swx_skip = NULL;
unsigned int size;
bool rev = false, ex = false, ea = false;
int mem_index = cpu_mmu_index(&dc->cpu->env, false);
TCGMemOp mop;
mop = dc->opcode & 3;
size = 1 << mop;
if (!dc->type_b) {
ea = extract32(dc->ir, 7, 1);
rev = extract32(dc->ir, 9, 1);
ex = extract32(dc->ir, 10, 1);
}
mop |= MO_TE;
if (rev) {
mop ^= MO_BSWAP;
}
if (trap_illegal(dc, size > 4)) {
return;
}
trap_userspace(dc, ea);
LOG_DIS("s%d%s%s%s%s\n", size, dc->type_b ? "i" : "", rev ? "r" : "",
ex ? "x" : "",
ea ? "ea" : "");
t_sync_flags(dc);
/* If we get a fault on a dslot, the jmpstate better be in sync. */
sync_jmpstate(dc);
/* SWX needs a temp_local. */
addr = ex ? tcg_temp_local_new() : tcg_temp_new();
compute_ldst_addr(dc, ea, addr);
/* Extended addressing bypasses the MMU. */
mem_index = ea ? MMU_NOMMU_IDX : mem_index;
if (ex) { /* swx */
TCGv_i32 tval;
/* swx does not throw unaligned access errors, so force alignment */
tcg_gen_andi_tl(addr, addr, ~3);
write_carryi(dc, 1);
swx_skip = gen_new_label();
tcg_gen_brcond_tl(TCG_COND_NE, env_res_addr, addr, swx_skip);
/* Compare the value loaded at lwx with current contents of
the reserved location.
FIXME: This only works for system emulation where we can expect
this compare and the following write to be atomic. For user
emulation we need to add atomicity between threads. */
tval = tcg_temp_new_i32();
tcg_gen_qemu_ld_i32(tval, addr, cpu_mmu_index(&dc->cpu->env, false),
MO_TEUL);
tcg_gen_brcond_i32(TCG_COND_NE, env_res_val, tval, swx_skip);
write_carryi(dc, 0);
tcg_temp_free_i32(tval);
}
if (rev && size != 4) {
/* Endian reverse the address. t is addr. */
switch (size) {
case 1:
{
/* 00 -> 11
01 -> 10
10 -> 10
11 -> 00 */
TCGv low = tcg_temp_new();
tcg_gen_andi_tl(low, addr, 3);
tcg_gen_sub_tl(low, tcg_const_tl(3), low);
tcg_gen_andi_tl(addr, addr, ~3);
tcg_gen_or_tl(addr, addr, low);
tcg_temp_free(low);
break;
}
case 2:
/* 00 -> 10
10 -> 00. */
/* Force addr into the temp. */
tcg_gen_xori_tl(addr, addr, 2);
break;
default:
cpu_abort(CPU(dc->cpu), "Invalid reverse size\n");
break;
}
}
tcg_gen_qemu_st_i32(cpu_R[dc->rd], addr, mem_index, mop);
/* Verify alignment if needed. */
if ((dc->cpu->env.pvr.regs[2] & PVR2_UNALIGNED_EXC_MASK) && size > 1) {
tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc);
/* FIXME: if the alignment is wrong, we should restore the value
* in memory. One possible way to achieve this is to probe
* the MMU prior to the memaccess, thay way we could put
* the alignment checks in between the probe and the mem
* access.
*/
gen_helper_memalign(cpu_env, addr, tcg_const_i32(dc->rd),
tcg_const_i32(1), tcg_const_i32(size - 1));
}
if (ex) {
gen_set_label(swx_skip);
}
tcg_temp_free(addr);
}
static inline void eval_cc(DisasContext *dc, unsigned int cc,
TCGv_i32 d, TCGv_i32 a)
{
static const int mb_to_tcg_cc[] = {
[CC_EQ] = TCG_COND_EQ,
[CC_NE] = TCG_COND_NE,
[CC_LT] = TCG_COND_LT,
[CC_LE] = TCG_COND_LE,
[CC_GE] = TCG_COND_GE,
[CC_GT] = TCG_COND_GT,
};
switch (cc) {
case CC_EQ:
case CC_NE:
case CC_LT:
case CC_LE:
case CC_GE:
case CC_GT:
tcg_gen_setcondi_i32(mb_to_tcg_cc[cc], d, a, 0);
break;
default:
cpu_abort(CPU(dc->cpu), "Unknown condition code %x.\n", cc);
break;
}
}
static void eval_cond_jmp(DisasContext *dc, TCGv_i64 pc_true, TCGv_i64 pc_false)
{
TCGv_i64 tmp_btaken = tcg_temp_new_i64();
TCGv_i64 tmp_zero = tcg_const_i64(0);
tcg_gen_extu_i32_i64(tmp_btaken, env_btaken);
tcg_gen_movcond_i64(TCG_COND_NE, cpu_SR[SR_PC],
tmp_btaken, tmp_zero,
pc_true, pc_false);
tcg_temp_free_i64(tmp_btaken);
tcg_temp_free_i64(tmp_zero);
}
static void dec_bcc(DisasContext *dc)
{
unsigned int cc;
unsigned int dslot;
cc = EXTRACT_FIELD(dc->ir, 21, 23);
dslot = dc->ir & (1 << 25);
LOG_DIS("bcc%s r%d %x\n", dslot ? "d" : "", dc->ra, dc->imm);
dc->delayed_branch = 1;
if (dslot) {
dc->delayed_branch = 2;
dc->tb_flags |= D_FLAG;
tcg_gen_st_i32(tcg_const_i32(dc->type_b && (dc->tb_flags & IMM_FLAG)),
cpu_env, offsetof(CPUMBState, bimm));
}
if (dec_alu_op_b_is_small_imm(dc)) {
int32_t offset = (int32_t)((int16_t)dc->imm); /* sign-extend. */
tcg_gen_movi_i64(env_btarget, dc->pc + offset);
dc->jmp = JMP_DIRECT_CC;
dc->jmp_pc = dc->pc + offset;
} else {
dc->jmp = JMP_INDIRECT;
tcg_gen_extu_i32_i64(env_btarget, *(dec_alu_op_b(dc)));
tcg_gen_addi_i64(env_btarget, env_btarget, dc->pc);
tcg_gen_andi_i64(env_btarget, env_btarget, UINT32_MAX);
}
eval_cc(dc, cc, env_btaken, cpu_R[dc->ra]);
}
static void dec_br(DisasContext *dc)
{
unsigned int dslot, link, abs, mbar;
dslot = dc->ir & (1 << 20);
abs = dc->ir & (1 << 19);
link = dc->ir & (1 << 18);
/* Memory barrier. */
mbar = (dc->ir >> 16) & 31;
if (mbar == 2 && dc->imm == 4) {
/* mbar IMM & 16 decodes to sleep. */
if (dc->rd & 16) {
TCGv_i32 tmp_hlt = tcg_const_i32(EXCP_HLT);
TCGv_i32 tmp_1 = tcg_const_i32(1);
LOG_DIS("sleep\n");
t_sync_flags(dc);
tcg_gen_st_i32(tmp_1, cpu_env,
-offsetof(MicroBlazeCPU, env)
+offsetof(CPUState, halted));
tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc + 4);
gen_helper_raise_exception(cpu_env, tmp_hlt);
tcg_temp_free_i32(tmp_hlt);
tcg_temp_free_i32(tmp_1);
return;
}
LOG_DIS("mbar %d\n", dc->rd);
/* Break the TB. */
dc->cpustate_changed = 1;
return;
}
LOG_DIS("br%s%s%s%s imm=%x\n",
abs ? "a" : "", link ? "l" : "",
dc->type_b ? "i" : "", dslot ? "d" : "",
dc->imm);
dc->delayed_branch = 1;
if (dslot) {
dc->delayed_branch = 2;
dc->tb_flags |= D_FLAG;
tcg_gen_st_i32(tcg_const_i32(dc->type_b && (dc->tb_flags & IMM_FLAG)),
cpu_env, offsetof(CPUMBState, bimm));
}
if (link && dc->rd)
tcg_gen_movi_i32(cpu_R[dc->rd], dc->pc);
dc->jmp = JMP_INDIRECT;
if (abs) {
tcg_gen_movi_i32(env_btaken, 1);
tcg_gen_extu_i32_i64(env_btarget, *(dec_alu_op_b(dc)));
if (link && !dslot) {
if (!(dc->tb_flags & IMM_FLAG) && (dc->imm == 8 || dc->imm == 0x18))
t_gen_raise_exception(dc, EXCP_BREAK);
if (dc->imm == 0) {
if (trap_userspace(dc, true)) {
return;
}
t_gen_raise_exception(dc, EXCP_DEBUG);
}
}
} else {
if (dec_alu_op_b_is_small_imm(dc)) {
dc->jmp = JMP_DIRECT;
dc->jmp_pc = dc->pc + (int32_t)((int16_t)dc->imm);
} else {
tcg_gen_movi_i32(env_btaken, 1);
tcg_gen_extu_i32_i64(env_btarget, *(dec_alu_op_b(dc)));
tcg_gen_addi_i64(env_btarget, env_btarget, dc->pc);
tcg_gen_andi_i64(env_btarget, env_btarget, UINT32_MAX);
}
}
}
static inline void do_rti(DisasContext *dc)
{
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(t1, cpu_SR[SR_MSR]);
tcg_gen_shri_i32(t0, t1, 1);
tcg_gen_ori_i32(t1, t1, MSR_IE);
tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM));
tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM));
tcg_gen_or_i32(t1, t1, t0);
msr_write(dc, t1);
tcg_temp_free_i32(t1);
tcg_temp_free_i32(t0);
dc->tb_flags &= ~DRTI_FLAG;
}
static inline void do_rtb(DisasContext *dc)
{
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(t1, cpu_SR[SR_MSR]);
tcg_gen_andi_i32(t1, t1, ~MSR_BIP);
tcg_gen_shri_i32(t0, t1, 1);
tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM));
tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM));
tcg_gen_or_i32(t1, t1, t0);
msr_write(dc, t1);
tcg_temp_free_i32(t1);
tcg_temp_free_i32(t0);
dc->tb_flags &= ~DRTB_FLAG;
}
static inline void do_rte(DisasContext *dc)
{
TCGv_i32 t0, t1;
t0 = tcg_temp_new_i32();
t1 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(t1, cpu_SR[SR_MSR]);
tcg_gen_ori_i32(t1, t1, MSR_EE);
tcg_gen_andi_i32(t1, t1, ~MSR_EIP);
tcg_gen_shri_i32(t0, t1, 1);
tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM));
tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM));
tcg_gen_or_i32(t1, t1, t0);
msr_write(dc, t1);
tcg_temp_free_i32(t1);
tcg_temp_free_i32(t0);
dc->tb_flags &= ~DRTE_FLAG;
}
static void dec_rts(DisasContext *dc)
{
unsigned int b_bit, i_bit, e_bit;
TCGv_i64 tmp64;
i_bit = dc->ir & (1 << 21);
b_bit = dc->ir & (1 << 22);
e_bit = dc->ir & (1 << 23);
if (trap_userspace(dc, i_bit || b_bit || e_bit)) {
return;
}
dc->delayed_branch = 2;
dc->tb_flags |= D_FLAG;
tcg_gen_st_i32(tcg_const_i32(dc->type_b && (dc->tb_flags & IMM_FLAG)),
cpu_env, offsetof(CPUMBState, bimm));
if (i_bit) {
LOG_DIS("rtid ir=%x\n", dc->ir);
dc->tb_flags |= DRTI_FLAG;
} else if (b_bit) {
LOG_DIS("rtbd ir=%x\n", dc->ir);
dc->tb_flags |= DRTB_FLAG;
} else if (e_bit) {
LOG_DIS("rted ir=%x\n", dc->ir);
dc->tb_flags |= DRTE_FLAG;
} else
LOG_DIS("rts ir=%x\n", dc->ir);
dc->jmp = JMP_INDIRECT;
tcg_gen_movi_i32(env_btaken, 1);
tmp64 = tcg_temp_new_i64();
tcg_gen_extu_i32_i64(env_btarget, *(dec_alu_op_b(dc)));
tcg_gen_extu_i32_i64(tmp64, cpu_R[dc->ra]);
tcg_gen_add_i64(env_btarget, env_btarget, tmp64);
tcg_gen_andi_i64(env_btarget, env_btarget, UINT32_MAX);
tcg_temp_free_i64(tmp64);
}
static int dec_check_fpuv2(DisasContext *dc)
{
if ((dc->cpu->cfg.use_fpu != 2) && (dc->tb_flags & MSR_EE_FLAG)) {
tcg_gen_movi_i64(cpu_SR[SR_ESR], ESR_EC_FPU);
t_gen_raise_exception(dc, EXCP_HW_EXCP);
}
return (dc->cpu->cfg.use_fpu == 2) ? 0 : PVR2_USE_FPU2_MASK;
}
static void dec_fpu(DisasContext *dc)
{
unsigned int fpu_insn;
if (trap_illegal(dc, !dc->cpu->cfg.use_fpu)) {
return;
}
fpu_insn = (dc->ir >> 7) & 7;
switch (fpu_insn) {
case 0:
gen_helper_fadd(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra],
cpu_R[dc->rb]);
break;
case 1:
gen_helper_frsub(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra],
cpu_R[dc->rb]);
break;
case 2:
gen_helper_fmul(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra],
cpu_R[dc->rb]);
break;
case 3:
gen_helper_fdiv(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra],
cpu_R[dc->rb]);
break;
case 4:
switch ((dc->ir >> 4) & 7) {
case 0:
gen_helper_fcmp_un(cpu_R[dc->rd], cpu_env,
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 1:
gen_helper_fcmp_lt(cpu_R[dc->rd], cpu_env,
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 2:
gen_helper_fcmp_eq(cpu_R[dc->rd], cpu_env,
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 3:
gen_helper_fcmp_le(cpu_R[dc->rd], cpu_env,
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 4:
gen_helper_fcmp_gt(cpu_R[dc->rd], cpu_env,
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 5:
gen_helper_fcmp_ne(cpu_R[dc->rd], cpu_env,
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
case 6:
gen_helper_fcmp_ge(cpu_R[dc->rd], cpu_env,
cpu_R[dc->ra], cpu_R[dc->rb]);
break;
default:
qemu_log_mask(LOG_UNIMP,
"unimplemented fcmp fpu_insn=%x pc=%x"
" opc=%x\n",
fpu_insn, dc->pc, dc->opcode);
dc->abort_at_next_insn = 1;
break;
}
break;
case 5:
if (!dec_check_fpuv2(dc)) {
return;
}
gen_helper_flt(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]);
break;
case 6:
if (!dec_check_fpuv2(dc)) {
return;
}
gen_helper_fint(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]);
break;
case 7:
if (!dec_check_fpuv2(dc)) {
return;
}
gen_helper_fsqrt(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]);
break;
default:
qemu_log_mask(LOG_UNIMP, "unimplemented FPU insn fpu_insn=%x pc=%x"
" opc=%x\n",
fpu_insn, dc->pc, dc->opcode);
dc->abort_at_next_insn = 1;
break;
}
}
static void dec_null(DisasContext *dc)
{
if (trap_illegal(dc, true)) {
return;
}
qemu_log_mask(LOG_GUEST_ERROR, "unknown insn pc=%x opc=%x\n", dc->pc, dc->opcode);
dc->abort_at_next_insn = 1;
}
/* Insns connected to FSL or AXI stream attached devices. */
static void dec_stream(DisasContext *dc)
{
TCGv_i32 t_id, t_ctrl;
int ctrl;
LOG_DIS("%s%s imm=%x\n", dc->rd ? "get" : "put",
dc->type_b ? "" : "d", dc->imm);
if (trap_userspace(dc, true)) {
return;
}
t_id = tcg_temp_new_i32();
if (dc->type_b) {
tcg_gen_movi_i32(t_id, dc->imm & 0xf);
ctrl = dc->imm >> 10;
} else {
tcg_gen_andi_i32(t_id, cpu_R[dc->rb], 0xf);
ctrl = dc->imm >> 5;
}
t_ctrl = tcg_const_i32(ctrl);
if (dc->rd == 0) {
gen_helper_put(t_id, t_ctrl, cpu_R[dc->ra]);
} else {
gen_helper_get(cpu_R[dc->rd], t_id, t_ctrl);
}
tcg_temp_free_i32(t_id);
tcg_temp_free_i32(t_ctrl);
}
static struct decoder_info {
struct {
uint32_t bits;
uint32_t mask;
};
void (*dec)(DisasContext *dc);
} decinfo[] = {
{DEC_ADD, dec_add},
{DEC_SUB, dec_sub},
{DEC_AND, dec_and},
{DEC_XOR, dec_xor},
{DEC_OR, dec_or},
{DEC_BIT, dec_bit},
{DEC_BARREL, dec_barrel},
{DEC_LD, dec_load},
{DEC_ST, dec_store},
{DEC_IMM, dec_imm},
{DEC_BR, dec_br},
{DEC_BCC, dec_bcc},
{DEC_RTS, dec_rts},
{DEC_FPU, dec_fpu},
{DEC_MUL, dec_mul},
{DEC_DIV, dec_div},
{DEC_MSR, dec_msr},
{DEC_STREAM, dec_stream},
{{0, 0}, dec_null}
};
static inline void decode(DisasContext *dc, uint32_t ir)
{
int i;
dc->ir = ir;
LOG_DIS("%8.8x\t", dc->ir);
if (ir == 0) {
trap_illegal(dc, dc->cpu->env.pvr.regs[2] & PVR2_OPCODE_0x0_ILL_MASK);
/* Don't decode nop/zero instructions any further. */
return;
}
/* bit 2 seems to indicate insn type. */
dc->type_b = ir & (1 << 29);
dc->opcode = EXTRACT_FIELD(ir, 26, 31);
dc->rd = EXTRACT_FIELD(ir, 21, 25);
dc->ra = EXTRACT_FIELD(ir, 16, 20);
dc->rb = EXTRACT_FIELD(ir, 11, 15);
dc->imm = EXTRACT_FIELD(ir, 0, 15);
/* Large switch for all insns. */
for (i = 0; i < ARRAY_SIZE(decinfo); i++) {
if ((dc->opcode & decinfo[i].mask) == decinfo[i].bits) {
decinfo[i].dec(dc);
break;
}
}
}
/* generate intermediate code for basic block 'tb'. */
void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns)
{
CPUMBState *env = cs->env_ptr;
MicroBlazeCPU *cpu = mb_env_get_cpu(env);
uint32_t pc_start;
struct DisasContext ctx;
struct DisasContext *dc = &ctx;
uint32_t page_start, org_flags;
uint32_t npc;
int num_insns;
pc_start = tb->pc;
dc->cpu = cpu;
dc->tb = tb;
org_flags = dc->synced_flags = dc->tb_flags = tb->flags;
dc->is_jmp = DISAS_NEXT;
dc->jmp = 0;
dc->delayed_branch = !!(dc->tb_flags & D_FLAG);
if (dc->delayed_branch) {
dc->jmp = JMP_INDIRECT;
}
dc->pc = pc_start;
dc->singlestep_enabled = cs->singlestep_enabled;
dc->cpustate_changed = 0;
dc->abort_at_next_insn = 0;
if (pc_start & 3) {
cpu_abort(cs, "Microblaze: unaligned PC=%x\n", pc_start);
}
page_start = pc_start & TARGET_PAGE_MASK;
num_insns = 0;
gen_tb_start(tb);
do
{
tcg_gen_insn_start(dc->pc);
num_insns++;
#if SIM_COMPAT
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) {
tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc);
gen_helper_debug();
}
#endif
if (unlikely(cpu_breakpoint_test(cs, dc->pc, BP_ANY))) {
t_gen_raise_exception(dc, EXCP_DEBUG);
dc->is_jmp = DISAS_UPDATE;
/* The address covered by the breakpoint must be included in
[tb->pc, tb->pc + tb->size) in order to for it to be
properly cleared -- thus we increment the PC here so that
the logic setting tb->size below does the right thing. */
dc->pc += 4;
break;
}
/* Pretty disas. */
LOG_DIS("%8.8x:\t", dc->pc);
if (num_insns == max_insns && (tb_cflags(tb) & CF_LAST_IO)) {
gen_io_start();
}
dc->clear_imm = 1;
decode(dc, cpu_ldl_code(env, dc->pc));
if (dc->clear_imm)
dc->tb_flags &= ~IMM_FLAG;
dc->pc += 4;
if (dc->delayed_branch) {
dc->delayed_branch--;
if (!dc->delayed_branch) {
if (dc->tb_flags & DRTI_FLAG)
do_rti(dc);
if (dc->tb_flags & DRTB_FLAG)
do_rtb(dc);
if (dc->tb_flags & DRTE_FLAG)
do_rte(dc);
/* Clear the delay slot flag. */
dc->tb_flags &= ~D_FLAG;
/* If it is a direct jump, try direct chaining. */
if (dc->jmp == JMP_INDIRECT) {
eval_cond_jmp(dc, env_btarget, tcg_const_i64(dc->pc));
dc->is_jmp = DISAS_JUMP;
} else if (dc->jmp == JMP_DIRECT) {
t_sync_flags(dc);
gen_goto_tb(dc, 0, dc->jmp_pc);
dc->is_jmp = DISAS_TB_JUMP;
} else if (dc->jmp == JMP_DIRECT_CC) {
TCGLabel *l1 = gen_new_label();
t_sync_flags(dc);
/* Conditional jmp. */
tcg_gen_brcondi_i32(TCG_COND_NE, env_btaken, 0, l1);
gen_goto_tb(dc, 1, dc->pc);
gen_set_label(l1);
gen_goto_tb(dc, 0, dc->jmp_pc);
dc->is_jmp = DISAS_TB_JUMP;
}
break;
}
}
if (cs->singlestep_enabled) {
break;
}
} while (!dc->is_jmp && !dc->cpustate_changed
&& !tcg_op_buf_full()
&& !singlestep
&& (dc->pc - page_start < TARGET_PAGE_SIZE)
&& num_insns < max_insns);
npc = dc->pc;
if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) {
if (dc->tb_flags & D_FLAG) {
dc->is_jmp = DISAS_UPDATE;
tcg_gen_movi_i64(cpu_SR[SR_PC], npc);
sync_jmpstate(dc);
} else
npc = dc->jmp_pc;
}
if (tb_cflags(tb) & CF_LAST_IO)
gen_io_end();
/* Force an update if the per-tb cpu state has changed. */
if (dc->is_jmp == DISAS_NEXT
&& (dc->cpustate_changed || org_flags != dc->tb_flags)) {
dc->is_jmp = DISAS_UPDATE;
tcg_gen_movi_i64(cpu_SR[SR_PC], npc);
}
t_sync_flags(dc);
if (unlikely(cs->singlestep_enabled)) {
TCGv_i32 tmp = tcg_const_i32(EXCP_DEBUG);
if (dc->is_jmp != DISAS_JUMP) {
tcg_gen_movi_i64(cpu_SR[SR_PC], npc);
}
gen_helper_raise_exception(cpu_env, tmp);
tcg_temp_free_i32(tmp);
} else {
switch(dc->is_jmp) {
case DISAS_NEXT:
gen_goto_tb(dc, 1, npc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
/* indicate that the hash table must be used
to find the next TB */
tcg_gen_exit_tb(NULL, 0);
break;
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
}
}
gen_tb_end(tb, num_insns);
tb->size = dc->pc - pc_start;
tb->icount = num_insns;
#ifdef DEBUG_DISAS
#if !SIM_COMPAT
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)
&& qemu_log_in_addr_range(pc_start)) {
qemu_log_lock();
qemu_log("--------------\n");
log_target_disas(cs, pc_start, dc->pc - pc_start);
qemu_log_unlock();
}
#endif
#endif
assert(!dc->abort_at_next_insn);
}
void mb_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
int i;
if (!env) {
return;
}
qemu_fprintf(f, "IN: PC=%" PRIx64 " %s\n",
env->sregs[SR_PC], lookup_symbol(env->sregs[SR_PC]));
qemu_fprintf(f, "rmsr=%" PRIx64 " resr=%" PRIx64 " rear=%" PRIx64 " "
"debug=%x imm=%x iflags=%x fsr=%" PRIx64 "\n",
env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
env->debug, env->imm, env->iflags, env->sregs[SR_FSR]);
qemu_fprintf(f, "btaken=%d btarget=%" PRIx64 " mode=%s(saved=%s) "
"eip=%d ie=%d\n",
env->btaken, env->btarget,
(env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
(env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
(bool)(env->sregs[SR_MSR] & MSR_EIP),
(bool)(env->sregs[SR_MSR] & MSR_IE));
for (i = 0; i < 32; i++) {
qemu_fprintf(f, "r%2.2d=%8.8x ", i, env->regs[i]);
if ((i + 1) % 4 == 0)
qemu_fprintf(f, "\n");
}
qemu_fprintf(f, "\n\n");
}
void mb_tcg_init(void)
{
int i;
env_debug = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMBState, debug),
"debug0");
env_iflags = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMBState, iflags),
"iflags");
env_imm = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMBState, imm),
"imm");
env_btarget = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUMBState, btarget),
"btarget");
env_btaken = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMBState, btaken),
"btaken");
env_res_addr = tcg_global_mem_new(cpu_env,
offsetof(CPUMBState, res_addr),
"res_addr");
env_res_val = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMBState, res_val),
"res_val");
for (i = 0; i < ARRAY_SIZE(cpu_R); i++) {
cpu_R[i] = tcg_global_mem_new_i32(cpu_env,
offsetof(CPUMBState, regs[i]),
regnames[i]);
}
for (i = 0; i < ARRAY_SIZE(cpu_SR); i++) {
cpu_SR[i] = tcg_global_mem_new_i64(cpu_env,
offsetof(CPUMBState, sregs[i]),
special_regnames[i]);
}
}
void restore_state_to_opc(CPUMBState *env, TranslationBlock *tb,
target_ulong *data)
{
env->sregs[SR_PC] = data[0];
}